메뉴 건너뛰기




Volumn 1371, Issue 1, 2016, Pages 30-44

Lysosomal membrane permeabilization in cell death: new evidence and implications for health and disease

Author keywords

autophagy; calpain; cathepsin; lysophagy; lysosomal damage

Indexed keywords

4 HYDROXYNONENAL; APOPTOSIS INDUCING FACTOR; CALPAIN; CASPASE; CATHEPSIN B; CATHEPSIN D; CATHEPSIN L; CYSTEINE PROTEINASE; CYTOCHROME C; HEAT SHOCK PROTEIN 70; HYDROLASE; HYDROXYL RADICAL; INFLAMMASOME; INTERLEUKIN 1BETA CONVERTING ENZYME; ISATUXIMAB; LYSOSOME ASSOCIATED MEMBRANE PROTEIN 2; MAGNETITE NANOPARTICLE; POMALIDOMIDE; PROTEIN AGGREGATE; PROTEIN BAX; PROTON TRANSPORTING ADENOSINE TRIPHOSPHATE SYNTHASE; REACTIVE OXYGEN METABOLITE; TRIPEPTIDYL PEPTIDASE I;

EID: 84977573474     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1111/nyas.12966     Document Type: Article
Times cited : (149)

References (96)
  • 2
    • 84892875805 scopus 로고    scopus 로고
    • At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy
    • Shen, H.M. & N. Mizushima. 2014. At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends. Biochem. Sci. 39: 61–71.
    • (2014) Trends. Biochem. Sci , vol.39 , pp. 61-71
    • Shen, H.M.1    Mizushima, N.2
  • 3
    • 84880376355 scopus 로고    scopus 로고
    • Emerging regulation and functions of autophagy
    • Boya, P., F. Reggiori & P. Codogno. 2013. Emerging regulation and functions of autophagy. Nat. Cell Biol. 15: 713–720.
    • (2013) Nat. Cell Biol , vol.15 , pp. 713-720
    • Boya, P.1    Reggiori, F.2    Codogno, P.3
  • 4
    • 84904860445 scopus 로고    scopus 로고
    • mTOR and lysosome regulation
    • Puertollano, R. 2014. mTOR and lysosome regulation. F1000Prime Rep. 6: 52.
    • (2014) F1000Prime Rep , vol.6 , pp. 52
    • Puertollano, R.1
  • 5
    • 84876812269 scopus 로고    scopus 로고
    • Signals from the lysosome: a control centre for cellular clearance and energy metabolism
    • Settembre, C. et al. 2013. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 14: 283–296.
    • (2013) Nat. Rev. Mol. Cell Biol , vol.14 , pp. 283-296
    • Settembre, C.1
  • 6
    • 54949137644 scopus 로고    scopus 로고
    • Lysosomal membrane permeabilization in cell death
    • Boya, P. & G. Kroemer. 2008. Lysosomal membrane permeabilization in cell death. Oncogene 27: 6434–6451.
    • (2008) Oncogene , vol.27 , pp. 6434-6451
    • Boya, P.1    Kroemer, G.2
  • 7
    • 84857260144 scopus 로고    scopus 로고
    • Lysosomal acidification mechanisms
    • Mindell, J.A. 2012. Lysosomal acidification mechanisms. Annu. Rev. Physiol. 74: 69–86.
    • (2012) Annu. Rev. Physiol , vol.74 , pp. 69-86
    • Mindell, J.A.1
  • 8
    • 0037184523 scopus 로고    scopus 로고
    • NAADP mobilizes Ca(2+) from reserve granules, lysosome-related organelles, in sea urchin eggs
    • Churchill, G.C. et al. 2002. NAADP mobilizes Ca(2+) from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell 111: 703–708.
    • (2002) Cell , vol.111 , pp. 703-708
    • Churchill, G.C.1
  • 9
    • 34548479246 scopus 로고    scopus 로고
    • 2+ release channel from liver lysosomes of rats
    • 2+ release channel from liver lysosomes of rats. J. Biol. Chem. 282: 25259–25269.
    • (2007) J. Biol. Chem , vol.282 , pp. 25259-25269
    • Zhang, F.1    Li, P.L.2
  • 11
    • 79959853238 scopus 로고    scopus 로고
    • A key enzyme in the biogenesis of lysosomes is a protease that regulates cholesterol metabolism
    • Marschner, K. et al. 2011. A key enzyme in the biogenesis of lysosomes is a protease that regulates cholesterol metabolism. Science 333: 87–90.
    • (2011) Science , vol.333 , pp. 87-90
    • Marschner, K.1
  • 12
    • 67749122634 scopus 로고    scopus 로고
    • A gene network regulating lysosomal biogenesis and function
    • Sardiello, M. et al. 2009. A gene network regulating lysosomal biogenesis and function. Science 325: 473–477.
