메뉴 건너뛰기




Volumn 5, Issue 2 A, 2011, Pages 725-745

Bayesian hierarchical modeling for signaling pathway inference from single cell interventional data

Author keywords

Bayesian network; Dependency network; Gaussian graphical model; Hierarchical model; Interventional data; Markov chain monte carlo; Mixture distribution; Signaling pathway; Single cell measurements

Indexed keywords


EID: 84866688958     PISSN: 19326157     EISSN: 19417330     Source Type: Journal    
DOI: 10.1214/10-AOAS425     Document Type: Article
Times cited : (14)

References (17)
  • 1
    • 15944399178 scopus 로고    scopus 로고
    • Sparse graphical models for exploring gene expression data
    • Mathematical Reviews (MathSciNet): MR2064941 Zentralblatt MATH: 1047.62104 Digital Object Identifier: doi:10.1016/j.jmva.2004.02.009
    • Dobra, A., Hans, C., Jones, B., Nevins, J., Yao, G. and West, M. (2004). Sparse graphical models for exploring gene expression data. J. Multivariate Anal. 90 196-212. Mathematical Reviews (MathSciNet): MR2064941 Zentralblatt MATH: 1047.62104 Digital Object Identifier: doi:10.1016/j.jmva.2004.02.009
    • (2004) J. Multivariate Anal , vol.90 , pp. 196-212
    • Dobra, A.1    Hans, C.2    Jones, B.3    Nevins, J.4    Yao, G.5    West, M.6
  • 2
    • 49549100459 scopus 로고    scopus 로고
    • Learning causal Bayesian network structures from experimental data
    • Mathematical Reviews (MathSciNet): MR2524009 Zentralblatt MATH: 05564531 Digital Object Identifier: doi:10.1198/016214508000000193
    • Ellis, B. and Wong, W. H. (2008). Learning causal Bayesian network structures from experimental data. J. Amer. Statist. Assoc. 103 778-789. Mathematical Reviews (MathSciNet): MR2524009 Zentralblatt MATH: 05564531 Digital Object Identifier: doi:10.1198/016214508000000193
    • (2008) J. Amer. Statist. Assoc , vol.103 , pp. 778-789
    • Ellis, B.1    Wong, W.H.2
  • 3
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure
    • Friedman, N. and Killer, D. (2003). Being Bayesian about network structure. Machine Learning 50 95-126.
    • (2003) Machine Learning , vol.50 , pp. 95-126
    • Friedman, N.1    Killer, D.2
  • 4
  • 5
    • 0036792398 scopus 로고    scopus 로고
    • The history and future of the fluorescence activated cell sorter and flow cytometry: A view from Stanford
    • Herzenberg, L. A., Parks, D., Sahaf, B., Perez, O., Roederer, M. and Herzenberg, L. A. (2002). The history and future of the fluorescence activated cell sorter and flow cytometry: A view from Stanford. Clinical Chemistry 48 1819-1827.
    • (2002) Clinical Chemistry , vol.48 , pp. 1819-1827
    • Herzenberg, L.A.1    Parks, D.2    Sahaf, B.3    Perez, O.4    Roederer, M.5    Herzenberg, L.A.6
  • 6
    • 0004047518 scopus 로고    scopus 로고
    • Clarendon Press, Oxford, Mathematical Reviews (MathSciNet): MR1419991
    • Lauritzen, S. L. (1996). Graphical Models. Clarendon Press, Oxford. Mathematical Reviews (MathSciNet): MR1419991
    • (1996) Graphical Models
    • Lauritzen, S.L.1
  • 7
    • 34548813411 scopus 로고    scopus 로고
    • Revealing signaling pathway deregulation by using gene expression signatures and regulatory motif analysis
    • R77.1-R77.10
    • Liu, Y. and Ringnér, M. (2007). Revealing signaling pathway deregulation by using gene expression signatures and regulatory motif analysis. Genome Biology 8 R77.1-R77.10.
    • (2007) Genome Biology , vol.8
    • Liu, Y.1    Ringnér, M.2
  • 9
