-
1
-
-
70449375094
-
Learning gene regulatory networks from gene expression measurements using nonparametric molecular kinetics
-
Äijö, T. and Lähdesmäki, H. (2009). Learning gene regulatory networks from gene expression measurements using nonparametric molecular kinetics. Bioinformatics 25 2937-2944.
-
(2009)
Bioinformatics
, vol.25
, pp. 2937-2944
-
-
Äijö, T.1
Lähdesmäki, H.2
-
2
-
-
77954484005
-
Revealing differences in gene network inference algorithms on the network level by ensemble methods
-
Altay, G. and Emmert-Streib, F. (2010). Revealing differences in gene network inference algorithms on the network level by ensemble methods. Bioinformatics 26 1738-1744.
-
(2010)
Bioinformatics
, vol.26
, pp. 1738-1744
-
-
Altay, G.1
Emmert-Streib, F.2
-
3
-
-
2942606066
-
Structure and evolution of transcriptional regulatory networks
-
Babu, M. M., Luscombe, N. M., Aravind, L., Gerstein, M. and Teichmann, S. A. (2004). Structure and evolution of transcriptional regulatory networks. Curr. Opin. Struct. Biol. 14 283-291.
-
(2004)
Curr. Opin. Struct. Biol
, vol.14
, pp. 283-291
-
-
Babu, M.M.1
Luscombe, N.M.2
Aravind, L.3
Gerstein, M.4
Teichmann, S.A.5
-
4
-
-
33847055114
-
How to infer gene networks from expression profiles
-
Article No. 78
-
Bansal, M., Belcastro, V. and Ambesi-Impiombato, A. (2007). How to infer gene networks from expression profiles. Mol. Sys. Bio. 3 Article No. 78.
-
(2007)
Mol. Sys. Bio
, vol.3
-
-
Bansal, M.1
Belcastro, V.2
Ambesi-Impiombato, A.3
-
5
-
-
34548388925
-
Inference of gene networks from temporal gene expression profiles
-
Bansal, M. and di Bernardo, D. (2007). Inference of gene networks from temporal gene expression profiles. IET Syst. Biol. 1 306-312.
-
(2007)
IET Syst. Biol
, vol.1
, pp. 306-312
-
-
Bansal, M.1
di Bernardo, D.2
-
6
-
-
13844253637
-
A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
-
Beal, M. J., Falciani, F., Ghahramani, Z., Rangel, C. and Wild, D. L. (2005). A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 21 349-356.
-
(2005)
Bioinformatics
, vol.21
, pp. 349-356
-
-
Beal, M.J.1
Falciani, F.2
Ghahramani, Z.3
Rangel, C.4
Wild, D.L.5
-
7
-
-
79957439381
-
Causal network inference via group sparse regularization
-
Mathematical Reviews (MathSciNet): MR2840690 Digital Object Identifier: doi:10.1109/TSP.2011.2129515
-
Bolstad, A., Van Veen, B. D. and Nowak, R. (2011). Causal network inference via group sparse regularization. IEEE Trans. Signal Process. 59 2628-2641. Mathematical Reviews (MathSciNet): MR2840690 Digital Object Identifier: doi:10.1109/TSP.2011.2129515
-
(2011)
IEEE Trans. Signal Process
, vol.59
, pp. 2628-2641
-
-
Bolstad, A.1
van Veen, B.D.2
Nowak, R.3
-
8
-
-
54249124501
-
Learning biological networks: From modules to dynamics
-
Bonneau, R. (2008). Learning biological networks: From modules to dynamics. Nat. Chem. Bio. 4 658-664.
