메뉴 건너뛰기




Volumn 111, Issue 52, 2014, Pages 18507-18512

Topological sensitivity analysis for systems biology

Author keywords

Biological networks; Dynamical systems; Network inference; Robustness analysis

Indexed keywords

ARTICLE; BAYES THEOREM; BOOTSTRAPPING; CONCEPTUAL FRAMEWORK; GENE EXPRESSION; GENE REGULATORY NETWORK; GROWTH RATE; HUMAN; MATHEMATICAL MODEL; MAXIMUM LIKELIHOOD METHOD; POPULATION DYNAMICS; POPULATION SIZE; PREDICTION; PRIORITY JOURNAL; SENSITIVITY ANALYSIS; STEADY STATE; SYSTEMS BIOLOGY; BIOLOGICAL MODEL; PROCEDURES;

EID: 84924299916     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1414026112     Document Type: Article
Times cited : (84)

References (46)
  • 3
    • 84881027074 scopus 로고    scopus 로고
    • Model selection in systems and synthetic biology
    • Kirk P, Thorne T, Stumpf MPH (2013) Model selection in systems and synthetic biology. Curr Opin Biotechnol 24(4):767-774.
    • (2013) Curr Opin Biotechnol , vol.24 , Issue.4 , pp. 767-774
    • Kirk, P.1    Thorne, T.2    Stumpf, M.P.H.3
  • 4
    • 75249088572 scopus 로고    scopus 로고
    • Simulation-based model selection for dynamical systems in systems and population biology
    • Toni T, Stumpf MPH (2010) Simulation-based model selection for dynamical systems in systems and population biology. Bioinformatics 26(1):104-110.
    • (2010) Bioinformatics , vol.26 , Issue.1 , pp. 104-110
    • Toni, T.1    Stumpf, M.P.H.2
  • 6
    • 34948840834 scopus 로고    scopus 로고
    • Ensemble modeling for analysis of cell signaling dynamics
    • Kuepfer L, Peter M, Sauer U, Stelling J (2007) Ensemble modeling for analysis of cell signaling dynamics. Nat Biotechnol 25(9):1001-1006.
    • (2007) Nat Biotechnol , vol.25 , Issue.9 , pp. 1001-1006
    • Kuepfer, L.1    Peter, M.2    Sauer, U.3    Stelling, J.4
  • 7
    • 71149116758 scopus 로고    scopus 로고
    • Systems analysis of cellular networks under uncertainty
    • Kaltenbach H-M, Dimopoulos S, Stelling J (2009) Systems analysis of cellular networks under uncertainty. FEBS Lett 583(24):3923-3930.
    • (2009) FEBS Lett , vol.583 , Issue.24 , pp. 3923-3930
    • Kaltenbach, H.-M.1    Dimopoulos, S.2    Stelling, J.3
  • 8
    • 84878742739 scopus 로고    scopus 로고
    • Automatic generation of predictive dynamic models reveals nuclear phosphorylation as the key Msn2 control mechanism
    • Sunnåker M, et al. (2013) Automatic generation of predictive dynamic models reveals nuclear phosphorylation as the key Msn2 control mechanism. Sci Signal 6(277):ra41.
    • (2013) Sci Signal , vol.6 , Issue.277 , pp. ra41
    • Sunnåker, M.1
  • 9
    • 84892773110 scopus 로고    scopus 로고
    • Topological augmentation to infer hidden processes in biological systems
    • Sunnåker M, et al. (2014) Topological augmentation to infer hidden processes in biological systems. Bioinformatics 30(2):221-227.
    • (2014) Bioinformatics , vol.30 , Issue.2 , pp. 221-227
    • Sunnåker, M.1
  • 10
    • 0024325237 scopus 로고
    • Systems analysis at the molecular scale
    • Rabitz H (1989) Systems analysis at the molecular scale. Science 246(4927):221-226.
    • (1989) Science , vol.246 , Issue.4927 , pp. 221-226
    • Rabitz, H.1
  • 12
    • 79954550872 scopus 로고    scopus 로고
    • Practical limits for reverse engineering of dynamical systems: A statistical analysis of sensitivity and parameter inferability in systems biology models
    • Erguler K, Stumpf MPH (2011) Practical limits for reverse engineering of dynamical systems: A statistical analysis of sensitivity and parameter inferability in systems biology models. Mol Biosyst 7(5):1593-1602.
    • (2011) Mol Biosyst , vol.7 , Issue.5 , pp. 1593-1602
    • Erguler, K.1    Stumpf, M.P.H.2
  • 13
    • 84888062735 scopus 로고    scopus 로고
    • Parameter uncertainty in biochemical models described by ordinary differential equations
    • Vanlier J, Tiemann CA, Hilbers PAJ, van Riel NAW (2013) Parameter uncertainty in biochemical models described by ordinary differential equations. Math Biosci 246(2):305-314.
    • (2013) Math Biosci , vol.246 , Issue.2 , pp. 305-314
    • Vanlier, J.1    Tiemann, C.A.2    Hilbers, P.A.J.3    Van Riel, N.A.W.4
  • 14
  • 15
    • 33747813561 scopus 로고    scopus 로고
    • The Inferelator: An algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
