-
1
-
-
0031531764
-
A characterization of Markov equivalence classes for acyclic digraphs
-
Andersson, S., Madigan, D. and Perlman, M. (1997) A characterization of Markov equivalence classes for acyclic digraphs. Ann. Statist., 25, 505-541.
-
(1997)
Ann. Statist.
, vol.25
, pp. 505-541
-
-
Andersson, S.1
Madigan, D.2
Perlman, M.3
-
2
-
-
41549101939
-
Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
-
Banerjee, O., El Ghaoui, L. and d'Aspremont, A. (2008) Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J. Mach. Learn. Res., 9, 485-516.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 485-516
-
-
Banerjee, O.1
El Ghaoui, L.2
d'Aspremont, A.3
-
3
-
-
0001019707
-
Learning Bayesian networks is NP-complete
-
In (eds D. Fisher and H. Lenz) -. New York: Springer.
-
Chickering, D. (1996) Learning Bayesian networks is NP-complete. InLearning from Data: Artificial Intelligence and Statistics V (eds D. Fisher and H. Lenz ), pp. 121-130. New York: Springer.
-
(1996)
Learning from Data: Artificial Intelligence and Statistics V
, pp. 121-130
-
-
Chickering, D.1
-
4
-
-
0042496103
-
Learning equivalence classes of Bayesian-network structures
-
Chickering, D. (2002a) Learning equivalence classes of Bayesian-network structures. J. Mach. Learn. Res., 3, 445-498.
-
(2002)
J. Mach. Learn. Res.
, vol.3
, pp. 445-498
-
-
Chickering, D.1
-
5
-
-
0042967741
-
Optimal structure identification with greedy search
-
Chickering, D. (2002b) Optimal structure identification with greedy search. J. Mach. Learn. Res., 3, 507-554.
-
(2002)
J. Mach. Learn. Res.
, vol.3
, pp. 507-554
-
-
Chickering, D.1
-
6
-
-
0007047929
-
-
Causal discovery from a mixture of experimental and observational data. In Proc. 15th Conf. Uncertainty in Artificial Intelligence -.
-
Cooper, G. F. and Yoo, C. (1999) Causal discovery from a mixture of experimental and observational data. In Proc. 15th Conf. Uncertainty in Artificial Intelligence, pp. 116-125.
-
(1999)
, pp. 116-125
-
-
Cooper, G.F.1
Yoo, C.2
-
8
-
-
38049120159
-
On the number of experiments sufficient and in the worst case necessary to identify all causal relations among N variables
-
Eberhardt, F., Glymour, C. and Scheines, R. (2005) On the number of experiments sufficient and in the worst case necessary to identify all causal relations among N variables. In Proc. 21st Conf. Uncertainty in Artificial Intelligence, pp. 178-184.
-
(2005)
Proc. 21st Conf. Uncertainty in Artificial Intelligence
, pp. 178-184
-
-
Eberhardt, F.1
Glymour, C.2
Scheines, R.3
-
9
-
-
49549100459
-
Learning causal Bayesian network structures from experimental data
-
Ellis, B. and Wong, W. H. (2008) Learning causal Bayesian network structures from experimental data. J. Am. Statist. Ass., 103, 778-789.
-
(2008)
J. Am. Statist. Ass.
, vol.103
, pp. 778-789
-
-
Ellis, B.1
Wong, W.H.2
-
10
-
-
45849134070
-
Sparse inverse covariance estimation with the graphical Lasso
-
Friedman, J., Hastie, T. and Tibshirani, R. (2007) Sparse inverse covariance estimation with the graphical Lasso. Biostatistics, 9, 432-441.
-
(2007)
Biostatistics
, vol.9
, pp. 432-441
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
11
-
-
0000554045
-
On the choice of a model to fit data from an exponential family
-
Haughton, D. D. M. (1988) On the choice of a model to fit data from an exponential family. Ann. Statist., 16, 342-355.
-
(1988)
Ann. Statist.
, vol.16
, pp. 342-355
-
-
Haughton, D.D.M.1
-
12
-
-
84869152656
-
Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs
-
Hauser, A. and Bühlmann, P. (2012) Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs. J. Mach. Learn. Res., 13, 2409-2464.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 2409-2464
-
-
Hauser, A.1
Bühlmann, P.2
-
13
-
-
57249084023
-
Active learning of causal networks with intervention experiments and optimal designs
-
He, Y.-B. and Geng, Z. (2008) Active learning of causal networks with intervention experiments and optimal designs. J. Mach. Learn. Res., 9, 2523-2547.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 2523-2547
-
-
He, Y.-B.1
Geng, Z.2
-
14
-
-
84858789485
-
Nonlinear causal discovery with additive noise models
-
Hoyer, P., Janzing, D., Mooij, J., Peters, J. and Schölkopf, B.(2009) Nonlinear causal discovery with additive noise models. InAdvances in Neural Information Processing Systems, vol. 21, pp. 689-696.
