메뉴 건너뛰기




Volumn 113, Issue 27, 2016, Pages 7361-7368

Methods for causal inference from gene perturbation experiments and validation

Author keywords

Genome database validation; Graphical models; Interventional observational data; Invariant causal prediction

Indexed keywords

ARTICLE; CAUSAL MODELING; COMPUTER PROGRAM; CONTROLLED STUDY; FUNGAL GENE; METHODOLOGY; NONHUMAN; PREDICTION; PRIORITY JOURNAL; PROBABILITY; SACCHAROMYCES CEREVISIAE; VALIDATION PROCESS; ALGORITHM; BIOLOGICAL MODEL; FLOW CYTOMETRY; GENE DELETION; SOFTWARE; STATISTICS; VALIDATION STUDY;

EID: 84977279048     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1510493113     Document Type: Article
Times cited : (149)

References (44)
  • 1
    • 84868013998 scopus 로고    scopus 로고
    • Causal stability ranking
    • Stekhoven DJ, et al. (2012) Causal stability ranking. Bioinformatics 28(21):2819-2823.
    • (2012) Bioinformatics , vol.28 , Issue.21 , pp. 2819-2823
    • Stekhoven, D.J.1
  • 5
    • 46149139403 scopus 로고
    • A new approach to causal inference in mortality studies with a sustained exposure periodapplication to control of the healthy worker survivor effect
    • Robins J (1986) A new approach to causal inference in mortality studies with a sustained exposure periodapplication to control of the healthy worker survivor effect. Math Model 7(9):1393-1512.
    • (1986) Math Model , vol.7 , Issue.9 , pp. 1393-1512
    • Robins, J.1
  • 11
    • 0007047929 scopus 로고    scopus 로고
    • Causal discovery from a mixture of experimental and observational data
    • Morgan Kaufmann, San Francisco
    • Cooper G, Yoo C (1999) Causal discovery from a mixture of experimental and observational data. Proceedings of the 15th Annual Conference on Uncertainty in Artificial Intelligence (UAI) (Morgan Kaufmann, San Francisco), pp 116-125.
    • (1999) th Annual Conference on Uncertainty in Artificial Intelligence (UAI) , pp. 116-125
    • Cooper, G.1    Yoo, C.2
  • 12
    • 84869152656 scopus 로고    scopus 로고
    • Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs
    • Hauser A, Bühlmann P (2012) Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs. J Mach Learn Res 13:2409-2464.
    • (2012) J Mach Learn Res , vol.13 , pp. 2409-2464
    • Hauser, A.1    Bühlmann, P.2
  • 16
    • 84897585225 scopus 로고    scopus 로고
    • Identifiability of Gaussian structural equation models with equal error variances
    • Peters J, Bühlmann P (2014) Identifiability of Gaussian structural equation models with equal error variances. Biometrika 101:219-228.
    • (2014) Biometrika , vol.101 , pp. 219-228
    • Peters, J.1    Bühlmann, P.2
  • 17
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • Chickering DM (2002) Optimal structure identification with greedy search. J Mach Learn Res 3:507-554.
    • (2002) J Mach Learn Res , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 18
    • 84890100281 scopus 로고    scopus 로고
    • PC algorithm for nonparanormal graphical models
    • Harris N, Drton M (2013) PC algorithm for nonparanormal graphical models. J Mach Learn Res 14:3365-3383.
    • (2013) J Mach Learn Res , vol.14 , pp. 3365-3383
    • Harris, N.1    Drton, M.2
  • 19
    • 69949166983 scopus 로고    scopus 로고
    • Estimating high-dimensional intervention effects from observational data
    • Maathuis MH, Kalisch M, Bühlmann P (2009) Estimating high-dimensional intervention effects from observational data. Ann Stat 37:3133-3164.
    • (2009) Ann Stat , vol.37 , pp. 3133-3164
    • Maathuis, M.H.1    Kalisch, M.2    Bühlmann, P.3
  • 20
    • 84917733558 scopus 로고    scopus 로고
    • Jointly interventional and observational data: Estimation of interventional Markov equivalence classes of directed acyclic graphs
    • Hauser A, Bühlmann P (2015) Jointly interventional and observational data: Estimation of interventional Markov equivalence classes of directed acyclic graphs. J R Stat Soc B 77:291-318.
    • (2015) J R Stat Soc B , vol.77 , pp. 291-318
    • Hauser, A.1    Bühlmann, P.2
  • 21
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman D, Geiger D, Chickering DM (1995) Learning Bayesian networks: The combination of knowledge and statistical data. Mach Learn 20:197-243.
    • (1995) Mach Learn , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 23
    • 33947524259 scopus 로고    scopus 로고
    • Estimating high-dimensional directed acyclic graphs with the PC-algorithm
    • Kalisch M, Bühlmann P (2007) Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J Mach Learn Res 8:613-636.
    • (2007) J Mach Learn Res , vol.8 , pp. 613-636
    • Kalisch, M.1    Bühlmann, P.2
  • 24
    • 84879140981 scopus 로고    scopus 로고
    • 0 -Penalized maximum likelihood for sparse directed acyclic graphs
    • 0 -penalized maximum likelihood for sparse directed acyclic graphs. Ann Stat 41:536-567.
    • (2013) Ann Stat , vol.41 , pp. 536-567
    • Van De, G.S.1    Bühlmann, P.2
  • 25
    • 84987997394 scopus 로고    scopus 로고
    • CAM: Causal additive models, high-dimensional order search and penalized regression
    • Bühlmann P, Peters J, Ernest J (2014) CAM: Causal additive models, high-dimensional order search and penalized regression. Ann Stat 42:2526-2556.
    • (2014) Ann Stat , vol.42 , pp. 2526-2556