-
(2008)
Nat. Chem. Bio
, vol.4
, pp. 658-664
-
-
Bonneau, R.1
-
10
-
-
63249114107
-
Systems biology strikes gold
-
Zentralblatt MATH: 1241.93026
-
Camacho, D. M. and Collins, J. J. (2009). Systems biology strikes gold. Cell 137 24-26. Zentralblatt MATH: 1241.93026
-
(2009)
Cell
, vol.137
, pp. 24-26
-
-
Camacho, D.M.1
Collins, J.J.2
-
11
-
-
63049128934
-
A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches
-
Cantone, I., Marucci, L., Iorio, F., Ricci, M. A., Belcastro, V., Bansal, M., Santini, S., di Bernardo, M., di Bernardo, D. and Cosma, M. P. (2009). A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 137 172-181.
-
(2009)
Cell
, vol.137
, pp. 172-181
-
-
Cantone, I.1
Marucci, L.2
Iorio, F.3
Ricci, M.A.4
Belcastro, V.5
Bansal, M.6
Santini, S.7
di Bernardo, M.8
di Bernardo, D.9
Cosma, M.P.10
-
12
-
-
43249126563
-
Identifiability of chemical reaction networks
-
Mathematical Reviews (MathSciNet): MR2403645 Zentralblatt MATH: 1145.92040 Digital Object Identifier:, doi:10.1007/s10910-007-9307-x
-
Craciun, G. and Pantea, C. (2008). Identifiability of chemical reaction networks. J. Math. Chem. 44 244-259. Mathematical Reviews (MathSciNet): MR2403645 Zentralblatt MATH: 1145.92040 Digital Object Identifier: doi:10.1007/s10910-007-9307-x
-
(2008)
J. Math. Chem
, vol.44
, pp. 244-259
-
-
Craciun, G.1
Pantea, C.2
-
16
-
-
84862287246
-
Exact Bayesian structure learning from uncertain interventions
-
March 21-24, 2007, San Juan, Puerto Rico. Journal of Machine Learning Research, Workshop and Conference Proceedings
-
Eaton, D. and Murphy, K. (2007). Exact Bayesian structure learning from uncertain interventions. In Proceedings of 11th Conference on Artificial Intelligence and Statistics, March 21-24, 2007, San Juan, Puerto Rico. Journal of Machine Learning Research, Workshop and Conference Proceedings, Vol. 2: AISTATS 2007 107-114.
-
(2007)
Proceedings of 11th Conference On Artificial Intelligence and Statistic
, vol.2007
, pp. 107-114
-
-
Eaton, D.1
Murphy, K.2
-
17
-
-
49549100459
-
Learning causal Bayesian network structures from experimental data
-
Mathematical Reviews (MathSciNet): MR2524009 Zentralblatt MATH: 05564531 Digital Object Identifier:, doi:10.1198/016214508000000193
-
Ellis, B. and Wong, W. H. (2008). Learning causal Bayesian network structures from experimental data. J. Amer. Statist. Assoc. 103 778-789. Mathematical Reviews (MathSciNet): MR2524009 Zentralblatt MATH: 05564531 Digital Object Identifier: doi:10.1198/016214508000000193
-
(2008)
J. Amer. Statist. Assoc
, vol.103
, pp. 778-789
-
-
Ellis, B.1
Wong, W.H.2
-
18
-
-
0037119587
-
Stochastic gene expression in a single cell
-
Elowitz, M. B., Levine, A. J. and Siggia, E. D. (2002). Stochastic gene expression in a single cell. Science 297 1129-1131.
-
(2002)
Science
, vol.297
, pp. 1129-1131
-
-
Elowitz, M.B.1
Levine, A.J.2
Siggia, E.D.3
-
19
-
-
33646023117
-
An introduction to ROC analysis
-
Fawcett, T. (2005). An introduction to ROC analysis. Pattern Recognition Letters 27 861-874.
-
(2005)
Pattern Recognition Letters
, vol.27
, pp. 861-874
-
-
Fawcett, T.1
-
20
-
-
45849134070
-
Sparse inverse covariance estimation with the graphical lasso
-
Friedman, J., Hastie, T. and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9 432-441.
-
(2008)
Biostatistics
, vol.9
, pp. 432-441
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
21
-
-
0037262841
-
Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks
-
Friedman, J. and Koller, D. (2003). Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks. Mach. Learn. 50 95-125.
