-
3
-
-
84881027074
-
Model selection in systems and synthetic biology
-
Kirk P, Thorne T, Stumpf MPH (2013) Model selection in systems and synthetic biology. Curr Opin Biotechnol 24(4):767-774.
-
(2013)
Curr Opin Biotechnol
, vol.24
, Issue.4
, pp. 767-774
-
-
Kirk, P.1
Thorne, T.2
Stumpf, M.P.H.3
-
4
-
-
75249088572
-
Simulation-based model selection for dynamical systems in systems and population biology
-
Toni T, Stumpf MPH (2010) Simulation-based model selection for dynamical systems in systems and population biology. Bioinformatics 26(1):104-110.
-
(2010)
Bioinformatics
, vol.26
, Issue.1
, pp. 104-110
-
-
Toni, T.1
Stumpf, M.P.H.2
-
5
-
-
0001259111
-
Bayesian model averaging: A tutorial
-
Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999) Bayesian model averaging: A tutorial. Stat Sci 14(4):382-417.
-
(1999)
Stat Sci
, vol.14
, Issue.4
, pp. 382-417
-
-
Hoeting, J.A.1
Madigan, D.2
Raftery, A.E.3
Volinsky, C.T.4
-
6
-
-
34948840834
-
Ensemble modeling for analysis of cell signaling dynamics
-
Kuepfer L, Peter M, Sauer U, Stelling J (2007) Ensemble modeling for analysis of cell signaling dynamics. Nat Biotechnol 25(9):1001-1006.
-
(2007)
Nat Biotechnol
, vol.25
, Issue.9
, pp. 1001-1006
-
-
Kuepfer, L.1
Peter, M.2
Sauer, U.3
Stelling, J.4
-
7
-
-
71149116758
-
Systems analysis of cellular networks under uncertainty
-
Kaltenbach H-M, Dimopoulos S, Stelling J (2009) Systems analysis of cellular networks under uncertainty. FEBS Lett 583(24):3923-3930.
-
(2009)
FEBS Lett
, vol.583
, Issue.24
, pp. 3923-3930
-
-
Kaltenbach, H.-M.1
Dimopoulos, S.2
Stelling, J.3
-
8
-
-
84878742739
-
Automatic generation of predictive dynamic models reveals nuclear phosphorylation as the key Msn2 control mechanism
-
Sunnåker M, et al. (2013) Automatic generation of predictive dynamic models reveals nuclear phosphorylation as the key Msn2 control mechanism. Sci Signal 6(277):ra41.
-
(2013)
Sci Signal
, vol.6
, Issue.277
, pp. ra41
-
-
Sunnåker, M.1
-
9
-
-
84892773110
-
Topological augmentation to infer hidden processes in biological systems
-
Sunnåker M, et al. (2014) Topological augmentation to infer hidden processes in biological systems. Bioinformatics 30(2):221-227.
-
(2014)
Bioinformatics
, vol.30
, Issue.2
, pp. 221-227
-
-
Sunnåker, M.1
-
10
-
-
0024325237
-
Systems analysis at the molecular scale
-
Rabitz H (1989) Systems analysis at the molecular scale. Science 246(4927):221-226.
-
(1989)
Science
, vol.246
, Issue.4927
, pp. 221-226
-
-
Rabitz, H.1
-
12
-
-
79954550872
-
Practical limits for reverse engineering of dynamical systems: A statistical analysis of sensitivity and parameter inferability in systems biology models
-
Erguler K, Stumpf MPH (2011) Practical limits for reverse engineering of dynamical systems: A statistical analysis of sensitivity and parameter inferability in systems biology models. Mol Biosyst 7(5):1593-1602.
-
(2011)
Mol Biosyst
, vol.7
, Issue.5
, pp. 1593-1602
-
-
Erguler, K.1
Stumpf, M.P.H.2
-
13
-
-
84888062735
-
Parameter uncertainty in biochemical models described by ordinary differential equations
-
Vanlier J, Tiemann CA, Hilbers PAJ, van Riel NAW (2013) Parameter uncertainty in biochemical models described by ordinary differential equations. Math Biosci 246(2):305-314.
-
(2013)
Math Biosci
, vol.246
, Issue.2
, pp. 305-314
-
-
Vanlier, J.1
Tiemann, C.A.2
Hilbers, P.A.J.3
Van Riel, N.A.W.4
-
14
-
-
84903388376
-
Model selection in systems biology depends on experimental design
-
Silk D, Kirk PDW, Barnes CP, Toni T, Stumpf MPH (2014) Model selection in systems biology depends on experimental design. PLOS Comput Biol 10(6):e1003650.
-
(2014)
PLOS Comput Biol
, vol.10
, Issue.6
, pp. e1003650
-
-
Silk, D.1
Kirk, P.D.W.2
Barnes, C.P.3
Toni, T.4
Stumpf, M.P.H.5
-
15
-
-
33747813561
-
The Inferelator: An algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
-
Bonneau R, et al. (2006) The Inferelator: An algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol 7(5):R36.