    • Bühlmann, P.1    Peters, J.2    Ernest, J.3
  • 26
    • 84955464784 scopus 로고    scopus 로고
    • Marginal integration for nonparametric causal inference
    • Ernest J, Bühlmann P (2015) Marginal integration for nonparametric causal inference. Electron J Stat 9:3155-3194.
    • (2015) Electron J Stat , vol.9 , pp. 3155-3194
    • Ernest, J.1    Bühlmann, P.2
  • 27
    • 84879127873 scopus 로고    scopus 로고
    • Geometry of the faithfulness assumption in causal inference
    • Uhler C, Raskutti G, Bühlmann P, Yu B (2013) Geometry of the faithfulness assumption in causal inference. Ann Stat 41:436-463.
    • (2013) Ann Stat , vol.41 , pp. 436-463
    • Uhler, C.1    Raskutti, G.2    Bühlmann, P.3    Yu, B.4
  • 29
    • 84886494144 scopus 로고    scopus 로고
    • Controlling false positive selections in high-dimensional regression and causal inference
    • Bühlmann P, Rütimann P, Kalisch M (2013) Controlling false positive selections in high-dimensional regression and causal inference. Stat Methods Med Res 22(5): 466-492.
    • (2013) Stat Methods Med Res , vol.22 , Issue.5 , pp. 466-492
    • Bühlmann, P.1    Rütimann, P.2    Kalisch, M.3
  • 30
    • 77951641247 scopus 로고    scopus 로고
    • Predicting causal effects in large-scale systems from observational data
    • Maathuis MH, Colombo D, Kalisch M, Bühlmann P (2010) Predicting causal effects in large-scale systems from observational data. Nat Methods 7(4):247-248.
    • (2010) Nat Methods , vol.7 , Issue.4 , pp. 247-248
    • Maathuis, M.H.1    Colombo, D.2    Kalisch, M.3    Bühlmann, P.4
  • 32
    • 0001833777 scopus 로고
    • Autonomy
    • Aldrich J (1989) Autonomy. Oxf Econ Pap 41:15-34.
    • (1989) Oxf Econ Pap , vol.41 , pp. 15-34
    • Aldrich, J.1
  • 34
    • 84937924034 scopus 로고    scopus 로고
    • Transportability from multiple environments with limited experiments: Completeness results
    • Curran Associates, Red Hook, NY
    • Bareinboim E, Pearl J (2014) Transportability from multiple environments with limited experiments: Completeness results. Advances in Neural Information Processing Systems 27 (NIPS) (Curran Associates, Red Hook, NY), pp 280-288.
    • (2014) Advances in Neural Information Processing Systems 27 (NIPS) , pp. 280-288
    • Bareinboim, E.1    Pearl, J.2
  • 36
    • 84977264940 scopus 로고    scopus 로고
    • version 0.1.1.Available at Accessed April 29, 2016
    • Heinze C, Meinshausen N (2015) CompareCausalNetworks. R package, version 0.1.1.Available at https://cran.r-project.org/web/packages/CompareCausalNetworks/ CompareCausalNetworks.pdf. Accessed April 29, 2016.
    • (2015) CompareCausalNetworks. R Package
    • Heinze, C.1    Meinshausen, N.2
  • 37
    • 84976268606 scopus 로고    scopus 로고
    • R Development Core Team R Foundation for Statistical Computing, Vienna
    • R Development Core Team (2005) R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna).
    • (2005) R: A Language and Environment for Statistical Computing
  • 38
    • 84867677322 scopus 로고    scopus 로고
    • Learning high-dimensional directed acyclic graphs with latent and selection variables
    • Colombo D, Maathuis MH, Kalisch M, Richardson TS (2012) Learning high-dimensional directed acyclic graphs with latent and selection variables. Ann Stat 40:294-321.
    • (2012) Ann Stat , vol.40 , pp. 294-321
    • Colombo, D.1    Maathuis, M.H.2    Kalisch, M.3    Richardson, T.S.4
  • 39
    • 77958487535 scopus 로고    scopus 로고
    • Stability selection (with discussion)
    • Meinshausen N, Bühlmann P (2010) Stability selection (with discussion). J R Stat Soc B 72:417-473
    • (2010) J R Stat Soc B , vol.72 , pp. 417-473
    • Meinshausen, N.1    Bühlmann, P.2
  • 40
    • 84899514789 scopus 로고    scopus 로고
    • Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific repressors
    • Kemmeren P, et al. (2014) Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific repressors. Cell 157(3):740-752.
    • (2014) Cell , vol.157 , Issue.3 , pp. 740-752
    • Kemmeren, P.1
  • 41
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • Breiman L (1996) Heuristics of instability and stabilization in model selection. Ann Stat 24:2350-2383.
    • (1996) Ann Stat , vol.24 , pp. 2350-2383
    • Breiman, L.1
  • 42
    • 84858588614 scopus 로고    scopus 로고
    • Saccharomyces Genome Database: The genomics resource of budding yeast
    • Cherry JM, et al. (2012) Saccharomyces Genome Database: The genomics resource of budding yeast. Nucleic Acids Res 40(Database issue):D700-D705.
    • (2012) Nucleic Acids Res 40Database issue , pp. D700-D705
    • Cherry, J.M.1
  • 43
    • 33645769260 scopus 로고    scopus 로고
    • An improved map of conserved regulatory sites for Saccharomyces cerevisiae
    • MacIsaac KD, et al. (2006) An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7:113.
    • (2006) BMC Bioinformatics , vol.7 , pp. 113
    • MacIsaac, K.D.1
  • 44
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • Sachs K, Perez O, Pe'er D, Lauffenburger DA, Nolan GP (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science 308(5721): 523-529.
    • (2005) Science , vol.308 , Issue.5721 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'Er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.