    • (2009) Science , vol.325 , pp. 473-477
    • Sardiello, M.1
  • 13
    • 84939787271 scopus 로고    scopus 로고
    • Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism
    • Perera, R.M. et al. 2015. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 524:361–365.
    • (2015) Nature , vol.524 , pp. 361-365
    • Perera, R.M.1
  • 14
    • 0034028669 scopus 로고    scopus 로고
    • Lysosome–endosome fusion and lysosome biogenesis
    • Luzio, J.P. et al. 2000. Lysosome–endosome fusion and lysosome biogenesis. J. Cell Sci. 113: 1515–1524.
    • (2000) J. Cell Sci , vol.113 , pp. 1515-1524
    • Luzio, J.P.1
  • 15
    • 77953699711 scopus 로고    scopus 로고
    • Termination of autophagy and reformation of lysosomes regulated by mTOR
    • Yu, L. et al. 2010. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465: 942–946.
    • (2010) Nature , vol.465 , pp. 942-946
    • Yu, L.1
  • 16
    • 84865776097 scopus 로고    scopus 로고
    • Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation
    • Rong, Y. et al. 2012. Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation. Nat. Cell Biol. 14: 924–934.
    • (2012) Nat. Cell Biol , vol.14 , pp. 924-934
    • Rong, Y.1
  • 17
    • 84915793059 scopus 로고    scopus 로고
    • Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation
    • Chang, J., S. Lee & C. Blackstone. 2014. Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation. J. Clin. Invest. 124: 5249–5262.
    • (2014) J. Clin. Invest , vol.124 , pp. 5249-5262
    • Chang, J.1    Lee, S.2    Blackstone, C.3
  • 18
    • 84906342558 scopus 로고    scopus 로고
    • Impairment of homeostasis in lysosomal storage disorders
    • Segatori, L. 2014. Impairment of homeostasis in lysosomal storage disorders. IUBMB Life 66: 472–477.
    • (2014) IUBMB Life , vol.66 , pp. 472-477
    • Segatori, L.1
  • 19
    • 84863482530 scopus 로고    scopus 로고
    • Lysosomal function and dysfunction: mechanism and disease
    • Boya, P. 2012. Lysosomal function and dysfunction: mechanism and disease. Antioxid. Redox Signal. 17: 766–774.
    • (2012) Antioxid. Redox Signal , vol.17 , pp. 766-774
    • Boya, P.1
  • 20
    • 84882254367 scopus 로고    scopus 로고
    • The role of autophagy in neurodegenerative disease
    • Nixon, R.A. 2013. The role of autophagy in neurodegenerative disease. Nat. Med. 19: 983–997.
    • (2013) Nat. Med , vol.19 , pp. 983-997
    • Nixon, R.A.1
  • 21
    • 84911442818 scopus 로고    scopus 로고
    • Lysosomal membrane permeabilization in cell death: concepts and challenges
    • Repnik, U., M. Hafner Cesen & B. Turk. 2014. Lysosomal membrane permeabilization in cell death: concepts and challenges. Mitochondrion 19: 49–57.
    • (2014) Mitochondrion , vol.19 , pp. 49-57
    • Repnik, U.1    Hafner Cesen, M.2    Turk, B.3
  • 22
    • 75749102680 scopus 로고    scopus 로고
    • Hsp70 stabilizes lysosomes and reverts Niemann–Pick disease-associated lysosomal pathology
    • Kirkegaard, T. et al. 2010. Hsp70 stabilizes lysosomes and reverts Niemann–Pick disease-associated lysosomal pathology. Nature 463: 549–553.
    • (2010) Nature , vol.463 , pp. 549-553
    • Kirkegaard, T.1
  • 23
    • 84899765035 scopus 로고    scopus 로고
    • BAX channel activity mediates lysosomal disruption linked to Parkinson disease
    • Bove, J. et al. 2014. BAX channel activity mediates lysosomal disruption linked to Parkinson disease. Autophagy 10: 889–900.
    • (2014) Autophagy , vol.10 , pp. 889-900
    • Bove, J.1
  • 24
    • 84927661476 scopus 로고    scopus 로고
    • DRAM1 regulates apoptosis through increasing protein levels and lysosomal localization of BAX
    • Guan, J.J. et al. 2015. DRAM1 regulates apoptosis through increasing protein levels and lysosomal localization of BAX. Cell Death Dis. 6: e1624.
    • (2015) Cell Death Dis , vol.6