-
(2003)
Mach. Learn
, vol.50
, pp. 95-125
-
-
Friedman, J.1
Koller, D.2
-
22
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
Friedman, N., Linial, M. and Nachman, I. et al. (2000). Using Bayesian networks to analyze expression data. J. Comp. Bio. 7 601-620.
-
(2000)
J. Comp. Bio
, vol.7
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
-
23
-
-
79951965650
-
Improvements in the reconstruction of time-varying gene regulatory networks: Dynamic programming and regularization by information sharing among genes
-
Grzegorczyk, M. and Husmeier, D. (2011). Improvements in the reconstruction of time-varying gene regulatory networks: Dynamic programming and regularization by information sharing among genes. Bioinformatics 27 693-699.
-
(2011)
Bioinformatics
, vol.27
, pp. 693-699
-
-
Grzegorczyk, M.1
Husmeier, D.2
-
24
-
-
68149164746
-
Reverse engineering of gene regulatory networks: A comparative study
-
Hache, H., Lehrach, H. and Herwig, R. (2009). Reverse engineering of gene regulatory networks: A comparative study. EURASIP J. Bioinform. Syst. Biol. 617281.
-
(2009)
EURASIP J. Bioinform. Syst. Biol
, pp. 617281
-
-
Hache, H.1
Lehrach, H.2
Herwig, R.3
-
25
-
-
34250747348
-
Shotgun stochastic search for "large p" regression
-
Mathematical Reviews (MathSciNet): MR2370849 Digital Object Identifier: doi:10.1198/016214507000000121
-
Hans, C., Dobra, A. and West, M. (2007). Shotgun stochastic search for "large p" regression. J. Amer. Statist. Assoc. 102 507-516. Mathematical Reviews (MathSciNet): MR2370849 Digital Object Identifier: doi:10.1198/016214507000000121
-
(2007)
J. Amer. Statist. Assoc
, vol.102
, pp. 507-516
-
-
Hans, C.1
Dobra, A.2
West, M.3
-
26
-
-
61349180117
-
Gene regulatory network inference: Data integration in dynamic models-a review
-
Hecker, M., Lambeck, S., Toepfer, S., van Someren, E. and Guthke, R. (2009). Gene regulatory network inference: Data integration in dynamic models-a review. BioSystems 96 86-103.
-
(2009)
BioSystems
, vol.96
, pp. 86-103
-
-
Hecker, M.1
Lambeck, S.2
Toepfer, S.3
van Someren, E.4
Guthke, R.5
-
28
-
-
34447637158
-
Seeing the wood for the trees: A critical evaluation of methods to estimate the parameters of stochastic differential equations
-
Hurn, A., Jeisman, J. and Lindsay, K. (2007). Seeing the wood for the trees: A critical evaluation of methods to estimate the parameters of stochastic differential equations. Journal of Financial Econometrics 5 390.
-
(2007)
Journal of Financial Econometrics
, vol.5
, pp. 390
-
-
Hurn, A.1
Jeisman, J.2
Lindsay, K.3
-
29
-
-
0037716676
-
Building with a scaffold: Emerging strategies for high to low level cellular modelling
-
Ideker, T. and Lauffenburger, D. (2003). Building with a scaffold: Emerging strategies for high to low level cellular modelling. Trends in Biotechnology 21 255-262.
-
(2003)
Trends In Biotechnology
, vol.21
, pp. 255-262
-
-
Ideker, T.1
Lauffenburger, D.2
-
30
-
-
0842309206
-
Inferring gene networks from time series microarray data using dynamic Bayesian networks
-
Kim, S. Y., Imoto, S. and Miyano, S. (2003). Inferring gene networks from time series microarray data using dynamic Bayesian networks. Briefings in Bioinformatics 4 228-235.