    • Bonneau R, et al. (2006) The Inferelator: An algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol 7(5):R36.
    • (2006) Genome Biol , vol.7 , Issue.5 , pp. R36
    • Bonneau, R.1
  • 16
    • 84876207916 scopus 로고    scopus 로고
    • Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks
    • Greenfield A, Hafemeister C, Bonneau R (2013) Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks. Bioinformatics 29(8):1060-1067.
    • (2013) Bioinformatics , vol.29 , Issue.8 , pp. 1060-1067
    • Greenfield, A.1    Hafemeister, C.2    Bonneau, R.3
  • 17
    • 84870778397 scopus 로고    scopus 로고
    • Inference of temporally varying Bayesian networks
    • Thorne T, Stumpf MPH (2012) Inference of temporally varying Bayesian networks. Bioinformatics 28(24):3298-3305.
    • (2012) Bioinformatics , vol.28 , Issue.24 , pp. 3298-3305
    • Thorne, T.1    Stumpf, M.P.H.2
  • 18
    • 84907019497 scopus 로고    scopus 로고
    • Causal network inference using biochemical kinetics
    • Oates CJ, et al. (2014) Causal network inference using biochemical kinetics. Bioinformatics 30(17):i468-i474.
    • (2014) Bioinformatics , vol.30 , Issue.17 , pp. i468-i474
    • Oates, C.J.1
  • 19
    • 84900423203 scopus 로고    scopus 로고
    • Modeling genome-wide dynamic regulatory network in mouse lungs with influenza infection using high-dimensional ordinary differential equations
    • Wu S, Liu Z-P, Qiu X, Wu H (2014) Modeling genome-wide dynamic regulatory network in mouse lungs with influenza infection using high-dimensional ordinary differential equations. PLoS ONE 9(5):e95276.
    • (2014) PLoS ONE , vol.9 , Issue.5 , pp. e95276
    • Wu, S.1    Liu, Z.-P.2    Qiu, X.3    Wu, H.4
  • 20
  • 21
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N, Linial M, Nachman I, Pe'er D (2000) Using Bayesian networks to analyze expression data. J Comput Biol 7(3-4):601-620.
    • (2000) J Comput Biol , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'Er, D.4
  • 23
    • 70449375094 scopus 로고    scopus 로고
    • Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics
    • Aijö T, Lähdesmäki H (2009) Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics. Bioinformatics 25(22):2937-2944.
    • (2009) Bioinformatics , vol.25 , Issue.22 , pp. 2937-2944
    • Aijö, T.1    Lähdesmäki, H.2
  • 24
    • 84859149116 scopus 로고    scopus 로고
    • How to infer gene networks from expression profiles, revisited
    • Penfold CA, Wild DL (2011) How to infer gene networks from expression profiles, revisited. Interface Focus 1(6):857-870.
    • (2011) Interface Focus , vol.1 , Issue.6 , pp. 857-870
    • Penfold, C.A.1    Wild, D.L.2
  • 25
    • 84863518591 scopus 로고    scopus 로고
    • Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks
    • Penfold CA, Buchanan-Wollaston V, Denby KJ, Wild DL (2012) Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks. Bioinformatics 28(12):i233-i241.
    • (2012) Bioinformatics , vol.28 , Issue.12 , pp. i233-i241
    • Penfold, C.A.1    Buchanan-Wollaston, V.2    Denby, K.J.3    Wild, D.L.4
  • 26
    • 84928994738 scopus 로고    scopus 로고
    • ODE parameter inference using adaptive gradient matching with Gaussian processes
    • Dondelinger F, Husmeier D, Rogers S, Filippone M (2013) ODE parameter inference using adaptive gradient matching with Gaussian processes. JMLR Workshop Conf Proc 31:216-228.
    • (2013) JMLR Workshop Conf Proc , vol.31 , pp. 216-228
    • Dondelinger, F.1    Husmeier, D.2    Rogers, S.3    Filippone, M.4
  • 27
    • 77950788346 scopus 로고    scopus 로고
    • Parameter estimation of ODEs via nonparametric estimators
    • Brunel NJ-B (2008) Parameter estimation of ODEs via nonparametric estimators. Electron J Stat 2(0):1242-1267.
    • (2008) Electron J Stat , vol.2 , Issue.0 , pp. 1242-1267
    • Brunel, N.J.-B.1
  • 28
    • 78049443039 scopus 로고    scopus 로고
    • Accelerating Bayesian inference over nonlinear differential equations with Gaussian processes
    • Calderhead B, Girolami M (2008) Accelerating Bayesian inference over nonlinear differential equations with Gaussian processes. Adv Neural Inf Process Syst 21:217-224.
    • (2008) Adv Neural Inf Process Syst , vol.21 , pp. 217-224
    • Calderhead, B.1    Girolami, M.2
  • 29
    • 65549161909 scopus 로고    scopus 로고
    • Gaussian process regression bootstrapping: Exploring the effects of uncertainty in time course data
