-
1
-
-
21244484641
-
Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs
-
S. Acid and L. M. de Campos. Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs. Journal of Artificial Intelligence Research, 18:445-490, 2003. (Pubitemid 41525942)
-
(2003)
Journal of Artificial Intelligence Research
, vol.18
, pp. 445-490
-
-
Acid, S.1
De Campos, L.M.2
-
7
-
-
0042967741
-
Optimal structure identification with greedy search
-
D. M. Chickering. Optimal structure identification with greedy search. Journal of Machine Learning Research, 3:507-554, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 507-554
-
-
Chickering, D.M.1
-
8
-
-
0028416938
-
Independent component analysis - A new concept?
-
P. Comon. Independent component analysis - a new concept? Signal Processing, 36: 287-314, 1994.
-
(1994)
Signal Processing
, vol.36
, pp. 287-314
-
-
Comon, P.1
-
11
-
-
63149174058
-
-
Deutscher Wetterdienst
-
Deutscher Wetterdienst. Climate data. http://www.dwd.de/, 2008.
-
(2008)
Climate Data
-
-
-
13
-
-
46649113945
-
Interventions and causal inference
-
F. Eberhardt and R. Scheines. Interventions and causal inference. Philosophy of Science, 74(5):981-995, 2007.
-
(2007)
Philosophy of Science
, vol.74
, Issue.5
, pp. 981-995
-
-
Eberhardt, F.1
Scheines, R.2
-
14
-
-
0037262841
-
Being bayesian about bayesian network structure: A Bayesian approach to structure discovery in Bayesian networks
-
N. Friedman and D. Koller. Being Bayesian about Bayesian network structure: A Bayesian approach to structure discovery in Bayesian networks. Machine Learning, 50:95-125, 2003.
-
(2003)
Machine Learning
, vol.50
, pp. 95-125
-
-
Friedman, N.1
Koller, D.2
-
17
-
-
29144480967
-
Kernel methods for measuring independence
-
A. Gretton, R. Herbrich, A. Smola, O. Bousquet, and B. Schölkopf. Kernel methods for measuring independence. Journal of Machine Learning Research, 6:2075-2129, 2005. (Pubitemid 41798124)
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 2075-2129
-
-
Gretton, A.1
Herbrich, R.2
Smola, A.3
Bousquet, O.4
Scholkopf, B.5
-
18
-
-
85162060108
-
A kernel statistical test of independence
-
A. Gretton, K. Fukumizu, C. H. Teo, L. Song, B. Schölkopf, and A. Smola. A kernel statistical test of independence. In Advances in Neural Information Processing Systems 20 (NIPS), 2008.
-
(2008)
Advances in Neural Information Processing Systems 20 (NIPS)
-
-
Gretton, A.1
Fukumizu, K.2
Teo, C.H.3
Song, L.4
Schölkopf, B.5
Smola, A.6
-
19
-
-
0000554045
-
On the choice of a model to fit data from an exponential family
-
D. M. A. Haughton. On the choice of a model to fit data from an exponential family. The Annals of Statistics, 16:342-355, 1988.
-
(1988)
The Annals of Statistics
, vol.16
, pp. 342-355
-
-
Haughton, D.M.A.1
-
20
-
-
0004334192
-
A Bayesian approach to causal discovery
-
Microsoft Research (MSR-TR-97-05)
-
D. Heckerman. A Bayesian approach to causal discovery. Technical report, Microsoft Research (MSR-TR-97-05), 1997.
-
(1997)
Technical Report
-
-
Heckerman, D.1
-
21
-
-
0004063546
-
Likelihoods and parameter priors for Bayesian networks
-
Microsoft Research (MSR-TR-95-54)
-
D. Heckerman and D. Geiger. Likelihoods and parameter priors for Bayesian networks. Technical report, Microsoft Research (MSR-TR-95-54), 1995.
-
(1995)
Technical Report
-
-
Heckerman, D.1
Geiger, D.2
-
22
-
-
52949107186
-
Estimation of causal effects using linear non-Gaussian causal models with hidden variables
-
P. Hoyer, S. Shimizu, A. J. Kerminen, and M. Palviainen. Estimation of causal effects using linear non-Gaussian causal models with hidden variables. International Journal of Approximate Reasoning, 49:362-378, 2008.