-
(2006)
Genome Biol
, vol.7
, Issue.5
, pp. R36
-
-
Bonneau, R.1
-
16
-
-
84876207916
-
Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks
-
Greenfield A, Hafemeister C, Bonneau R (2013) Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks. Bioinformatics 29(8):1060-1067.
-
(2013)
Bioinformatics
, vol.29
, Issue.8
, pp. 1060-1067
-
-
Greenfield, A.1
Hafemeister, C.2
Bonneau, R.3
-
17
-
-
84870778397
-
Inference of temporally varying Bayesian networks
-
Thorne T, Stumpf MPH (2012) Inference of temporally varying Bayesian networks. Bioinformatics 28(24):3298-3305.
-
(2012)
Bioinformatics
, vol.28
, Issue.24
, pp. 3298-3305
-
-
Thorne, T.1
Stumpf, M.P.H.2
-
18
-
-
84907019497
-
Causal network inference using biochemical kinetics
-
Oates CJ, et al. (2014) Causal network inference using biochemical kinetics. Bioinformatics 30(17):i468-i474.
-
(2014)
Bioinformatics
, vol.30
, Issue.17
, pp. i468-i474
-
-
Oates, C.J.1
-
19
-
-
84900423203
-
Modeling genome-wide dynamic regulatory network in mouse lungs with influenza infection using high-dimensional ordinary differential equations
-
Wu S, Liu Z-P, Qiu X, Wu H (2014) Modeling genome-wide dynamic regulatory network in mouse lungs with influenza infection using high-dimensional ordinary differential equations. PLoS ONE 9(5):e95276.
-
(2014)
PLoS ONE
, vol.9
, Issue.5
, pp. e95276
-
-
Wu, S.1
Liu, Z.-P.2
Qiu, X.3
Wu, H.4
-
21
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
Friedman N, Linial M, Nachman I, Pe'er D (2000) Using Bayesian networks to analyze expression data. J Comput Biol 7(3-4):601-620.
-
(2000)
J Comput Biol
, vol.7
, Issue.3-4
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Pe'Er, D.4
-
23
-
-
70449375094
-
Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics
-
Aijö T, Lähdesmäki H (2009) Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics. Bioinformatics 25(22):2937-2944.
-
(2009)
Bioinformatics
, vol.25
, Issue.22
, pp. 2937-2944
-
-
Aijö, T.1
Lähdesmäki, H.2
-
24
-
-
84859149116
-
How to infer gene networks from expression profiles, revisited
-
Penfold CA, Wild DL (2011) How to infer gene networks from expression profiles, revisited. Interface Focus 1(6):857-870.
-
(2011)
Interface Focus
, vol.1
, Issue.6
, pp. 857-870
-
-
Penfold, C.A.1
Wild, D.L.2
-
25
-
-
84863518591
-
Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks
-
Penfold CA, Buchanan-Wollaston V, Denby KJ, Wild DL (2012) Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks. Bioinformatics 28(12):i233-i241.
-
(2012)
Bioinformatics
, vol.28
, Issue.12
, pp. i233-i241
-
-
Penfold, C.A.1
Buchanan-Wollaston, V.2
Denby, K.J.3
Wild, D.L.4
-
27
-
-
77950788346
-
Parameter estimation of ODEs via nonparametric estimators
-
Brunel NJ-B (2008) Parameter estimation of ODEs via nonparametric estimators. Electron J Stat 2(0):1242-1267.
-
(2008)
Electron J Stat
, vol.2
, Issue.0
, pp. 1242-1267
-
-
Brunel, N.J.-B.1
-
28
-
-
78049443039
-
Accelerating Bayesian inference over nonlinear differential equations with Gaussian processes
-
Calderhead B, Girolami M (2008) Accelerating Bayesian inference over nonlinear differential equations with Gaussian processes. Adv Neural Inf Process Syst 21:217-224.
-
(2008)
Adv Neural Inf Process Syst
, vol.21
, pp. 217-224
-
-
Calderhead, B.1
Girolami, M.2
-
29
-
-
65549161909
-
Gaussian process regression bootstrapping: Exploring the effects of uncertainty in time course data
-
Kirk PDW, Stumpf MPH (2009) Gaussian process regression bootstrapping: Exploring the effects of uncertainty in time course data. Bioinformatics 25(10):1300-1306.
-
(2009)
Bioinformatics
, vol.25
, Issue.10
, pp. 1300-1306
-
-
Kirk, P.D.W.1
Stumpf, M.P.H.2
-
31
-
-
79551489429
-
Gaussian processes for machine learning (GPML) toolbox
-
Rasmussen CE, Nickisch H (2010) Gaussian processes for machine learning (GPML) toolbox. J Mach Learn Res 11:3011-3015.
-
(2010)
J Mach Learn Res
, vol.11
, pp. 3011-3015
-
-
Rasmussen, C.E.1
Nickisch, H.2
-
32
-
-
35148901361
-
Nested sampling for general Bayesian computation
-
Skilling J (2006) Nested sampling for general Bayesian computation. Bayesian Anal 1(4):833-860.