-
(2003)
Briefings In Bioinformatics
, vol.4
, pp. 228-235
-
-
Kim, S.Y.1
Imoto, S.2
Miyano, S.3
-
31
-
-
84857233123
-
Nonparametric Bayesian sparse factor models with application to gene expression modeling
-
Mathematical Reviews (MathSciNet): MR2849785 Zentralblatt MATH: 1223.62013 Digital Object Identifier:, doi:10.1214/10-AOAS435 Project Euclid: euclid.aoas/1310562732
-
Knowles, D. and Ghahramani, Z. (2011). Nonparametric Bayesian sparse factor models with application to gene expression modeling. Ann. Appl. Stat. 5 1534-1552. Mathematical Reviews (MathSciNet): MR2849785 Zentralblatt MATH: 1223.62013 Digital Object Identifier: doi:10.1214/10-AOAS435 Project Euclid: euclid.aoas/1310562732
-
(2011)
Ann. Appl. Stat
, vol.5
, pp. 1534-1552
-
-
Knowles, D.1
Ghahramani, Z.2
-
32
-
-
77956517638
-
Sparsistent learning of varying-coefficient models with structural changes
-
Kolar, M., Song, L. and Xing, E. P. (2009). Sparsistent learning of varying-coefficient models with structural changes. NIPS 22 1006-1014.
-
(2009)
NIPS
, vol.22
, pp. 1006-1014
-
-
Kolar, M.1
Song, L.2
Xing, E.P.3
-
33
-
-
18444379363
-
Bayesian analysis of single-molecule experimental data
-
Mathematical Reviews (MathSciNet): MR2137252 Zentralblatt MATH: 05188696 Digital Object Identifier:, doi:10.1111/j.1467-9876.2005.00509.x
-
Kou, S. C., Xie, X. S. and Liu, J. S. (2005). Bayesian analysis of single-molecule experimental data. J. Roy. Statist. Soc. Ser. C 54 469-506. Mathematical Reviews (MathSciNet): MR2137252 Zentralblatt MATH: 05188696 Digital Object Identifier: doi:10.1111/j.1467-9876.2005.00509.x
-
(2005)
J. Roy. Statist. Soc. Ser. C
, vol.54
, pp. 469-506
-
-
Kou, S.C.1
Xie, X.S.2
Liu, J.S.3
-
34
-
-
77957930628
-
Statistical inference of the time-varying structure of gene- regulation networks
-
Lèbre, S., Becq, J. and Devaux, F. et al. (2010). Statistical inference of the time-varying structure of gene- regulation networks. BMC Systems Biology 4 130.
-
(2010)
BMC Systems Biology
, vol.4
, pp. 130
-
-
Lèbre, S.1
Becq, J.2
Devaux, F.3
-
35
-
-
67449095889
-
Computational methods for discovering gene networks from expression data
-
Lee, W.-P. and Tzou, W.-S. (2009). Computational methods for discovering gene networks from expression data. Brief. Bioinformatics 10 408-423.
-
(2009)
Brief. Bioinformatics
, vol.10
, pp. 408-423
-
-
Lee, W.-P.1
Tzou, W.-S.2
-
36
-
-
77952510758
-
Identifying functional mechanisms of gene and protein regulatory networks in response to a broader range of environmental stresses
-
Li, C. W. and Chen, B. S. (2010). Identifying functional mechanisms of gene and protein regulatory networks in response to a broader range of environmental stresses. Comp. and Func. Genomics 408705.
-
(2010)
Comp. and Func. Genomics
, pp. 408705
-
-
Li, C.W.1
Chen, B.S.2
-
37
-
-
80053436505
-
Large-scale dynamic gene regulatory network inference combining differential equation models with local dynamic Bayesian network analysis
-
Zentralblatt MATH: 1022.68519
-
Li, Z., Li, P., Krishnan, A. and Liu, J. (2011). Large-scale dynamic gene regulatory network inference combining differential equation models with local dynamic Bayesian network analysis. Bioinformatics 27 2686-2691. Zentralblatt MATH: 1022.68519
-
(2011)
Bioinformatics
, vol.27
, pp. 2686-2691
-
-
Li, Z.1
Li, P.2
Krishnan, A.3
Liu, J.4
-
38
-
-
59649110273
-
Generating realistic in silico gene networks for performance assessment of reverse engineering methods
-
Marbach, D., Schaffter, T., Mattiussi, C. and Floreano, D. (2009). Generating realistic in silico gene networks for performance assessment of reverse engineering methods. J. Comput. Biol. 16 229-239.
