메뉴 건너뛰기




Volumn 77, Issue 1, 2015, Pages 291-318

Jointly interventional and observational data: Estimation of interventional Markov equivalence classes of directed acyclic graphs

Author keywords

Bayesian information criterion; Causal inference; Graphical model; Greedy equivalence search; Interventions; Maximum likelihood estimation

Indexed keywords


EID: 84917733558     PISSN: 13697412     EISSN: 14679868     Source Type: Journal    
DOI: 10.1111/rssb.12071     Document Type: Article
Times cited : (78)

References (33)
  • 1
    • 0031531764 scopus 로고    scopus 로고
    • A characterization of Markov equivalence classes for acyclic digraphs
    • Andersson, S., Madigan, D. and Perlman, M. (1997) A characterization of Markov equivalence classes for acyclic digraphs. Ann. Statist., 25, 505-541.
    • (1997) Ann. Statist. , vol.25 , pp. 505-541
    • Andersson, S.1    Madigan, D.2    Perlman, M.3
  • 2
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
    • Banerjee, O., El Ghaoui, L. and d'Aspremont, A. (2008) Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J. Mach. Learn. Res., 9, 485-516.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 485-516
    • Banerjee, O.1    El Ghaoui, L.2    d'Aspremont, A.3
  • 3
    • 0001019707 scopus 로고    scopus 로고
    • Learning Bayesian networks is NP-complete
    • In (eds D. Fisher and H. Lenz) -. New York: Springer.
    • Chickering, D. (1996) Learning Bayesian networks is NP-complete. InLearning from Data: Artificial Intelligence and Statistics V (eds D. Fisher and H. Lenz ), pp. 121-130. New York: Springer.
    • (1996) Learning from Data: Artificial Intelligence and Statistics V , pp. 121-130
    • Chickering, D.1
  • 4
    • 0042496103 scopus 로고    scopus 로고
    • Learning equivalence classes of Bayesian-network structures
    • Chickering, D. (2002a) Learning equivalence classes of Bayesian-network structures. J. Mach. Learn. Res., 3, 445-498.
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 445-498
    • Chickering, D.1
  • 5
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • Chickering, D. (2002b) Optimal structure identification with greedy search. J. Mach. Learn. Res., 3, 507-554.
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 507-554
    • Chickering, D.1
  • 6
    • 0007047929 scopus 로고    scopus 로고
    • Causal discovery from a mixture of experimental and observational data. In Proc. 15th Conf. Uncertainty in Artificial Intelligence -.
    • Cooper, G. F. and Yoo, C. (1999) Causal discovery from a mixture of experimental and observational data. In Proc. 15th Conf. Uncertainty in Artificial Intelligence, pp. 116-125.
    • (1999) , pp. 116-125
    • Cooper, G.F.1    Yoo, C.2
  • 8
    • 38049120159 scopus 로고    scopus 로고
    • On the number of experiments sufficient and in the worst case necessary to identify all causal relations among N variables
    • Eberhardt, F., Glymour, C. and Scheines, R. (2005) On the number of experiments sufficient and in the worst case necessary to identify all causal relations among N variables. In Proc. 21st Conf. Uncertainty in Artificial Intelligence, pp. 178-184.
    • (2005) Proc. 21st Conf. Uncertainty in Artificial Intelligence , pp. 178-184
    • Eberhardt, F.1    Glymour, C.2    Scheines, R.3
  • 9
    • 49549100459 scopus 로고    scopus 로고
    • Learning causal Bayesian network structures from experimental data
    • Ellis, B. and Wong, W. H. (2008) Learning causal Bayesian network structures from experimental data. J. Am. Statist. Ass., 103, 778-789.
    • (2008) J. Am. Statist. Ass. , vol.103 , pp. 778-789
    • Ellis, B.1    Wong, W.H.2
  • 10
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical Lasso
    • Friedman, J., Hastie, T. and Tibshirani, R. (2007) Sparse inverse covariance estimation with the graphical Lasso. Biostatistics, 9, 432-441.
