메뉴 건너뛰기




Volumn 42, Issue 3, 2014, Pages 1166-1202

On asymptotically optimal confidence regions and tests for high-dimensional models

Author keywords

Central limit theorem; Generalized linear model; Lasso; Linear model; Multiple testing; Semiparametric efficiency; Sparsity

Indexed keywords


EID: 84988001472     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/14-AOS1221     Document Type: Article
Times cited : (1066)

References (53)
  • 1
    • 84899830035 scopus 로고    scopus 로고
    • Inference on treatment effects after selection amongst high-dimensional controls
    • BELLONI, A., CHERNOZHUKOV, V. and HANSEN, C. (2014). Inference on treatment effects after selection amongst high-dimensional controls. Rev. Econ. Stud. 81 608-650.
    • (2014) Rev. Econ. Stud. , vol.81 , pp. 608-650
    • Belloni, A.1    Chernozhukov, V.2    Hansen, C.3
  • 3
    • 82255196005 scopus 로고    scopus 로고
    • Square-root lasso: Pivotal recovery of sparse signals via conic programming
    • MR2860324
    • BELLONI, A., CHERNOZHUKOV, V. and WANG, L. (2011). Square-root lasso: Pivotal recovery of sparse signals via conic programming. Biometrika 98 791-806. MR2860324
    • (2011) Biometrika , vol.98 , pp. 791-806
    • Belloni, A.1    Chernozhukov, V.2    Wang, L.3
  • 6
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of lasso and Dantzig selector
    • MR2533469
    • BICKEL, P. J., RITOV, Y. and TSYBAKOV, A. B. (2009). Simultaneous analysis of lasso and Dantzig selector. Ann. Statist. 37 1705-1732. MR2533469
    • (2009) Ann. Statist. , vol.37 , pp. 1705-1732
    • Bickel, P.J.1    Ritov, Y.2    Tsybakov, A.B.3
  • 7
    • 33745157294 scopus 로고    scopus 로고
    • Boosting for high-dimensional linear models
    • MR2281878
    • BÜHLMANN, P. (2006). Boosting for high-dimensional linear models. Ann. Statist. 34 559-583. MR2281878
    • (2006) Ann. Statist. , vol.34 , pp. 559-583
    • Bühlmann, P.1
  • 8
    • 84885049881 scopus 로고    scopus 로고
    • Statistical significance in high-dimensional linear models
    • MR3102549
    • BÜHLMANN, P. (2013). Statistical significance in high-dimensional linear models. Bernoulli 19 1212-1242. MR3102549
    • (2013) Bernoulli , vol.19 , pp. 1212-1242
    • Bühlmann, P.1
  • 11
    • 50849114939 scopus 로고    scopus 로고
    • Sparsity oracle inequalities for the Lasso
    • MR2312149
    • BUNEA, F., TSYBAKOV, A. and WEGKAMP, M. (2007). Sparsity oracle inequalities for the Lasso. Electron. J. Stat. 1 169-194. MR2312149
    • (2007) Electron. J. Stat. , vol.1 , pp. 169-194
    • Bunea, F.1    Tsybakov, A.2    Wegkamp, M.3
  • 12
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • MR2382644
    • CANDES, E. and TAO, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist. 35 2313-2351. MR2382644
    • (2007) Ann. Statist. , vol.35 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 13
    • 79960128131 scopus 로고    scopus 로고
    • Bootstrapping lasso estimators
    • MR2847974
    • CHATTERJEE, A. and LAHIRI, S. N. (2011). Bootstrapping lasso estimators. J. Amer. Statist. Assoc. 106 608-625. MR2847974
    • (2011) J. Amer. Statist. Assoc. , vol.106 , pp. 608-625
    • Chatterjee, A.1    Lahiri, S.N.2
  • 14
    • 84879395816 scopus 로고    scopus 로고
    • Rates of convergence of the adaptive LASSO estimators to the oracle distribution and higher order refinements by the bootstrap
    • MR3113809
    • CHATTERJEE, A. and LAHIRI, S. N. (2013). Rates of convergence of the adaptive LASSO estimators to the oracle distribution and higher order refinements by the bootstrap. Ann. Statist. 41 1232-1259. MR3113809
    • (2013) Ann. Statist. , vol.41 , pp. 1232-1259
    • Chatterjee, A.1    Lahiri, S.N.2
  • 17
    • 53849086824 scopus 로고    scopus 로고
    • Sure independence screening for ultrahigh dimensional feature space
    • MR2530322
    • FAN, J. and LV, J. (2008). Sure independence screening for ultrahigh dimensional feature space. J. R. Stat. Soc. Ser. B Stat. Methodol. 70 849-911. MR2530322
    • (2008) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.70 , pp. 849-911
    • Fan, J.1    Lv, J.2
  • 18
    • 77949352853 scopus 로고    scopus 로고
    • A selective overview of variable selection in high dimensional feature space
    • MR2640659
    • FAN, J. and LV, J. (2010). A selective overview of variable selection in high dimensional feature space. Statist. Sinica 20 101-148. MR2640659
    • (2010) Statist. Sinica , vol.20 , pp. 101-148
    • Fan, J.1    Lv, J.2
  • 19
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • FRIEDMAN, J., HASTIE, T. and TIBSHIRANI, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9 432-441.
