메뉴 건너뛰기




Volumn 13, Issue , 2012, Pages 2409-2464

Characterization and greedy learning of interventional markov equivalence classes of directed acyclic graphs

Author keywords

Causal inference; Graphical model; Greedy equivalence search; Interventions; Markov equivalence

Indexed keywords

CAUSAL INFERENCE; GRAPHICAL MODEL; GREEDY EQUIVALENCE SEARCH; INTERVENTIONS; MARKOV EQUIVALENCES;

EID: 84869152656     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (417)

References (35)
  • 1
    • 0031531764 scopus 로고    scopus 로고
    • A characterization ofmarkov equivalence classes for acyclic digraphs
    • S. A. Andersson, D.Madigan, andM. D. Perlman. A characterization ofMarkov equivalence classes for acyclic digraphs. Annals of Statistics, 25(2):505-541, 1997.
    • (1997) Annals of Statistics , vol.25 , Issue.2 , pp. 505-541
    • Andersson, S.A.1    Madigan, D.2    Perlman, M.D.3
  • 4
    • 0042496103 scopus 로고    scopus 로고
    • Learning equivalence classes of bayesian-network structures
    • DOI 10.1162/153244302760200696
    • D. M. Chickering. Learning equivalence classes of Bayesian-network structures. Journal of Machine Learning Research, 2(3):445-498, 2002a. (Pubitemid 135712569)
    • (2002) Journal of Machine Learning Research , vol.2 , Issue.3 , pp. 445-498
    • Chickering, D.M.1
  • 5
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • D.M. Chickering. Optimal structure identification with greedy search. Journal ofMachine Learning Research, 3(3):507-554, 2002b.
    • (2002) Journal ofMachine Learning Research , vol.3 , Issue.3 , pp. 507-554
    • Chickering, D.M.1
  • 6
    • 0007047929 scopus 로고    scopus 로고
    • Causal discovery from a mixture of experimental and observational data
    • G. F. Cooper and C. Yoo. Causal discovery from a mixture of experimental and observational data. In Uncertainty in Artificial Intelligence, pages 116-125, 1999.
    • (1999) Uncertainty in Artificial Intelligence , pp. 116-125
    • Cooper, G.F.1    Yoo, C.2
  • 8
    • 84862287246 scopus 로고    scopus 로고
    • Exact bayesian structure learning from uncertain interventions
    • D. Eaton and K. Murphy. Exact Bayesian structure learning from uncertain interventions. In Artificial Intelligence and Statistics, volume 2, pages 107-114, 2007.
    • (2007) Artificial Intelligence and Statistics , vol.2 , pp. 107-114
    • Eaton, D.1    Murphy, K.2
  • 9
    • 80053288073 scopus 로고    scopus 로고
    • Almost optimal intervention sets for causal discovery
    • F. Eberhardt. Almost optimal intervention sets for causal discovery. In Uncertainty in Artificial Intelligence, pages 161-168, 2008.
    • (2008) Uncertainty in Artificial Intelligence , pp. 161-168
    • Eberhardt, F.1
  • 10
    • 38049120159 scopus 로고    scopus 로고
    • On the number of experiments sufficient and in the worst case necessary to identify all causal relations among n variables
    • F. Eberhardt, C. Glymour, and R. Scheines. On the number of experiments sufficient and in the worst case necessary to identify all causal relations among N variables. In Uncertainty in Artificial Intelligence, pages 178-184, 2005.
    • (2005) Uncertainty in Artificial Intelligence , pp. 178-184
    • Eberhardt, F.1    Glymour, C.2    Scheines, R.3
  • 11
  • 12
    • 84870408590 scopus 로고    scopus 로고
    • Jointly interventional and observational data: Estimation of corresponding markov equivalence classes of directed acyclic graphs
    • A. Hauser and P. Bühlmann. Jointly interventional and observational data: estimation of corresponding Markov equivalence classes of directed acyclic graphs. Work in progress, 2012.
    • (2012) Work in progress