    • 0039107360 scopus 로고    scopus 로고
    • (MathSciNet): MR2840173 Zentralblatt MATH: 1223.62014 Digital Object Identifier: doi:10.1214/10-AOAS425 Project Euclid: euclid.aoas/1310562203
    • Mathematical Reviews (MathSciNet): MR2840173 Zentralblatt MATH: 1223.62014 Digital Object Identifier: doi:10.1214/10-AOAS425 Project Euclid: euclid.aoas/1310562203
    • Mathematical Reviews
  • 10
    • 17644412264 scopus 로고    scopus 로고
    • Bayesian network analysis of signaling networks: A primer
    • Pe'er, D. (2005). Bayesian network analysis of signaling networks: A primer. Science's STKE 281 1-12.
    • (2005) Science's STKE , vol.281 , pp. 1-12
    • Pe'er, D.1
  • 11
    • 18144442687 scopus 로고    scopus 로고
    • Inferring subnetworks from perturbed expression profiles
    • Pe'er, D., Regev, A., Elidan, G. and Friedman, N. (2001). Inferring subnetworks from perturbed expression profiles. Bioinformatics 17 Suppl. S215-S224.
    • (2001) Bioinformatics , Issue.17 SUPPL.
    • Pe'er, D.1    Regev, A.2    Elidan, G.3    Friedman, N.4
  • 12
    • 0036173143 scopus 로고    scopus 로고
    • Simultaneous measurement of multiple active kinase states using polychromatic flow cytometry
    • Perez, O. D. and Nolan, G. (2002). Simultaneous measurement of multiple active kinase states using polychromatic flow cytometry. Nature Biotechnology 20 155-162.
    • (2002) Nature Biotechnology , vol.20 , pp. 155-162
    • Perez, O.D.1    Nolan, G.2
  • 13
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D. A. and Nolan, G. P. (2005). Causal protein-signaling networks derived from multiparameter single-cell data. Science 308 523-529.
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5
  • 14
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • Schäfer, J. and Strimmer, K. (2005). An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21 754-764.
    • (2005) Bioinformatics , vol.21 , pp. 754-764
    • Schäfer, J.1    Strimmer, K.2
  • 15
    • 34547844074 scopus 로고    scopus 로고
    • A Markov random field model for network-based analysis of genomic data
    • Wei, W. and Li, H. (2007). A Markov random field model for network-based analysis of genomic data. Bioinformatics 23 1537-1544.
    • (2007) Bioinformatics , vol.23 , pp. 1537-1544
    • Wei, W.1    Li, H.2
  • 16
    • 42649117688 scopus 로고    scopus 로고
    • A hidden spatial-temporal Markov random field model for network-based analysis of time course gene expression data
    • Mathematical Reviews (MathSciNet): MR2415609 Zentralblatt MATH: 1137.62081 Digital Object Identifier: doi:10.1214/07--AOAS145 Project Euclid: euclid.aoas/1206367827
    • Wei, W. and Li, H. (2008). A hidden spatial-temporal Markov random field model for network-based analysis of time course gene expression data. Ann. Appl. Statist. 2 408-429. Mathematical Reviews (MathSciNet): MR2415609 Zentralblatt MATH: 1137.62081 Digital Object Identifier: doi:10.1214/07--AOAS145 Project Euclid: euclid.aoas/1206367827
    • (2008) Ann. Appl. Statist , vol.2 , pp. 408-429
    • Wei, W.1    Li, H.2
  • 17
    • 33749825955 scopus 로고    scopus 로고
    • Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks
    • Werhli, A. V., Grzegorczyk, M. and Husmeier, D. (2006). Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks. Systems Biology 22 2523-2531.
    • (2006) Systems Biology , vol.22 , pp. 2523-2531
    • Werhli, A.V.1    Grzegorczyk, M.2    Husmeier, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.