메뉴 건너뛰기




Volumn 15, Issue , 2014, Pages 2009-2053

Causal discovery with continuous additive noise models

Author keywords

Additive noise; Bayesian networks; Causal inference; Causal minimality; Identifiability; Structural equation models

Indexed keywords

BAYESIAN NETWORKS; BEHAVIORAL RESEARCH; EQUIVALENCE CLASSES; GRAPH THEORY; TELECOMMUNICATION SERVICES;

EID: 84904201625     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (535)

References (67)
  • 1
    • 21244484641 scopus 로고    scopus 로고
    • Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs
    • S. Acid and L. M. de Campos. Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs. Journal of Artificial Intelligence Research, 18:445-490, 2003. (Pubitemid 41525942)
    • (2003) Journal of Artificial Intelligence Research , vol.18 , pp. 445-490
    • Acid, S.1    De Campos, L.M.2
  • 7
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • D. M. Chickering. Optimal structure identification with greedy search. Journal of Machine Learning Research, 3:507-554, 2002.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 8
    • 0028416938 scopus 로고
    • Independent component analysis - A new concept?
    • P. Comon. Independent component analysis - a new concept? Signal Processing, 36: 287-314, 1994.
    • (1994) Signal Processing , vol.36 , pp. 287-314
    • Comon, P.1
  • 11
    • 63149174058 scopus 로고    scopus 로고
    • Deutscher Wetterdienst
    • Deutscher Wetterdienst. Climate data. http://www.dwd.de/, 2008.
    • (2008) Climate Data
  • 13
    • 46649113945 scopus 로고    scopus 로고
    • Interventions and causal inference
    • F. Eberhardt and R. Scheines. Interventions and causal inference. Philosophy of Science, 74(5):981-995, 2007.
    • (2007) Philosophy of Science , vol.74 , Issue.5 , pp. 981-995
    • Eberhardt, F.1    Scheines, R.2
  • 14
    • 0037262841 scopus 로고    scopus 로고
    • Being bayesian about bayesian network structure: A Bayesian approach to structure discovery in Bayesian networks
    • N. Friedman and D. Koller. Being Bayesian about Bayesian network structure: A Bayesian approach to structure discovery in Bayesian networks. Machine Learning, 50:95-125, 2003.
    • (2003) Machine Learning , vol.50 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 19
    • 0000554045 scopus 로고
    • On the choice of a model to fit data from an exponential family
    • D. M. A. Haughton. On the choice of a model to fit data from an exponential family. The Annals of Statistics, 16:342-355, 1988.
    • (1988) The Annals of Statistics , vol.16 , pp. 342-355
    • Haughton, D.M.A.1
  • 20
    • 0004334192 scopus 로고    scopus 로고
    • A Bayesian approach to causal discovery
    • Microsoft Research (MSR-TR-97-05)
    • D. Heckerman. A Bayesian approach to causal discovery. Technical report, Microsoft Research (MSR-TR-97-05), 1997.
    • (1997) Technical Report
    • Heckerman, D.1
  • 21
    • 0004063546 scopus 로고
    • Likelihoods and parameter priors for Bayesian networks
    • Microsoft Research (MSR-TR-95-54)
    • D. Heckerman and D. Geiger. Likelihoods and parameter priors for Bayesian networks. Technical report, Microsoft Research (MSR-TR-95-54), 1995.
    • (1995) Technical Report
    • Heckerman, D.1    Geiger, D.2
  • 24
    • 84873446677 scopus 로고    scopus 로고
    • Pairwise likelihood ratios for estimation of non-Gaussian structural equation models
    • A. Hyvärinen and S. M. Smith. Pairwise likelihood ratios for estimation of non-Gaussian structural equation models. Journal of Machine Learning Research, 14:111-152, 2013.
    • (2013) Journal of Machine Learning Research , vol.14 , pp. 111-152
    • Hyvärinen, A.1    Smith, S.M.2
  • 26
    • 80053147274 scopus 로고    scopus 로고
    • Justifying additive-noise-model based causal discovery via algorithmic information theory
    • D. Janzing and B. Steudel. Justifying additive-noise-model based causal discovery via algorithmic information theory. Open Systems and Information Dynamics, 17:189-212, 2010.
