메뉴 건너뛰기




Volumn 3, Issue 3, 2003, Pages 507-554

Optimal structure identification with greedy search

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; DATA REDUCTION; OPTIMAL SYSTEMS; REAL TIME SYSTEMS;

EID: 0042967741     PISSN: 15324435     EISSN: None     Source Type: Journal    
DOI: 10.1162/153244303321897717     Document Type: Conference Paper
Times cited : (1647)

References (22)
  • 1
    • 0031531764 scopus 로고    scopus 로고
    • A characterization of Markov equivalence classes for acyclic digraphs
    • Andersson, S. A., Madigan, D., and Perlman, M. D. (1997). A characterization of Markov equivalence classes for acyclic digraphs. Annals of Statistics, 25:505-541.
    • (1997) Annals of Statistics , vol.25 , pp. 505-541
    • Andersson, S.A.1    Madigan, D.2    Perlman, M.D.3
  • 2
    • 0030124955 scopus 로고    scopus 로고
    • A guide to the literature on learning probabilistic networks from data
    • Buntine, W. L. (1996). A guide to the literature on learning probabilistic networks from data. IEEE Transactions on Knowledge and Data Engineering, 8:195-210.
    • (1996) IEEE Transactions on Knowledge and Data Engineering , vol.8 , pp. 195-210
    • Buntine, W.L.1
  • 3
    • 0002013121 scopus 로고
    • A transformational characterization of Bayesian network structures
    • Hanks, S. and Besnard, P., editors. Morgan Kaufmann
    • Chickering, D. M. (1995). A transformational characterization of Bayesian network structures. In Hanks, S. and Besnard, P., editors, Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pages 87-98. Morgan Kaufmann.
    • (1995) Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence , pp. 87-98
    • Chickering, D.M.1
  • 4
    • 0001019707 scopus 로고    scopus 로고
    • Learning Bayesian networks is NP-Complete
    • Fisher, D. and Lenz, H., editors. Springer-Verlag
    • Chickering, D. M. (1996). Learning Bayesian networks is NP-Complete. In Fisher, D. and Lenz, H., editors, Learning from Data: Artificial Intelligence and Statistics V, pages 121-130. Springer-Verlag.
    • (1996) Learning from Data: Artificial Intelligence and Statistics , vol.5 , pp. 121-130
    • Chickering, D.M.1
  • 5
    • 0042496103 scopus 로고    scopus 로고
    • Learning equivalence classes of Bayesian-network structures
    • Chickering, D. M. (2002). Learning equivalence classes of Bayesian-network structures. Journal of Machine Learning Research, 2:445-498.
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 445-498
    • Chickering, D.M.1
  • 7
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G. F. and Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9:309-347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 8
    • 0041995260 scopus 로고
    • A simple algorithm to construct a consistent extension of a partially oriented graph
    • Cognitive Systems Laboratory, UCLA Computer Science Department
    • Dor, D. and Tarsi, M. (1992). A simple algorithm to construct a consistent extension of a partially oriented graph. Technical Report R-185, Cognitive Systems Laboratory, UCLA Computer Science Department.
    • (1992) Technical Report , vol.R-185
    • Dor, D.1    Tarsi, M.2
  • 9
    • 0035612908 scopus 로고    scopus 로고
    • Stratified exponential families: Graphical models and model selection
    • Geiger, D., Heckerman, D., King, H., and Meek, C. (2001). Stratified exponential families: graphical models and model selection. Annals of Statistics, 29(2):505-529.
    • (2001) Annals of Statistics , vol.29 , Issue.2 , pp. 505-529
    • Geiger, D.1    Heckerman, D.2    King, H.3    Meek, C.4
  • 10
    • 0003385441 scopus 로고    scopus 로고
    • Enumerating Markov equivalence classes of acyclic digraph models
    • Goldszmidt, M., Breese, J., and Koller, D., editors. Morgan Kaufmann
    • Gillispie, S. B. and Perlman, M. D. (2001). Enumerating Markov equivalence classes of acyclic digraph models. In Goldszmidt, M., Breese, J., and Koller, D., editors, Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, pages 171-177. Morgan Kaufmann.
    • (2001) Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence , pp. 171-177
    • Gillispie, S.B.1    Perlman, M.D.2
  • 11
    • 0000554045 scopus 로고
    • On the choice of a model to fit data from an exponential family
    • Haughton, D. M. A. (1988). On the choice of a model to fit data from an exponential family. The Annals of Statistics, 16(1):342-355.
    • (1988) The Annals of Statistics , vol.16 , Issue.1 , pp. 342-355
    • Haughton, D.M.A.1
  • 12
    • 0003846041 scopus 로고    scopus 로고
    • A tutorial on learning Bayesian networks
    • Microsoft Research
    • Heckerman, D. (1996). A tutorial on learning Bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research.
    • (1996) Technical Report , vol.MSR-TR-95-06
    • Heckerman, D.1
  • 13
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman, D., Geiger, D., and Chickering, D. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20:197-243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 16
    • 4344618234 scopus 로고    scopus 로고
    • On the inclusion problem
    • Academy of Sciences of the Czech Republic, Institute of Information Theory and Automation
    • Kočka, T., Bouckaert, R. R., and Studený, M. (2001b). On the inclusion problem. Technical Report 2010, Academy of Sciences of the Czech Republic, Institute of Information Theory and Automation.
    • (2001) Technical Report , vol.2010
    • Kočka, T.1    Bouckaert, R.R.2    Studený, M.3
  • 17
    • 0002753068 scopus 로고
    • Causal inference and causal explanation with background knowledge
    • Hanks, S. and Besnard, P., editors. Morgan Kaufmann
    • Meek, C. (1995). Causal inference and causal explanation with background knowledge. In Hanks, S. and Besnard, P., editors, Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pages 403-410. Morgan Kaufmann.
    • (1995) Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence , pp. 403-410
    • Meek, C.1
  • 20
    • 0041995264 scopus 로고    scopus 로고
    • Bayes-ball: The rational pastime (for determining irrelevance and requisite information in belief networks and influence diagrams)
    • Cooper, G. and Moral, S., editors. Morgan Kaufmann
    • Shachter, R. (1998). Bayes-ball: The rational pastime (for determining irrelevance and requisite information in belief networks and influence diagrams). In Cooper, G. and Moral, S., editors, Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pages 480-487. Morgan Kaufmann.
    • (1998) Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence , pp. 480-487
    • Shachter, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.