-
(2009)
J. Comput. Biol
, vol.16
, pp. 229-239
-
-
Marbach, D.1
Schaffter, T.2
Mattiussi, C.3
Floreano, D.4
-
39
-
-
38449088751
-
Inferring cellular networks-A review
-
Markowetz, F. and Spang, R. (2007). Inferring cellular networks-A review. BMC Bioinformatics 8(Suppl. 6) S5.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.SUPPL. 6
-
-
Markowetz, F.1
Spang, R.2
-
40
-
-
0031029852
-
Stochastic mechanisms in gene expression
-
McAdams, H. H. and Arkin, A. (1997). Stochastic mechanisms in gene expression. PNAS 94 814-819.
-
(1997)
PNAS
, vol.94
, pp. 814-819
-
-
McAdams, H.H.1
Arkin, A.2
-
41
-
-
33747163541
-
High-dimensional graphs and variable selection with the lasso
-
Mathematical Reviews (MathSciNet): MR2278363 Zentralblatt MATH: 1113.62082 Digital Object Identifier:, doi:10.1214/009053606000000281 Project Euclid: euclid.aos/1152540754
-
Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. Ann. Statist. 34 1436-1462. Mathematical Reviews (MathSciNet): MR2278363 Zentralblatt MATH: 1113.62082 Digital Object Identifier: doi:10.1214/009053606000000281 Project Euclid: euclid.aos/1152540754
-
(2006)
Ann. Statist
, vol.34
, pp. 1436-1462
-
-
Meinshausen, N.1
Bühlmann, P.2
-
42
-
-
62949105539
-
Network benchmarking: A happy marriage between systems and synthetic biology
-
Minty, J. J., Varedi, K. S. M. and Nina, L. X. (2009). Network benchmarking: A happy marriage between systems and synthetic biology. Chemistry and Biology 16 239-241.
-
(2009)
Chemistry and Biology
, vol.16
, pp. 239-241
-
-
Minty, J.J.1
Varedi, K.S.M.2
Nina, L.X.3
-
43
-
-
77956537377
-
On reverse engineering of gene interaction networks using time course data with repeated measurements
-
Morrissey, E. R., Juárez, M. A., Denby, K. J. and Burroughs, N. J. (2010). On reverse engineering of gene interaction networks using time course data with repeated measurements. Bioinformatics 26 2305-2312.
-
(2010)
Bioinformatics
, vol.26
, pp. 2305-2312
-
-
Morrissey, E.R.1
Juárez, M.A.2
Denby, K.J.3
Burroughs, N.J.4
-
44
-
-
55749093996
-
Network inference using informative priors
-
Mukherjee, S. and Speed, T. P. (2008). Network inference using informative priors. PNAS 105 14313-14318.
-
(2008)
PNAS
, vol.105
, pp. 14313-14318
-
-
Mukherjee, S.1
Speed, T.P.2
-
45
-
-
36549040919
-
Ensemble learning of genetic networks from time-series expression data
-
Nam, D., Yoon, S. H. and Kim, J. F. (2007). Ensemble learning of genetic networks from time-series expression data. Bioinformatics 23 3225-3231.
-
(2007)
Bioinformatics
, vol.23
, pp. 3225-3231
-
-
Nam, D.1
Yoon, S.H.2
Kim, J.F.3
-
48
-
-
34249862287
-
Learning causal networks from systems biology time course data: An effective model selection procedure for the vector autoregressive process
-
Opgen-Rhein, R. and Strimmer, K. (2007). Learning causal networks from systems biology time course data: An effective model selection procedure for the vector autoregressive process. BMC Bioinformatics 8(Suppl. 2) S3.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.SUPPL. 2
-
-
Opgen-Rhein, R.1
Strimmer, K.2
-
49
-
-
20344389483
-
Models of stochastic gene expression
-
Paulsson, J. (2005). Models of stochastic gene expression. Physics of Life Reviews 2 157-175.