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 20
    • 77950537175 scopus 로고    scopus 로고
    • Regularized paths for generalized linear models via coordinate descent
    • FRIEDMAN, J., HASTIE, T. and TIBSHIRANI, R. (2010). Regularized paths for generalized linear models via coordinate descent. Journal of Statistical Software 33 1-22.
    • (2010) Journal of Statistical Software , vol.33 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 21
    • 31344454903 scopus 로고    scopus 로고
    • Persistence in high-dimensional linear predictor selection and the virtue of overparametrization
    • MR2108039
    • GREENSHTEIN, E. and RITOV, Y. (2004). Persistence in high-dimensional linear predictor selection and the virtue of overparametrization. Bernoulli 10 971-988. MR2108039
    • (2004) Bernoulli , vol.10 , pp. 971-988
    • Greenshtein, E.1    Ritov, Y.2
  • 25
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for lasso-type estimators
    • MR1805787
    • KNIGHT, K. and FU, W. (2000). Asymptotics for lasso-type estimators. Ann. Statist. 28 1356-1378. MR1805787
    • (2000) Ann. Statist. , vol.28 , pp. 1356-1378
    • Knight, K.1    Fu, W.2
  • 26
    • 84907433240 scopus 로고    scopus 로고
    • New concentration inequalities for suprema of empirical processes
    • Available at arXiv:1111.3486
    • LEDERER, J. and VAN DE GEER, S. (2014). New concentration inequalities for suprema of empirical processes. Bernoulli. To appear. Available at arXiv:1111.3486.
    • (2014) Bernoulli
    • Lederer, J.1    Van De Geer, S.2
  • 27
    • 0040276000 scopus 로고
    • Honest confidence regions for nonparametric regression
    • MR1015135
    • LI, K.-C. (1989). Honest confidence regions for nonparametric regression. Ann. Statist. 17 1001-1008. MR1015135
    • (1989) Ann. Statist. , vol.17 , pp. 1001-1008
    • Li, K.-C.1
  • 30
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • MR2278363
    • MEINSHAUSEN, N. and BÜHLMANN, P. (2006). High-dimensional graphs and variable selection with the lasso. Ann. Statist. 34 1436-1462. MR2278363
    • (2006) Ann. Statist. , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 33
    • 65349193793 scopus 로고    scopus 로고
    • Lasso-type recovery of sparse representations for high-dimensional data
    • MR2488351
    • MEINSHAUSEN, N. and YU, B. (2009). Lasso-type recovery of sparse representations for high-dimensional data. Ann. Statist. 37 246-270. MR2488351
    • (2009) Ann. Statist , vol.37 , pp. 246-270
    • Meinshausen, N.1    Yu, B.2
  • 34
    • 84871600478 scopus 로고    scopus 로고
    • A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers
    • MR3025133
    • NEGAHBAN, S. N., RAVIKUMAR, P., WAINWRIGHT, M. J. and YU, B. (2012). A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers. Statist. Sci. 27 538-557. MR3025133
    • (2012) Statist. Sci. , vol.27 , pp. 538-557
    • Negahban, S.N.1    Ravikumar, P.2    Wainwright, M.J.3    Yu, B.4
  • 35
    • 84891913496 scopus 로고    scopus 로고
    • Confidence sets in sparse regression
    • MR3161450
    • NICKL, R. and VAN DE GEER, S. (2013). Confidence sets in sparse regression. Ann. Statist. 41 2852-2876. MR3161450
    • (2013) Ann. Statist. , vol.41 , pp. 2852-2876
    • Nickl, R.1    Van De Geer, S.2
  • 36
    • 38249033931 scopus 로고
    • A central limit theorem applicable to robust regression estimators
    • MR0890880
    • PORTNOY, S. (1987). A central limit theorem applicable to robust regression estimators. J. Multivariate Anal. 22 24-50. MR0890880
    • (1987) J. Multivariate Anal. , vol.22 , pp. 24-50
    • Portnoy, S.1
  • 37
    • 74949103169 scopus 로고    scopus 로고
    • Confidence sets based on sparse estimators are necessarily large
    • MR2579644
    • PÖTSCHER, B. M. (2009). Confidence sets based on sparse estimators are necessarily large. Sankhyā 71 1-18. MR2579644
    • (2009) Sankhyā , vol.71 , pp. 1-18
    • Pötscher, B.M.1
  • 38
    • 68949197985 scopus 로고    scopus 로고
    • On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding
    • MR2543087
    • PÖTSCHER, B. M. and LEEB, H. (2009). On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding. J. Multivariate Anal. 100 2065-2082. MR2543087
    • (2009) J. Multivariate Anal. , vol.100 , pp. 2065-2082
    • Pötscher, B.M.1    Leeb, H.2
  • 39
    • 77956925453 scopus 로고    scopus 로고
    • Restricted eigenvalue properties for correlated Gaussian designs
    • MR2719855