-
(2006)
Bayesian Anal
, vol.1
, Issue.4
, pp. 833-860
-
-
Skilling, J.1
-
34
-
-
77956890234
-
Monte Carlo sampling methods using Markov chains and their applications
-
Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97-109.
-
(1970)
Biometrika
, vol.57
, pp. 97-109
-
-
Hastings, W.K.1
-
36
-
-
49549094042
-
Sloppiness, robustness, and evolvability in systems biology
-
Daniels BC, Chen Y-J, Sethna JP, Gutenkunst RN, Myers CR (2008) Sloppiness, robustness, and evolvability in systems biology. Curr Opin Biotechnol 19(4):389-395.
-
(2008)
Curr Opin Biotechnol
, vol.19
, Issue.4
, pp. 389-395
-
-
Daniels, B.C.1
Chen, Y.-J.2
Sethna, J.P.3
Gutenkunst, R.N.4
Myers, C.R.5
-
37
-
-
35748977901
-
Universally sloppy parameter sensitivities in systems biology models
-
Gutenkunst RN, et al. (2007) Universally sloppy parameter sensitivities in systems biology models. PLOS Comput Biol 3(10):1871-1878.
-
(2007)
PLOS Comput Biol
, vol.3
, Issue.10
, pp. 1871-1878
-
-
Gutenkunst, R.N.1
-
38
-
-
77956498018
-
Sloppy models, parameter uncertainty, and the role of experimental design
-
Apgar JF, Witmer DK, White FM, Tidor B (2010) Sloppy models, parameter uncertainty, and the role of experimental design. Mol Biosyst 6(10):1890-1900.
-
(2010)
Mol Biosyst
, vol.6
, Issue.10
, pp. 1890-1900
-
-
Apgar, J.F.1
Witmer, D.K.2
White, F.M.3
Tidor, B.4
-
39
-
-
84891892050
-
Reverse engineering and identification in systems biology: Strategies, perspectives and challenges
-
Villaverde AF, Banga JR (2014) Reverse engineering and identification in systems biology: Strategies, perspectives and challenges. J R Soc Interface 11(91):20130505.
-
(2014)
J R Soc Interface
, vol.11
, Issue.91
, pp. 20130505
-
-
Villaverde, A.F.1
Banga, J.R.2
-
40
-
-
0031742022
-
Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
-
Spellman PT, et al. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9(12):3273-3297.
-
(1998)
Mol Biol Cell
, vol.9
, Issue.12
, pp. 3273-3297
-
-
Spellman, P.T.1
-
41
-
-
84862970480
-
High dimensional ODEs coupled with mixed-effects modelling techniques for dynamic gene regulatory network identification
-
Lu T, Liang H, Li H, Wu H (2011) High dimensional ODEs coupled with mixed-effects modelling techniques for dynamic gene regulatory network identification. J Am Stat Assoc 106(496):1242-1258.
-
(2011)
J Am Stat Assoc
, vol.106
, Issue.496
, pp. 1242-1258
-
-
Lu, T.1
Liang, H.2
Li, H.3
Wu, H.4
-
43
-
-
79551552677
-
Model-based inference of biochemical parameters and dynamic properties of microbial signal transduction networks
-
Schaber J, Klipp E (2011) Model-based inference of biochemical parameters and dynamic properties of microbial signal transduction networks. Curr Opin Biotechnol 22(1):109-116.
-
(2011)
Curr Opin Biotechnol
, vol.22
, Issue.1
, pp. 109-116
-
-
Schaber, J.1
Klipp, E.2
-
44
-
-
84899655348
-
Models in biology: ' Accurate descriptions of our pathetic thinking'
-
Gunawardena J (2014) Models in biology: ' Accurate descriptions of our pathetic thinking'. BMC Biol 12:29.
-
(2014)
BMC Biol
, vol.12
, pp. 29
-
-
Gunawardena, J.1
-
45
-
-
75649151459
-
Reconstructing nonlinear dynamic models of gene regulation using stochastic sampling
-
Mazur J, Ritter D, Reinelt G, Kaderali L (2009) Reconstructing nonlinear dynamic models of gene regulation using stochastic sampling. BMC Bioinformatics 10(1):448.
-
(2009)
BMC Bioinformatics
, vol.10
, Issue.1
, pp. 448
-
-
Mazur, J.1
Ritter, D.2
Reinelt, G.3
Kaderali, L.4
-
46
-
-
33748867990
-
Chaos in low-dimensional Lotka-Volterra models of competition
-
Vano JA, Wildenberg JC, Anderson MB, Noel JK, Sprott JC (2006) Chaos in low-dimensional Lotka-Volterra models of competition. Nonlinearity 19(10):2391-2404.
-
(2006)
Nonlinearity
, vol.19
, Issue.10
, pp. 2391-2404
-
-
Vano, J.A.1
Wildenberg, J.C.2
Anderson, M.B.3
Noel, J.K.4
Sprott, J.C.5
|