-
(2005)
Physics of Life Reviews
, vol.2
, pp. 157-175
-
-
Paulsson, J.1
-
50
-
-
77649325496
-
Causal inference in statistics: An overview
-
Mathematical Reviews (MathSciNet): MR2545291 Zentralblatt MATH: 05719273 Digital Object Identifier:, doi:10.1214/09-SS057 Project Euclid: euclid.ssu/1255440554
-
Pearl, J. (2009). Causal inference in statistics: An overview. Stat. Surv. 3 96-146. Mathematical Reviews (MathSciNet): MR2545291 Zentralblatt MATH: 05719273 Digital Object Identifier: doi:10.1214/09-SS057 Project Euclid: euclid.ssu/1255440554
-
(2009)
Stat. Surv
, vol.3
, pp. 96-146
-
-
Pearl, J.1
-
51
-
-
77949644952
-
Towards a rigorous assessment of systems biology models: The DREAM3 challenges
-
Prill, R. J., Marbach, D., Saez-Rodriguez, J., Sorger, P. K., Alexopoulos, L. G., Xue, X., Clarke, N. D., Altan-Bonnet, G. and Stolovitzky, G. (2010). Towards a rigorous assessment of systems biology models: The DREAM3 challenges. PLoS ONE 5 e9202.
-
(2010)
PLoS ONE
, vol.5
-
-
Prill, R.J.1
Marbach, D.2
Saez-Rodriguez, J.3
Sorger, P.K.4
Alexopoulos, L.G.5
Xue, X.6
Clarke, N.D.7
Altan-Bonnet, G.8
Stolovitzky, G.9
-
52
-
-
34249856850
-
Bayesian model-based inference of transcription factor activity
-
Rogers, S., Khanin, R. and Girolami, M. (2007). Bayesian model-based inference of transcription factor activity. BMC Bioinformatics 8(Suppl. 2) S2.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.SUPPL. 2
-
-
Rogers, S.1
Khanin, R.2
Girolami, M.3
-
53
-
-
0036212767
-
Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors
-
Schoeberl, B., Eichler-Jonsson, C., Gilles, E. D. and Müller, G. (2002). Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat. Biotechnol. 20 370-375.
-
(2002)
Nat. Biotechnol
, vol.20
, pp. 370-375
-
-
Schoeberl, B.1
Eichler-Jonsson, C.2
Gilles, E.D.3
Müller, G.4
-
54
-
-
0000042837
-
Evaluating functional network inference using simulations of complex biological systems
-
Zentralblatt MATH: 1177.62126
-
Smith, V. A., Jarvis, E. D. and Hartemink, A. J. (2002). Evaluating functional network inference using simulations of complex biological systems. Bioinformatics 18 S216-S224. Zentralblatt MATH: 1177.62126
-
(2002)
Bioinformatics
, vol.18
-
-
Smith, V.A.1
Jarvis, E.D.2
Hartemink, A.J.3
-
55
-
-
0036790975
-
Intrinsic and extrinsic contributions to stochasticity in gene expression
-
Swain, P. S., Elowitz, M. B. and Siggia, E. D. (2002). Intrinsic and extrinsic contributions to stochasticity in gene expression. PNAS 99 12795-12800.
-
(2002)
PNAS
, vol.99
, pp. 12795-12800
-
-
Swain, P.S.1
Elowitz, M.B.2
Siggia, E.D.3
-
56
-
-
3543138827
-
Bifurcation analysis of the regulatory modules of the mammalian G1/S transition
-
Swat, M., Kel, A. and Herzel, H. (2004). Bifurcation analysis of the regulatory modules of the mammalian G1/S transition. Bioinformatics 20 1506-1511.
