메뉴 건너뛰기




Volumn 9, Issue , 2008, Pages 2523-2547

Active learning of causal networks with intervention experiments and optimal designs

Author keywords

Active learning; Causal networks; Directed acyclic graphs; Intervention; Markov equivalence class; Optimal design; Structural learning

Indexed keywords

DATA STRUCTURES; DESIGN; EDUCATION; EXPERIMENTS; OPTIMAL SYSTEMS; OPTIMIZATION; SET THEORY;

EID: 57249084023     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (187)

References (23)
  • 2
    • 0031531764 scopus 로고    scopus 로고
    • A characterization of markov equivalence classes for acyclic digraphs
    • S. A. Andersson, D. Madigan and M. D. Perlman. A characterization of markov equivalence classes for acyclic digraphs. Annals of Statistics, 25:505-541, 1997.
    • (1997) Annals of Statistics , vol.25 , pp. 505-541
    • Andersson, S.A.1    Madigan, D.2    Perlman, M.D.3
  • 5
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • N. Friedman. Inferring cellular networks using probabilistic graphical models. Science, 303(5659):799-805, 2004.
    • (2004) Science , vol.303 , Issue.5659 , pp. 799-805
    • Friedman, N.1
  • 7
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The Combination of knowledge and statistical data
    • D. Heckerman, D. Geiger and D. M. Chickering. Learning Bayesian networks: The Combination of knowledge and statistical data. Machine Learning, 20:197-243, 1995.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 8
    • 4344578226 scopus 로고    scopus 로고
    • A Bayesian approach to causal discovery
    • D. Heckerman. A Bayesian approach to causal discovery. Data Mining and Knowledge Discovery, 1(1):79-119, 1997.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.1 , pp. 79-119
    • Heckerman, D.1
  • 9
    • 0142052944 scopus 로고    scopus 로고
    • A Bayesian networks approach for predicting proteinprotein interactions from genomic data
    • R. Jansen, H. Y. Yu and D. Greenbaum. A Bayesian networks approach for predicting proteinprotein interactions from genomic data. Science, 302(5644):449-453, 2003.
    • (2003) Science , vol.302 , Issue.5644 , pp. 449-453
    • Jansen, R.1    Yu, H.Y.2    Greenbaum, D.3
  • 11
    • 0036420729 scopus 로고    scopus 로고
    • S. L. Lauritzen, T. S. Richardson. Chain graph models and their casual interpretations. Journal of the Royal Statistical society series B-statistical methodology,64:321-348, Part 3, 2002.
    • S. L. Lauritzen, T. S. Richardson. Chain graph models and their casual interpretations. Journal of the Royal Statistical society series B-statistical methodology,64:321-348, Part 3, 2002.
  • 12
    • 33947524259 scopus 로고    scopus 로고
    • Estimating high-dimensional directed acyclic graphs with the PC-algorithm
    • M. Kalisch, P. Buhlmann. Estimating high-dimensional directed acyclic graphs with the PC-algorithm Journal of Machine Learning Research 8, 613-636, 2007.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 613-636
    • Kalisch, M.1    Buhlmann, P.2
  • 13
    • 0037767534 scopus 로고    scopus 로고
    • Active Learning of Causal Bayes Net Structure,
    • Technical Report, Department of Computer Science, University of California Berkeley
    • K. P. Murphy. Active Learning of Causal Bayes Net Structure, Technical Report, Department of Computer Science, University of California Berkeley, 2001.
    • (2001)
    • Murphy, K.P.1
  • 15
    • 84972538789 scopus 로고
    • Graphical models, causality and intervention
    • J. Pearl. Graphical models, causality and intervention. Statist. Sci., 8:266-269, 1993.
    • (1993) Statist. Sci , vol.8 , pp. 266-269
    • Pearl, J.1
  • 16
    • 0029412006 scopus 로고
    • Causal inference from indirect experiments
    • J. Pearl. Causal inference from indirect experiments. Artifcal Intelligence in Medicine, 7:561-582, 1995.
    • (1995) Artifcal Intelligence in Medicine , vol.7 , pp. 561-582
    • Pearl, J.1
  • 20
    • 57249096825 scopus 로고    scopus 로고
    • J. Tian and J. Pearl. Causal Discovery from Changes: a Bayesian Approach, UCLA Cognitive Systems Laboratory, Technical Report (R-285), 2001b.
    • J. Tian and J. Pearl. Causal Discovery from Changes: a Bayesian Approach, UCLA Cognitive Systems Laboratory, Technical Report (R-285), 2001b.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.