    • RASKUTTI, G., WAINWRIGHT, M. J. and YU, B. (2010). Restricted eigenvalue properties for correlated Gaussian designs. J. Mach. Learn. Res. 11 2241-2259. MR2719855
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 2241-2259
    • Raskutti, G.1    Wainwright, M.J.2    Yu, B.3
  • 40
    • 0000218602 scopus 로고
    • Root-N-consistent semiparametric regression
    • MR0951762
    • ROBINSON, P. M. (1988). Root-N-consistent semiparametric regression. Econometrica 56 931-954. MR0951762
    • (1988) Econometrica , vol.56 , pp. 931-954
    • Robinson, P.M.1
  • 41
    • 84871371181 scopus 로고    scopus 로고
    • Variable selection with error control: Another look at stability selection
    • MR3008271
    • SHAH, R. D. and SAMWORTH, R. J. (2013). Variable selection with error control: Another look at stability selection. J. R. Stat. Soc. Ser. B Stat. Methodol. 75 55-80. MR3008271
    • (2013) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.75 , pp. 55-80
    • Shah, R.D.1    Samworth, R.J.2
  • 42
    • 84869449202 scopus 로고    scopus 로고
    • Scaled sparse linear regression
    • MR2999166
    • SUN, T. and ZHANG, C.-H. (2012). Scaled sparse linear regression. Biometrika 99 879-898. MR2999166
    • (2012) Biometrika , vol.99 , pp. 879-898
    • Sun, T.1    Zhang, C.-H.2
  • 43
    • 84987946889 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • MR1379242
    • TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 58 267-288. MR1379242
    • (1996) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 44
    • 79551473604 scopus 로고    scopus 로고
    • The deterministic Lasso
    • 2007, Am. Statist. Assoc., Alexandria, VA
    • VAN DE GEER, S. (2007). The deterministic Lasso. In JSM Proceedings, 2007, 140. Am. Statist. Assoc., Alexandria, VA.
    • (2007) JSM Proceedings , pp. 140
    • Van De Geer, S.1
  • 46
    • 84871570223 scopus 로고    scopus 로고
    • Quasi-likelihood and/or robust estimation in high dimensions
    • MR3025129
    • VAN DE GEER, S. and MÜLLER, P. (2012). Quasi-likelihood and/or robust estimation in high dimensions. Statist. Sci. 27 469-480. MR3025129
    • (2012) Statist. Sci. , vol.27 , pp. 469-480
    • Van De Geer, S.1    Müller, P.2
  • 47
    • 51049121146 scopus 로고    scopus 로고
    • High-dimensional generalized linear models and the lasso
    • MR2396809
    • VAN DE GEER, S. A. (2008). High-dimensional generalized linear models and the lasso. Ann. Statist. 36 614-645. MR2396809
    • (2008) Ann. Statist. , vol.36 , pp. 614-645
    • Van De Geer, S.A.1
  • 48
    • 77955054299 scopus 로고    scopus 로고
    • On the conditions used to prove oracle results for the Lasso
    • MR2576316
    • VAN DE GEER, S. A. and BÜHLMANN, P. (2009). On the conditions used to prove oracle results for the Lasso. Electron. J. Stat. 3 1360-1392. MR2576316
    • (2009) Electron. J. Stat. , vol.3 , pp. 1360-1392
    • Van De Geer, S.A.1    Bühlmann, P.2
  • 49
    • 65749083666 scopus 로고    scopus 로고
    • 1-constrained quadratic programming (Lasso)
    • MR2729873
    • 1-constrained quadratic programming (Lasso). IEEE Trans. Inform. Theory 55 2183-2202. MR2729873
    • (2009) IEEE Trans. Inform. Theory , vol.55 , pp. 2183-2202
    • Wainwright, M.J.1
  • 50
    • 69049091975 scopus 로고    scopus 로고
    • High-dimensional variable selection
    • MR2543689
    • WASSERMAN, L. and ROEDER, K. (2009). High-dimensional variable selection. Ann. Statist. 37 2178-2201. MR2543689
    • (2009) Ann. Statist. , vol.37 , pp. 2178-2201
    • Wasserman, L.1    Roeder, K.2
  • 51
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the LASSO selection in high-dimensional linear regression
    • MR2435448
    • ZHANG, C.-H. and HUANG, J. (2008). The sparsity and bias of the LASSO selection in high-dimensional linear regression. Ann. Statist. 36 1567-1594. MR2435448
    • (2008) Ann. Statist. , vol.36 , pp. 1567-1594
    • Zhang, C.-H.1    Huang, J.2
  • 52
    • 84891835103 scopus 로고    scopus 로고
    • Confidence intervals for low dimensional parameters in high dimensional linear models
    • MR3153940
    • ZHANG, C.-H. and ZHANG, S. S. (2014). Confidence intervals for low dimensional parameters in high dimensional linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 76 217-242. MR3153940
    • (2014) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.76 , pp. 217-242
    • Zhang, C.-H.1    Zhang, S.S.2
  • 53
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • MR2274449
    • ZHAO, P. and YU, B. (2006). On model selection consistency of Lasso. J. Mach. Learn. Res. 7 2541-2563. MR2274449
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.