-
(2009)
Advances in Neural Information Processing Systems
, vol.21
, pp. 689-696
-
-
Hoyer, P.1
Janzing, D.2
Mooij, J.3
Peters, J.4
Schölkopf, B.5
-
15
-
-
33947524259
-
Estimating high-dimensional directed acyclic graphs with the PC-algorithm
-
Kalisch, M. and Bühlmann, P. (2007) Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J. Mach. Learn. Res., 8, 613-636.
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 613-636
-
-
Kalisch, M.1
Bühlmann, P.2
-
16
-
-
84863330390
-
Causal inference using graphical models with the R package pcalg
-
Kalisch, M., Mächler, M., Colombo, D., Maathuis, M. and Bühlmann, P. (2012) Causal inference using graphical models with the R package pcalg. J. Statist. Softwr., 47, no. 11, 1-26.
-
(2012)
J. Statist. Softwr.
, vol.47
, Issue.11
, pp. 1-26
-
-
Kalisch, M.1
Mächler, M.2
Colombo, D.3
Maathuis, M.4
Bühlmann, P.5
-
17
-
-
0004047518
-
-
Oxford: Oxford University Press.
-
Lauritzen, S. (1996) Graphical Models. Oxford: Oxford University Press.
-
(1996)
Graphical Models
-
-
Lauritzen, S.1
-
18
-
-
69949166983
-
Estimating high-dimensional intervention effects from observational data
-
Maathuis, M., Kalisch, M. and Bühlmann, P. (2009) Estimating high-dimensional intervention effects from observational data. Ann. Statist., 37, 3133-3164.
-
(2009)
Ann. Statist.
, vol.37
, pp. 3133-3164
-
-
Maathuis, M.1
Kalisch, M.2
Bühlmann, P.3
-
22
-
-
77956888769
-
Causal diagrams for empirical research
-
Pearl, J. (1995) Causal diagrams for empirical research. Biometrika, 82, 669-688.
-
(1995)
Biometrika
, vol.82
, pp. 669-688
-
-
Pearl, J.1
-
23
-
-
67649850798
-
Causality: Models
-
Cambridge: Cambridge University Press.
-
Pearl, J. (2000) Causality: Models, Reasoning and Inference. Cambridge: Cambridge University Press.
-
(2000)
Reasoning and Inference
-
-
Pearl, J.1
-
24
-
-
84917703358
-
-
Restricted structural equation models for causal inference. PhD Thesis. Eidgenössiche Technische Hochschule Zürich, Zürich.
-
Peters, J. (2012) Restricted structural equation models for causal inference. PhD Thesis. Eidgenössiche Technische Hochschule Zürich, Zürich.
-
(2012)
-
-
Peters, J.1
-
25
-
-
80053168312
-
Identifiability of causal graphs using functional models
-
Peters, J., Mooij, J., Janzing, D. and Schölkopf, B. (2011) Identifiability of causal graphs using functional models. In Proc. 27th Conf. Uncertainty in Artificial Intelligence.
-
(2011)
Proc. 27th Conf. Uncertainty in Artificial Intelligence
-
-
Peters, J.1
Mooij, J.2
Janzing, D.3
Schölkopf, B.4
-
26
-
-
17644427718
-
Causal protein-signaling networks derived from multiparameter single-cell data
-
Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D. and Nolan, G. (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science, 308, 523-529.
-
(2005)
Science
, vol.308
, pp. 523-529
-
-
Sachs, K.1
Perez, O.2
Pe'er, D.3
Lauffenburger, D.4
Nolan, G.5
-
28
-
-
33749326177
-
A linear non-Gaussian acyclic model for causal discovery
-
Shimizu, S., Hoyer, P., Hyvärinen, A. and Kerminen, A. (2006) A linear non-Gaussian acyclic model for causal discovery. J. Mach. Learn. Res., 7, 2003-2030.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2003-2030
-
-
Shimizu, S.1
Hoyer, P.2
Hyvärinen, A.3
Kerminen, A.4
-
29
-
-
80053201441
-
-
A simple approach for finding the globally optimal Bayesian network structure. In Proc. 22nd Conf. Uncertainty in Artificial Intelligence.
-
Silander, T. and Myllymäki, P. (2006) A simple approach for finding the globally optimal Bayesian network structure. In Proc. 22nd Conf. Uncertainty in Artificial Intelligence.
-
(2006)
-
-
Silander, T.1
Myllymäki, P.2
-
30
-
-
0003614273
-
-
2nd edn. Cambridge: MIT Press.
-
Spirtes, P., Glymour, C. and Scheines, R. (2000) Causation, Prediction, and Search, 2nd edn. Cambridge: MIT Press.
-
(2000)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
32
-
-
33746035971
-
The max-min hill-climbing Bayesian network structure learning algorithm
-
Tsamardinos, I., Brown, L. E. and Aliferis, C. F. (2006) The max-min hill-climbing Bayesian network structure learning algorithm. Mach. Learn., 65, 31-78.
-
(2006)
Mach. Learn.
, vol.65
, pp. 31-78
-
-
Tsamardinos, I.1
Brown, L.E.2
Aliferis, C.F.3
|