-
(2008)
International Journal of Approximate Reasoning
, vol.49
, pp. 362-378
-
-
Hoyer, P.1
Shimizu, S.2
Kerminen, A.J.3
Palviainen, M.4
-
23
-
-
84858789485
-
Nonlinear causal discovery with additive noise models
-
P. Hoyer, D. Janzing, J. M. Mooij, J. Peters, and B. Schölkopf. Nonlinear causal discovery with additive noise models. In Advances in Neural Information Processing Systems 21 (NIPS), 2009.
-
(2009)
Advances in Neural Information Processing Systems 21 (NIPS)
-
-
Hoyer, P.1
Janzing, D.2
Mooij, J.M.3
Peters, J.4
Schölkopf, B.5
-
24
-
-
84873446677
-
Pairwise likelihood ratios for estimation of non-Gaussian structural equation models
-
A. Hyvärinen and S. M. Smith. Pairwise likelihood ratios for estimation of non-Gaussian structural equation models. Journal of Machine Learning Research, 14:111-152, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 111-152
-
-
Hyvärinen, A.1
Smith, S.M.2
-
26
-
-
80053147274
-
Justifying additive-noise-model based causal discovery via algorithmic information theory
-
D. Janzing and B. Steudel. Justifying additive-noise-model based causal discovery via algorithmic information theory. Open Systems and Information Dynamics, 17:189-212, 2010.
-
(2010)
Open Systems and Information Dynamics
, vol.17
, pp. 189-212
-
-
Janzing, D.1
Steudel, B.2
-
28
-
-
33947524259
-
Estimating high-dimensional directed acyclic graphs with the PC-algorithm
-
M. Kalisch and P. Bühlmann. Estimating high-dimensional directed acyclic graphs with the PC-algorithm. Journal of Machine Learning Research, 8:613-636, 2007. (Pubitemid 46473523)
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 613-636
-
-
Kalisch, M.1
Buhlmann, P.2
-
31
-
-
0004047518
-
-
Oxford University Press, New York
-
S. Lauritzen. Graphical Models. Oxford University Press, New York, 1996.
-
(1996)
Graphical Models
-
-
Lauritzen, S.1
-
44
-
-
84897585225
-
Identifiability of Gaussian structural equation models with equal error variances
-
J. Peters and P. Bühlmann. Identifiability of Gaussian structural equation models with equal error variances. Biometrika, 101:219-228, 2014.
-
(2014)
Biometrika
, vol.101
, pp. 219-228
-
-
Peters, J.1
Bühlmann, P.2
-
49
-
-
0036392228
-
Ancestral graph Markov models
-
DOI 10.1214/aos/1031689015
-
T. Richardson and P. Spirtes. Ancestral graph Markov models. Annals of Statistics, 30(4): 962-1030, 2002. (Pubitemid 37095336)
-
(2002)
Annals of Statistics
, vol.30
, Issue.4
, pp. 962-1030
-
-
Richardson, T.1
Spirtes, P.2
-
50
-
-
84867113617
-
On causal and anticausal learning
-
B. Schölkopf, D. Janzing, J. Peters, E. Sgouritsa, K. Zhang, and J. M. Mooij. On causal and anticausal learning. In Proceedings of the 29th International Conference on Machine Learning (ICML), 2012.