-
(2004)
Bioinformatics
, vol.20
, pp. 1506-1511
-
-
Swat, M.1
Kel, A.2
Herzel, H.3
-
57
-
-
33144486498
-
SynTReN: A generator of synthetic gene expression data for design and analysis of structure learning algorithms
-
Van den Bulcke, T., Van Leemput, K., Naudts, B., van Remortel, P., Ma, H., Verschoren, A., Moor, B. D. and Marchal, K. (2006). SynTReN: A generator of synthetic gene expression data for design and analysis of structure learning algorithms. BMC Bioinformatics 7 43.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 43
-
-
Van den Bulcke, T.1
van Leemput, K.2
Naudts, B.3
van Remortel, P.4
Ma, H.5
Verschoren, A.6
Moor, B.D.7
Marchal, K.8
-
59
-
-
33749825955
-
Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks
-
Werhli, A. V., Grzegorczyk, M. and Husmeier, D. (2006). Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks. Bioinformatics 22 2523-2531.
-
(2006)
Bioinformatics
, vol.22
, pp. 2523-2531
-
-
Werhli, A.V.1
Grzegorczyk, M.2
Husmeier, D.3
-
60
-
-
33750294583
-
-
Chapman & Hall/CRC, Boca Raton, FL, Mathematical Reviews (MathSciNet): MR2222876
-
Wilkinson, D. J. (2006). Stochastic Modelling for Systems Biology. Chapman & Hall/CRC, Boca Raton, FL. Mathematical Reviews (MathSciNet): MR2222876
-
(2006)
Stochastic Modelling For Systems Biology
-
-
Wilkinson, D.J.1
-
61
-
-
58549110252
-
Stochastic modelling for quantitative description of heterogeneous biological systems
-
Wilkinson, D. J. (2009). Stochastic modelling for quantitative description of heterogeneous biological systems. Nature Reviews Genetics 10 122-133.
-
(2009)
Nature Reviews Genetics
, vol.10
, pp. 122-133
-
-
Wilkinson, D.J.1
-
62
-
-
77953839617
-
Inferring signaling pathway topologies from multiple perturbation measurements of specific biochemical species
-
Xu, T.-R., Vyshemirsky, V., Gormand, A., von Kriegsheim, A., Girolami, M., Baillie, G. S., Ketley, D., Dunlop, A. J., Milligan, G., Houslay, M. D. and Kolch, W. (2010). Inferring signaling pathway topologies from multiple perturbation measurements of specific biochemical species. Sci. Signal. 3 ra20.
-
(2010)
Sci. Signal
, vol.3
-
-
Xu, T.-R.1
Vyshemirsky, V.2
Gormand, A.3
von Kriegsheim, A.4
Girolami, M.5
Baillie, G.S.6
Ketley, D.7
Dunlop, A.J.8
Milligan, G.9
Houslay, M.D.10
Kolch, W.11
-
64
-
-
0002817906
-
On assessing prior distributions and Bayesian regression analysis with g-prior distributions
-
North-Holland, Amsterdam, Mathematical Reviews (MathSciNet): MR881437 Zentralblatt MATH: 0655.62071
-
Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In Bayesian Inference and Decision Techniques. Stud. Bayesian Econometrics Statist. 6 233-243. North-Holland, Amsterdam. Mathematical Reviews (MathSciNet): MR881437 Zentralblatt MATH: 0655.62071
-
(1986)
Bayesian Inference and Decision Techniques. Stud. Bayesian Econometrics Statist
, pp. 233-243
-
-
Zellner, A.1
-
65
-
-
73149088616
-
Granger causality vs. dynamic Bayesian network inference: A comparative study
-
Zou, C. and Feng, J. (2009). Granger causality vs. dynamic Bayesian network inference: A comparative study. BMC Bioinformatics 10 12.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 12
-
-
Zou, C.1
Feng, J.2
|