-
1
-
-
0031531764
-
A characterization ofmarkov equivalence classes for acyclic digraphs
-
S. A. Andersson, D.Madigan, andM. D. Perlman. A characterization ofMarkov equivalence classes for acyclic digraphs. Annals of Statistics, 25(2):505-541, 1997.
-
(1997)
Annals of Statistics
, vol.25
, Issue.2
, pp. 505-541
-
-
Andersson, S.A.1
Madigan, D.2
Perlman, M.D.3
-
2
-
-
29344455317
-
Aliferis. A comparison of novel and state-of-The-art polynomial bayesian network learning algorithms
-
L. E. Brown, I. Tsamardinos, and C. F. Aliferis. A comparison of novel and state-of-the-art polynomial bayesian network learning algorithms. In Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI), volume 20, page 739, 2005.
-
(2005)
Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI)
, vol.20
, pp. 739
-
-
Brown, L.E.1
Tsamardinos, I.2
Aliferis, C.F.3
-
4
-
-
0042496103
-
Learning equivalence classes of bayesian-network structures
-
DOI 10.1162/153244302760200696
-
D. M. Chickering. Learning equivalence classes of Bayesian-network structures. Journal of Machine Learning Research, 2(3):445-498, 2002a. (Pubitemid 135712569)
-
(2002)
Journal of Machine Learning Research
, vol.2
, Issue.3
, pp. 445-498
-
-
Chickering, D.M.1
-
5
-
-
0042967741
-
Optimal structure identification with greedy search
-
D.M. Chickering. Optimal structure identification with greedy search. Journal ofMachine Learning Research, 3(3):507-554, 2002b.
-
(2002)
Journal ofMachine Learning Research
, vol.3
, Issue.3
, pp. 507-554
-
-
Chickering, D.M.1
-
6
-
-
0007047929
-
Causal discovery from a mixture of experimental and observational data
-
G. F. Cooper and C. Yoo. Causal discovery from a mixture of experimental and observational data. In Uncertainty in Artificial Intelligence, pages 116-125, 1999.
-
(1999)
Uncertainty in Artificial Intelligence
, pp. 116-125
-
-
Cooper, G.F.1
Yoo, C.2
-
8
-
-
84862287246
-
Exact bayesian structure learning from uncertain interventions
-
D. Eaton and K. Murphy. Exact Bayesian structure learning from uncertain interventions. In Artificial Intelligence and Statistics, volume 2, pages 107-114, 2007.
-
(2007)
Artificial Intelligence and Statistics
, vol.2
, pp. 107-114
-
-
Eaton, D.1
Murphy, K.2
-
9
-
-
80053288073
-
Almost optimal intervention sets for causal discovery
-
F. Eberhardt. Almost optimal intervention sets for causal discovery. In Uncertainty in Artificial Intelligence, pages 161-168, 2008.
-
(2008)
Uncertainty in Artificial Intelligence
, pp. 161-168
-
-
Eberhardt, F.1
-
10
-
-
38049120159
-
On the number of experiments sufficient and in the worst case necessary to identify all causal relations among n variables
-
F. Eberhardt, C. Glymour, and R. Scheines. On the number of experiments sufficient and in the worst case necessary to identify all causal relations among N variables. In Uncertainty in Artificial Intelligence, pages 178-184, 2005.
-
(2005)
Uncertainty in Artificial Intelligence
, pp. 178-184
-
-
Eberhardt, F.1
Glymour, C.2
Scheines, R.3
-
12
-
-
84870408590
-
Jointly interventional and observational data: Estimation of corresponding markov equivalence classes of directed acyclic graphs
-
A. Hauser and P. Bühlmann. Jointly interventional and observational data: estimation of corresponding Markov equivalence classes of directed acyclic graphs. Work in progress, 2012.
-
(2012)
Work in progress
-
-
Hauser, A.1
Bühlmann, P.2
-
13
-
-
57249084023
-
Active learning of causal networks with intervention experiments and optimal designs
-
Y. He and Z. Geng. Active Learning of Causal Networks with Intervention Experiments and Optimal Designs. Journal of Machine Learning Research, 9:2523-2547, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 2523-2547
-
-
He, Y.1
Geng, Z.2
-
14
-
-
33947524259
-
Estimating high-dimensional directed acyclic graphs with the pcalgorithm
-
M. Kalisch and P. Bühlmann. Estimating high-dimensional directed acyclic graphs with the PCalgorithm. Journal of Machine Learning Research, 8:636, 2007.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 636
-
-
Kalisch, M.1
Bühlmann, P.2
-
15
-
-
84863330390
-
Causal inference using graphical models with the r package pcalg
-
M. Kalisch, M. Mächler, D. Colombo, M. H. Maathuis, and P. Bühlmann. Causal inference using graphical models with the R package pcalg. Journal of Statistical Software, 47(11):1-26, 2012.
-
(2012)
Journal of Statistical Software
, vol.47
, Issue.11
, pp. 1-26
-
-
Kalisch, M.1
Mächler, M.2
Colombo, D.3
Maathuis, M.H.4
Bühlmann, P.5
-
16
-
-
22944493013
-
Varieties of causal intervention
-
New York, Springer
-
K. B. Korb, L. R. Hope, A. E. Nicholson, and K. Axnick. Varieties of causal intervention. In Pacific Rim International Conference on Artificial Intelligence, pages 322-331, New York, 2004. Springer.