-
(2012)
Proceedings of the 29th International Conference on Machine Learning (ICML)
-
-
Schölkopf, B.1
Janzing, D.2
Peters, J.3
Sgouritsa, E.4
Zhang, K.5
Mooij, J.M.6
-
51
-
-
33749326177
-
A linear non-gaussian acyclic model for causal discovery
-
S. Shimizu, P. Hoyer, A. Hyvärinen, and A. J. Kerminen. A linear non-Gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7:2003-2030, 2006. (Pubitemid 44497456)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2003-2030
-
-
Shimizu, S.1
Hoyer, P.O.2
Hyvarinen, A.3
Kerminen, A.4
-
52
-
-
79955829373
-
DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation model
-
S. Shimizu, T. Inazumi, Y. Sogawa, A. Hyvärinen, Y. Kawahara, T. Washio, P. Hoyer, and K. Bollen. DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation model. Journal of Machine Learning Research, 12:1225-1248, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 1225-1248
-
-
Shimizu, S.1
Inazumi, T.2
Sogawa, Y.3
Hyvärinen, A.4
Kawahara, Y.5
Washio, T.6
Hoyer, P.7
Bollen, K.8
-
53
-
-
67650499890
-
The hidden life of latent variables: Bayesian learning with mixed graph models
-
R. Silva and Z. Ghahramani. The hidden life of latent variables: Bayesian learning with mixed graph models. Journal of Machine Learning Research, 10:1187-1238, 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 1187-1238
-
-
Silva, R.1
Ghahramani, Z.2
-
54
-
-
0002449633
-
Linear forms in independent random variables and the normal distribution law (in Russian)
-
V.P. Skitovič. Linear forms in independent random variables and the normal distribution law (in Russian). Izvestiia AN SSSR, Ser. Matem., 18:185-200, 1954.
-
(1954)
Izvestiia AN SSSR, Ser. Matem.
, vol.18
, pp. 185-200
-
-
Skitovič, V.P.1
-
55
-
-
0010808573
-
Linear combinations of independent random variables and the normal distribution law
-
V.P. Skitovič. Linear combinations of independent random variables and the normal distribution law. Select. Transl. Math. Stat. Probab., 2:211-228, 1962.
-
(1962)
Select. Transl. Math. Stat. Probab.
, vol.2
, pp. 211-228
-
-
Skitovič, V.P.1
-
56
-
-
0003614273
-
-
MIT Press, 2nd edition
-
P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. MIT Press, 2nd edition, 2000.
-
(2000)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
57
-
-
79952856971
-
Estimating genome-wide gene networks using nonparametric Bayesian network models on massively parallel computers
-
Y. Tamada, S. Imoto, H. Araki, M. Nagasaki, C. G. Print, S. D. Charnock-Jones, and S. Miyano. Estimating genome-wide gene networks using nonparametric Bayesian network models on massively parallel computers. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8(3):683-697, 2011a.
-
(2011)
IEEE/ACM Transactions on Computational Biology and Bioinformatics
, vol.8
, Issue.3
, pp. 683-697
-
-
Tamada, Y.1
Imoto, S.2
Araki, H.3
Nagasaki, M.4
Print, C.G.5
Charnock-Jones, S.D.6
Miyano, S.7
-
58
-
-
80052190545
-
Parallel algorithm for learning optimal Bayesian network structure
-
Y. Tamada, S. Imoto, and S. Miyano. Parallel algorithm for learning optimal Bayesian network structure. Journal of Machine Learning Research, 12:2437-2459, 2011b.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2437-2459
-
-
Tamada, Y.1
Imoto, S.2
Miyano, S.3
-
60
-
-
33746035971
-
The max-min hill-climbing Bayesian network structure learning algorithm
-
DOI 10.1007/s10994-006-6889-7
-
I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning, 65(1):31-78, 2006. (Pubitemid 44451193)
-
(2006)
Machine Learning
, vol.65
, Issue.1
, pp. 31-78
-
-
Tsamardinos, I.1
Brown, L.E.2
Aliferis, C.F.3
-
61
-
-
84879127873
-
Geometry of the faithfulness assumption in causal inference
-
C. Uhler, G. Raskutti, P. Bühlmann, and B. Yu. Geometry of the faithfulness assumption in causal inference. Annals of Statistics, 41(2):436-463, 2013.
-
(2013)
Annals of Statistics
, vol.41
, Issue.2
, pp. 436-463
-
-
Uhler, C.1
Raskutti, G.2
Bühlmann, P.3
Yu, B.4
-
65
-
-
44349095903
-
Detection of unfaithfulness and robust causal inference
-
J. Zhang and P. Spirtes. Detection of unfaithfulness and robust causal inference. Minds and Machines, 18:239-271, 2008.
-
(2008)
Minds and Machines
, vol.18
, pp. 239-271
-
-
Zhang, J.1
Spirtes, P.2
|