    • Hauser, A.1    Bühlmann, P.2
  • 13
    • 57249084023 scopus 로고    scopus 로고
    • Active learning of causal networks with intervention experiments and optimal designs
    • Y. He and Z. Geng. Active Learning of Causal Networks with Intervention Experiments and Optimal Designs. Journal of Machine Learning Research, 9:2523-2547, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2523-2547
    • He, Y.1    Geng, Z.2
  • 14
    • 33947524259 scopus 로고    scopus 로고
    • Estimating high-dimensional directed acyclic graphs with the pcalgorithm
    • M. Kalisch and P. Bühlmann. Estimating high-dimensional directed acyclic graphs with the PCalgorithm. Journal of Machine Learning Research, 8:636, 2007.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 636
    • Kalisch, M.1    Bühlmann, P.2
  • 19
    • 59649110273 scopus 로고    scopus 로고
    • Generating realistic in silico gene networks for performance assessment of reverse engineering methods
    • D.Marbach, T. Schaffter, C.Mattiussi, and D. Floreano. Generating realistic in silico gene networks for performance assessment of reverse engineering methods. Journal of Computational Biology, 16(2):229-239, 2009.
    • (2009) Journal of Computational Biology , vol.16 , Issue.2 , pp. 229-239
    • Marbach, D.1    Schaffter, T.2    Mattiussi, C.3    Floreano, D.4
  • 21
    • 0003229133 scopus 로고    scopus 로고
    • The bayes net toolbox for matlab
    • K. Murphy. The Bayes net toolbox for Matlab. Computing science and statistics, 33(2):1024-1034, 2001.
    • (2001) Computing science and statistics , vol.33 , Issue.2 , pp. 1024-1034
    • Murphy, K.1
  • 22
    • 77956888769 scopus 로고
    • Causal diagrams for empirical research
    • J. Pearl. Causal diagrams for empirical research. Biometrika, 82(4):669-688, 1995.
    • (1995) Biometrika , vol.82 , Issue.4 , pp. 669-688
    • Pearl, J.1
  • 24
    • 0001457227 scopus 로고
    • Counting labeled acyclic digraphs
    • In F. Harary, editor, New York, Academic Press
    • R. W. Robinson. Counting labeled acyclic digraphs. In F. Harary, editor, New Directions in the Theory of Graphs, pages 239-273, New York, 1973. Academic Press.
    • (1973) New Directions in the Theory of Graphs , pp. 239-273
    • Robinson, R.W.1
  • 26
    • 0001580189 scopus 로고
    • Algorithmic aspects of vertex elimination on graphs
    • D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimination on graphs. SIAM Journal on Computing, 5(2):266-283, 1976.
    • (1976) SIAM Journal on Computing , vol.5 , Issue.2 , pp. 266-283
    • Rose, D.J.1    Tarjan, R.E.2    Lueker, G.S.3
  • 27
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6(2):461-464, 1978.
    • (1978) Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 28
    • 80053201441 scopus 로고    scopus 로고
    • A simple approach for finding the globally optimal bayesian network structure
    • San Francisco
    • T. Silander and P.Myllymäki. A simple approach for finding the globally optimal Bayesian network structure. In Uncertainty in Artificial Intelligence, San Francisco, 2006.
    • (2006) Uncertainty in Artificial Intelligence
    • Silander, T.1    Myllymäki, P.2
  • 30
    • 0000815146 scopus 로고
    • Sur l'extension de l'ordre partiel
    • E. Szpilrajn. Sur l'extension de l'ordre partiel. Fundamenta Mathematicae, 16:386-389, 1930.
    • (1930) Fundamenta Mathematicae , vol.16 , pp. 386-389
    • Szpilrajn, E.1
  • 33
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • DOI 10.1007/s10994-006-6889-7
    • I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning, 65(1):31-78, 2006. (Pubitemid 44451193)
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.