-
(2004)
Pacific Rim International Conference on Artificial Intelligence
, pp. 322-331
-
-
Korb, K.B.1
Hope, L.R.2
Nicholson, A.E.3
Axnick, K.4
-
18
-
-
77950910419
-
Revealing strengths and weaknesses of methods for gene network inference
-
C. Marbach, R. J. Prill, T. Schaffter, C. Mattiussi, D. Floreano, and G. Stolovitzky. Revealing strengths and weaknesses of methods for gene network inference. Proceedings of the National Academy of Sciences, 107(14):6286-6291, 2010.
-
(2010)
Proceedings of the National Academy of Sciences
, vol.107
, Issue.14
, pp. 6286-6291
-
-
Marbach, C.1
Prill, R.J.2
Schaffter, T.3
Mattiussi, C.4
Floreano, D.5
Stolovitzky, G.6
-
19
-
-
59649110273
-
Generating realistic in silico gene networks for performance assessment of reverse engineering methods
-
D.Marbach, T. Schaffter, C.Mattiussi, and D. Floreano. Generating realistic in silico gene networks for performance assessment of reverse engineering methods. Journal of Computational Biology, 16(2):229-239, 2009.
-
(2009)
Journal of Computational Biology
, vol.16
, Issue.2
, pp. 229-239
-
-
Marbach, D.1
Schaffter, T.2
Mattiussi, C.3
Floreano, D.4
-
21
-
-
0003229133
-
The bayes net toolbox for matlab
-
K. Murphy. The Bayes net toolbox for Matlab. Computing science and statistics, 33(2):1024-1034, 2001.
-
(2001)
Computing science and statistics
, vol.33
, Issue.2
, pp. 1024-1034
-
-
Murphy, K.1
-
22
-
-
77956888769
-
Causal diagrams for empirical research
-
J. Pearl. Causal diagrams for empirical research. Biometrika, 82(4):669-688, 1995.
-
(1995)
Biometrika
, vol.82
, Issue.4
, pp. 669-688
-
-
Pearl, J.1
-
23
-
-
77949644952
-
Towards a rigorous assessment of systems biology models: The dream3 challenges
-
R. J. Prill, D. Marbach, J. Saez-Rodriguez, P. K. Sorger, L. G. Alexopoulos, X. Xue, N. D. Clarke, G. Altan-Bonnet, and G. Stolovitzky. Towards a rigorous assessment of systems biology models: the DREAM3 challenges. PLoS ONE, 5(2):e9202, 02 2010.
-
(2010)
PLoS ONE
, vol.5
, Issue.2
-
-
Prill, R.J.1
Marbach, D.2
Saez-Rodriguez, J.3
Sorger, P.K.4
Alexopoulos, L.G.5
Xue, X.6
Clarke, N.D.7
Altan-Bonnet, G.8
Stolovitzky, G.9
-
24
-
-
0001457227
-
Counting labeled acyclic digraphs
-
In F. Harary, editor, New York, Academic Press
-
R. W. Robinson. Counting labeled acyclic digraphs. In F. Harary, editor, New Directions in the Theory of Graphs, pages 239-273, New York, 1973. Academic Press.
-
(1973)
New Directions in the Theory of Graphs
, pp. 239-273
-
-
Robinson, R.W.1
-
26
-
-
0001580189
-
Algorithmic aspects of vertex elimination on graphs
-
D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimination on graphs. SIAM Journal on Computing, 5(2):266-283, 1976.
-
(1976)
SIAM Journal on Computing
, vol.5
, Issue.2
, pp. 266-283
-
-
Rose, D.J.1
Tarjan, R.E.2
Lueker, G.S.3
-
27
-
-
0000120766
-
Estimating the dimension of a model
-
G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6(2):461-464, 1978.
-
(1978)
Annals of Statistics
, vol.6
, Issue.2
, pp. 461-464
-
-
Schwarz, G.1
-
28
-
-
80053201441
-
A simple approach for finding the globally optimal bayesian network structure
-
San Francisco
-
T. Silander and P.Myllymäki. A simple approach for finding the globally optimal Bayesian network structure. In Uncertainty in Artificial Intelligence, San Francisco, 2006.
-
(2006)
Uncertainty in Artificial Intelligence
-
-
Silander, T.1
Myllymäki, P.2
-
29
-
-
0003614273
-
-
MIT Press
-
P. Spirtes, C. N. Glymour, and R. Scheines. Causation, Prediction, and Search. MIT Press, 2000.
-
(2000)
Causation, Prediction, and Search.
-
-
Spirtes, P.1
Glymour, C.N.2
Scheines, R.3
-
30
-
-
0000815146
-
Sur l'extension de l'ordre partiel
-
E. Szpilrajn. Sur l'extension de l'ordre partiel. Fundamenta Mathematicae, 16:386-389, 1930.
-
(1930)
Fundamenta Mathematicae
, vol.16
, pp. 386-389
-
-
Szpilrajn, E.1
-
33
-
-
33746035971
-
The max-min hill-climbing Bayesian network structure learning algorithm
-
DOI 10.1007/s10994-006-6889-7
-
I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning, 65(1):31-78, 2006. (Pubitemid 44451193)
-
(2006)
Machine Learning
, vol.65
, Issue.1
, pp. 31-78
-
-
Tsamardinos, I.1
Brown, L.E.2
Aliferis, C.F.3
|