    • (2010) Open Systems and Information Dynamics , vol.17 , pp. 189-212
    • Janzing, D.1    Steudel, B.2
  • 28
    • 33947524259 scopus 로고    scopus 로고
    • Estimating high-dimensional directed acyclic graphs with the PC-algorithm
    • M. Kalisch and P. Bühlmann. Estimating high-dimensional directed acyclic graphs with the PC-algorithm. Journal of Machine Learning Research, 8:613-636, 2007. (Pubitemid 46473523)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 613-636
    • Kalisch, M.1    Buhlmann, P.2
  • 31
    • 0004047518 scopus 로고    scopus 로고
    • Oxford University Press, New York
    • S. Lauritzen. Graphical Models. Oxford University Press, New York, 1996.
    • (1996) Graphical Models
    • Lauritzen, S.1
  • 44
    • 84897585225 scopus 로고    scopus 로고
    • Identifiability of Gaussian structural equation models with equal error variances
    • J. Peters and P. Bühlmann. Identifiability of Gaussian structural equation models with equal error variances. Biometrika, 101:219-228, 2014.
    • (2014) Biometrika , vol.101 , pp. 219-228
    • Peters, J.1    Bühlmann, P.2
  • 49
    • 0036392228 scopus 로고    scopus 로고
    • Ancestral graph Markov models
    • DOI 10.1214/aos/1031689015
    • T. Richardson and P. Spirtes. Ancestral graph Markov models. Annals of Statistics, 30(4): 962-1030, 2002. (Pubitemid 37095336)
    • (2002) Annals of Statistics , vol.30 , Issue.4 , pp. 962-1030
    • Richardson, T.1    Spirtes, P.2
  • 53
    • 67650499890 scopus 로고    scopus 로고
    • The hidden life of latent variables: Bayesian learning with mixed graph models
    • R. Silva and Z. Ghahramani. The hidden life of latent variables: Bayesian learning with mixed graph models. Journal of Machine Learning Research, 10:1187-1238, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 1187-1238
    • Silva, R.1    Ghahramani, Z.2
  • 54
    • 0002449633 scopus 로고
    • Linear forms in independent random variables and the normal distribution law (in Russian)
    • V.P. Skitovič. Linear forms in independent random variables and the normal distribution law (in Russian). Izvestiia AN SSSR, Ser. Matem., 18:185-200, 1954.
    • (1954) Izvestiia AN SSSR, Ser. Matem. , vol.18 , pp. 185-200
    • Skitovič, V.P.1
  • 55
    • 0010808573 scopus 로고
    • Linear combinations of independent random variables and the normal distribution law
    • V.P. Skitovič. Linear combinations of independent random variables and the normal distribution law. Select. Transl. Math. Stat. Probab., 2:211-228, 1962.
    • (1962) Select. Transl. Math. Stat. Probab. , vol.2 , pp. 211-228
    • Skitovič, V.P.1
  • 58
    • 80052190545 scopus 로고    scopus 로고
    • Parallel algorithm for learning optimal Bayesian network structure
    • Y. Tamada, S. Imoto, and S. Miyano. Parallel algorithm for learning optimal Bayesian network structure. Journal of Machine Learning Research, 12:2437-2459, 2011b.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 2437-2459
    • Tamada, Y.1    Imoto, S.2    Miyano, S.3
  • 60
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • DOI 10.1007/s10994-006-6889-7
    • I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning, 65(1):31-78, 2006. (Pubitemid 44451193)
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3
  • 61
    • 84879127873 scopus 로고    scopus 로고
    • Geometry of the faithfulness assumption in causal inference
    • C. Uhler, G. Raskutti, P. Bühlmann, and B. Yu. Geometry of the faithfulness assumption in causal inference. Annals of Statistics, 41(2):436-463, 2013.
    • (2013) Annals of Statistics , vol.41 , Issue.2 , pp. 436-463
    • Uhler, C.1    Raskutti, G.2    Bühlmann, P.3    Yu, B.4
  • 65
    • 44349095903 scopus 로고    scopus 로고
    • Detection of unfaithfulness and robust causal inference
    • J. Zhang and P. Spirtes. Detection of unfaithfulness and robust causal inference. Minds and Machines, 18:239-271, 2008.
    • (2008) Minds and Machines , vol.18 , pp. 239-271
    • Zhang, J.1    Spirtes, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.