    • (2007) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 11
    • 0000554045 scopus 로고
    • On the choice of a model to fit data from an exponential family
    • Haughton, D. D. M. (1988) On the choice of a model to fit data from an exponential family. Ann. Statist., 16, 342-355.
    • (1988) Ann. Statist. , vol.16 , pp. 342-355
    • Haughton, D.D.M.1
  • 12
    • 84869152656 scopus 로고    scopus 로고
    • Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs
    • Hauser, A. and Bühlmann, P. (2012) Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs. J. Mach. Learn. Res., 13, 2409-2464.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 2409-2464
    • Hauser, A.1    Bühlmann, P.2
  • 13
    • 57249084023 scopus 로고    scopus 로고
    • Active learning of causal networks with intervention experiments and optimal designs
    • He, Y.-B. and Geng, Z. (2008) Active learning of causal networks with intervention experiments and optimal designs. J. Mach. Learn. Res., 9, 2523-2547.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2523-2547
    • He, Y.-B.1    Geng, Z.2
  • 15
    • 33947524259 scopus 로고    scopus 로고
    • Estimating high-dimensional directed acyclic graphs with the PC-algorithm
    • Kalisch, M. and Bühlmann, P. (2007) Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J. Mach. Learn. Res., 8, 613-636.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 613-636
    • Kalisch, M.1    Bühlmann, P.2
  • 17
    • 0004047518 scopus 로고    scopus 로고
    • Oxford: Oxford University Press.
    • Lauritzen, S. (1996) Graphical Models. Oxford: Oxford University Press.
    • (1996) Graphical Models
    • Lauritzen, S.1
  • 18
    • 69949166983 scopus 로고    scopus 로고
    • Estimating high-dimensional intervention effects from observational data
    • Maathuis, M., Kalisch, M. and Bühlmann, P. (2009) Estimating high-dimensional intervention effects from observational data. Ann. Statist., 37, 3133-3164.
    • (2009) Ann. Statist. , vol.37 , pp. 3133-3164
    • Maathuis, M.1    Kalisch, M.2    Bühlmann, P.3
  • 19
  • 22
    • 77956888769 scopus 로고
    • Causal diagrams for empirical research
    • Pearl, J. (1995) Causal diagrams for empirical research. Biometrika, 82, 669-688.
    • (1995) Biometrika , vol.82 , pp. 669-688
    • Pearl, J.1
  • 23
    • 67649850798 scopus 로고    scopus 로고
    • Causality: Models
    • Cambridge: Cambridge University Press.
    • Pearl, J. (2000) Causality: Models, Reasoning and Inference. Cambridge: Cambridge University Press.
    • (2000) Reasoning and Inference
    • Pearl, J.1
  • 24
    • 84917703358 scopus 로고    scopus 로고
    • Restricted structural equation models for causal inference. PhD Thesis. Eidgenössiche Technische Hochschule Zürich, Zürich.
    • Peters, J. (2012) Restricted structural equation models for causal inference. PhD Thesis. Eidgenössiche Technische Hochschule Zürich, Zürich.
    • (2012)
    • Peters, J.1
  • 26
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D. and Nolan, G. (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science, 308, 523-529.
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'er, D.3    Lauffenburger, D.4    Nolan, G.5
  • 29
    • 80053201441 scopus 로고    scopus 로고
    • A simple approach for finding the globally optimal Bayesian network structure. In Proc. 22nd Conf. Uncertainty in Artificial Intelligence.
    • Silander, T. and Myllymäki, P. (2006) A simple approach for finding the globally optimal Bayesian network structure. In Proc. 22nd Conf. Uncertainty in Artificial Intelligence.
    • (2006)
    • Silander, T.1    Myllymäki, P.2
  • 32
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • Tsamardinos, I., Brown, L. E. and Aliferis, C. F. (2006) The max-min hill-climbing Bayesian network structure learning algorithm. Mach. Learn., 65, 31-78.
    • (2006) Mach. Learn. , vol.65 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.