    • Kirk PDW, Stumpf MPH (2009) Gaussian process regression bootstrapping: Exploring the effects of uncertainty in time course data. Bioinformatics 25(10):1300-1306.
    • (2009) Bioinformatics , vol.25 , Issue.10 , pp. 1300-1306
    • Kirk, P.D.W.1    Stumpf, M.P.H.2
  • 31
    • 79551489429 scopus 로고    scopus 로고
    • Gaussian processes for machine learning (GPML) toolbox
    • Rasmussen CE, Nickisch H (2010) Gaussian processes for machine learning (GPML) toolbox. J Mach Learn Res 11:3011-3015.
    • (2010) J Mach Learn Res , vol.11 , pp. 3011-3015
    • Rasmussen, C.E.1    Nickisch, H.2
  • 32
    • 35148901361 scopus 로고    scopus 로고
    • Nested sampling for general Bayesian computation
    • Skilling J (2006) Nested sampling for general Bayesian computation. Bayesian Anal 1(4):833-860.
    • (2006) Bayesian Anal , vol.1 , Issue.4 , pp. 833-860
    • Skilling, J.1
  • 33
    • 84928991581 scopus 로고    scopus 로고
    • SYSBIONS: Nested sampling for systems biology
    • Johnson R, Kirk P, Stumpf MPH (2014) SYSBIONS: Nested sampling for systems biology. Bioinformatics, 10.1093/bioinformatics/btu675.
    • (2014) Bioinformatics
    • Johnson, R.1    Kirk, P.2    Stumpf, M.P.H.3
  • 34
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 37
    • 35748977901 scopus 로고    scopus 로고
    • Universally sloppy parameter sensitivities in systems biology models
    • Gutenkunst RN, et al. (2007) Universally sloppy parameter sensitivities in systems biology models. PLOS Comput Biol 3(10):1871-1878.
    • (2007) PLOS Comput Biol , vol.3 , Issue.10 , pp. 1871-1878
    • Gutenkunst, R.N.1
  • 38
    • 77956498018 scopus 로고    scopus 로고
    • Sloppy models, parameter uncertainty, and the role of experimental design
    • Apgar JF, Witmer DK, White FM, Tidor B (2010) Sloppy models, parameter uncertainty, and the role of experimental design. Mol Biosyst 6(10):1890-1900.
    • (2010) Mol Biosyst , vol.6 , Issue.10 , pp. 1890-1900
    • Apgar, J.F.1    Witmer, D.K.2    White, F.M.3    Tidor, B.4
  • 39
    • 84891892050 scopus 로고    scopus 로고
    • Reverse engineering and identification in systems biology: Strategies, perspectives and challenges
    • Villaverde AF, Banga JR (2014) Reverse engineering and identification in systems biology: Strategies, perspectives and challenges. J R Soc Interface 11(91):20130505.
    • (2014) J R Soc Interface , vol.11 , Issue.91 , pp. 20130505
    • Villaverde, A.F.1    Banga, J.R.2
  • 40
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • Spellman PT, et al. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9(12):3273-3297.
    • (1998) Mol Biol Cell , vol.9 , Issue.12 , pp. 3273-3297
    • Spellman, P.T.1
  • 41
    • 84862970480 scopus 로고    scopus 로고
    • High dimensional ODEs coupled with mixed-effects modelling techniques for dynamic gene regulatory network identification
    • Lu T, Liang H, Li H, Wu H (2011) High dimensional ODEs coupled with mixed-effects modelling techniques for dynamic gene regulatory network identification. J Am Stat Assoc 106(496):1242-1258.
    • (2011) J Am Stat Assoc , vol.106 , Issue.496 , pp. 1242-1258
    • Lu, T.1    Liang, H.2    Li, H.3    Wu, H.4
  • 43
    • 79551552677 scopus 로고    scopus 로고
    • Model-based inference of biochemical parameters and dynamic properties of microbial signal transduction networks
    • Schaber J, Klipp E (2011) Model-based inference of biochemical parameters and dynamic properties of microbial signal transduction networks. Curr Opin Biotechnol 22(1):109-116.
    • (2011) Curr Opin Biotechnol , vol.22 , Issue.1 , pp. 109-116
    • Schaber, J.1    Klipp, E.2
  • 44
    • 84899655348 scopus 로고    scopus 로고
    • Models in biology: ' Accurate descriptions of our pathetic thinking'
    • Gunawardena J (2014) Models in biology: ' Accurate descriptions of our pathetic thinking'. BMC Biol 12:29.
    • (2014) BMC Biol , vol.12 , pp. 29
    • Gunawardena, J.1
  • 45
    • 75649151459 scopus 로고    scopus 로고
    • Reconstructing nonlinear dynamic models of gene regulation using stochastic sampling
    • Mazur J, Ritter D, Reinelt G, Kaderali L (2009) Reconstructing nonlinear dynamic models of gene regulation using stochastic sampling. BMC Bioinformatics 10(1):448.
    • (2009) BMC Bioinformatics , vol.10 , Issue.1 , pp. 448
    • Mazur, J.1    Ritter, D.2    Reinelt, G.3    Kaderali, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.