-
2
-
-
0003614273
-
Causation, Prediction, and Search
-
Springer-Verlag New York, NY
-
P. Spirtes, C. Glymour, and R. Scheines Causation, Prediction, and Search Lecture Notes in Statistics 1993 Springer-Verlag New York, NY
-
(1993)
Lecture Notes in Statistics
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
3
-
-
0004213845
-
-
Cambridge University Press
-
J. Pearl Causality 2000 Cambridge University Press
-
(2000)
Causality
-
-
Pearl, J.1
-
6
-
-
50549204079
-
A formal theory of inductive inference
-
R. Solomonoff A formal theory of inductive inference Information and Control, Part II 7 2 1964 224 254
-
(1964)
Information and Control, Part II
, vol.7
, Issue.2
, pp. 224-254
-
-
Solomonoff, R.1
-
7
-
-
0016532771
-
A theory of program size formally identical to information theory
-
G. Chaitin A theory of program size formally identical to information theory Journal of the Association for Computing Machinery 22 1975 329 340
-
(1975)
Journal of the Association for Computing Machinery
, vol.22
, pp. 329-340
-
-
Chaitin, G.1
-
8
-
-
0001902056
-
Three approaches to the quantitative definition of information
-
A. Kolmogorov Three approaches to the quantitative definition of information Problems of Information Transmission 1 1 1965 1 7
-
(1965)
Problems of Information Transmission
, vol.1
, Issue.1
, pp. 1-7
-
-
Kolmogorov, A.1
-
9
-
-
84858789485
-
Nonlinear causal discovery with additive noise models
-
NIPS 2008, Vancouver, Canada, 2009 MIT Press
-
P. Hoyer, D. Janzing, J. Mooij, J. Peters, and B. Schölkopf Nonlinear causal discovery with additive noise models Proceedings of the Conference Neural Information Processing Systems NIPS 2008, Vancouver, Canada, 2009 2009 MIT Press
-
(2009)
Proceedings of the Conference Neural Information Processing Systems
-
-
Hoyer, P.1
Janzing, D.2
Mooij, J.3
Peters, J.4
Schölkopf, B.5
-
12
-
-
80053147274
-
Justifying additive-noise-based causal discovery via algorithmic information theory
-
D. Janzing, and B. Steudel Justifying additive-noise-based causal discovery via algorithmic information theory Open Systems and Information Dynamics 17 2 2010 189 212
-
(2010)
Open Systems and Information Dynamics
, vol.17
, Issue.2
, pp. 189-212
-
-
Janzing, D.1
Steudel, B.2
-
13
-
-
77956505691
-
Telling cause from effect based on high-dimensional observations
-
Haifa, Israel, June
-
D. Janzing, P. Hoyer, B. Schölkopf, Telling cause from effect based on high-dimensional observations, in: Proceedings of the 27th International Conference on Machine Learning, ICML 2010, Haifa, Israel, June 2010, pp. 479-486.
-
(2010)
Proceedings of the 27th International Conference on Machine Learning, ICML 2010
, pp. 479-486
-
-
D. Janzing1
-
14
-
-
80053141466
-
Testing whether linear equations are causal: A free probability approach
-
Barcelona, Spain
-
J. Zscheischler, D. Janzing, K. Zhang, Testing whether linear equations are causal: A free probability approach, in: Proceedings of the 27th International Conference on Uncertainty in Artificial Intelligence, UAI 2011, Barcelona, Spain, 2011, pp. 839-847.
-
(2011)
Proceedings of the 27th International Conference on Uncertainty in Artificial Intelligence, UAI 2011
, pp. 839-847
-
-
Zscheischler, J.1
Janzing, D.2
Zhang, K.3
-
15
-
-
84858705569
-
Inferring deterministic causal relations
-
July
-
P. Daniušis, D. Janzing, J. Mooij, J. Zscheischler, B. Steudel, K. Zhang, B. Schölkopf, Inferring deterministic causal relations, in: Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, UAI, July 2010, pp. 1-8.
-
(2010)
Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, UAI
, pp. 1-8
-
-
P. Daniušis1
-
16
-
-
0003308636
-
Gaussian process networks
-
UAI, Stanford, CA, USA, 2000 Morgan Kaufmann
-
N. Friedman, and I. Nachman Gaussian process networks Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence UAI, Stanford, CA, USA, 2000 2000 Morgan Kaufmann 211 219
-
(2000)
Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence
, pp. 211-219
-
-
Friedman, N.1
Nachman, I.2
-
18
-
-
0035397522
-
Information geometry on hierarchy of probability distributions
-
DOI 10.1109/18.930911, PII S0018944801044200
-
S. Amari Information geometry on hierarchy of probability distributions IEEE Transactions on Information Theory 47 5 2001 1701 1711 (Pubitemid 32644689)
-
(2001)
IEEE Transactions on Information Theory
, vol.47
, Issue.5
, pp. 1701-1711
-
-
Amari, S.-I.1
-
22
-
-
0000148038
-
Computer generation of random variables using the ratio of uniform deviates
-
A.J. Kinderman, and J.F. Monahan Computer generation of random variables using the ratio of uniform deviates ACM Transactions on Mathematical Software 3 3 1977 257 260
-
(1977)
ACM Transactions on Mathematical Software
, vol.3
, Issue.3
, pp. 257-260
-
-
Kinderman, A.J.1
Monahan, J.F.2
-
24
-
-
85072276102
-
Probabilistic latent variable models for distinguishing between cause and effect
-
NIPS 2010, Vancouver, Canada Curran Associates
-
Joris M. Mooij, Oliver Stegle, Dominik Janzing, Kun Zhang, and Bernhard Schölkopf Probabilistic latent variable models for distinguishing between cause and effect Advances in Neural Information Processing Systems 23 NIPS 2010, Vancouver, Canada 2011 Curran Associates 1687 1695
-
(2011)
Advances in Neural Information Processing Systems 23
, pp. 1687-1695
-
-
Mooij, J.M.1
Stegle, O.2
Janzing, D.3
Zhang, K.4
Schölkopf, B.5
-
25
-
-
29144480967
-
Kernel methods for measuring independence
-
A. Gretton, R. Herbrich, A. Smola, O. Bousquet, and B. Schölkopf Kernel methods for measuring independence Journal of Machine Learning Research 6 2005 2075 2129 (Pubitemid 41798124)
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 2075-2129
-
-
Gretton, A.1
Herbrich, R.2
Smola, A.3
Bousquet, O.4
Scholkopf, B.5
|