    • Guan, J.J.1
  • 25
    • 33745885329 scopus 로고    scopus 로고
    • DRAM, a p53-induced modulator of autophagy, is critical for apoptosis
    • Crighton, D. et al. 2006. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126: 121–134.
    • (2006) Cell , vol.126 , pp. 121-134
    • Crighton, D.1
  • 26
    • 33749146320 scopus 로고    scopus 로고
    • Lysosomal labilization
    • Terman, A. et al. 2006. Lysosomal labilization. IUBMB Life 58: 531–539.
    • (2006) IUBMB Life , vol.58 , pp. 531-539
    • Terman, A.1
  • 27
    • 84921342274 scopus 로고    scopus 로고
    • Ferritin-stimulated lipid peroxidation, lysosomal leak, and macroautophagy promote lysosomal “metastability” in primary hepatocytes determining in vitro cell survival
    • Krenn, M.A. et al. 2015. Ferritin-stimulated lipid peroxidation, lysosomal leak, and macroautophagy promote lysosomal “metastability” in primary hepatocytes determining in vitro cell survival. Free Radic. Biol. Med. 80: 48–58.
    • (2015) Free Radic. Biol. Med , vol.80 , pp. 48-58
    • Krenn, M.A.1
  • 28
    • 0038529617 scopus 로고    scopus 로고
    • Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion
    • Boya, P. et al. 2003. Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J. Exp. Med. 197: 1323–1334.
    • (2003) J. Exp. Med , vol.197 , pp. 1323-1334
    • Boya, P.1
  • 29
    • 77954164469 scopus 로고    scopus 로고
    • Connecting Hsp70, sphingolipid metabolism and lysosomal stability
    • Petersen, N.H. et al. 2010. Connecting Hsp70, sphingolipid metabolism and lysosomal stability. Cell Cycle 9: 2305–2309.
    • (2010) Cell Cycle , vol.9 , pp. 2305-2309
    • Petersen, N.H.1
  • 30
    • 4344651318 scopus 로고    scopus 로고
    • Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization
    • Nylandsted, J. et al. 2004. Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J. Exp. Med. 200: 425–435.
    • (2004) J. Exp. Med , vol.200 , pp. 425-435
    • Nylandsted, J.1
  • 31
    • 77949488942 scopus 로고    scopus 로고
    • Calpain-mediated Hsp70.1 cleavage in hippocampal CA1 neuronal death
    • Sahara, S. & T. Yamashima. 2010. Calpain-mediated Hsp70.1 cleavage in hippocampal CA1 neuronal death. Biochem. Biophys. Res. Commun. 393: 806–811.
    • (2010) Biochem. Biophys. Res. Commun , vol.393 , pp. 806-811
    • Sahara, S.1    Yamashima, T.2
  • 32
    • 84907504498 scopus 로고    scopus 로고
    • Heat shock protein 70.1 (Hsp70.1) affects neuronal cell fate by regulating lysosomal acid sphingomyelinase
    • Zhu, H., T. Yoshimoto & T. Yamashima. 2014. Heat shock protein 70.1 (Hsp70.1) affects neuronal cell fate by regulating lysosomal acid sphingomyelinase. J. Biol. Chem. 289: 27432–27443.
    • (2014) J. Biol. Chem , vol.289 , pp. 27432-27443
    • Zhu, H.1    Yoshimoto, T.2    Yamashima, T.3
  • 33
    • 84899957348 scopus 로고    scopus 로고
    • High sphingomyelin levels induce lysosomal damage and autophagy dysfunction in Niemann Pick disease type A
    • Gabande-Rodriguez, E. et al. 2014. High sphingomyelin levels induce lysosomal damage and autophagy dysfunction in Niemann Pick disease type A. Cell Death Differ 21: 864–875.
    • (2014) Cell Death Differ , vol.21 , pp. 864-875
    • Gabande-Rodriguez, E.1
  • 34
    • 79952257741 scopus 로고    scopus 로고
    • Stat3 controls lysosomal-mediated cell death in vivo
    • Kreuzaler, P.A. et al. 2011. Stat3 controls lysosomal-mediated cell death in vivo. Nat. Cell Biol. 13: 303–309.
    • (2011) Nat. Cell Biol , vol.13 , pp. 303-309
    • Kreuzaler, P.A.1
  • 35
    • 84865177539 scopus 로고    scopus 로고
    • Calpains mediate epithelial-cell death during mammary gland involution: mitochondria and lysosomal destabilization
    • Arnandis, T. et al. 2012. Calpains mediate epithelial-cell death during mammary gland involution: mitochondria and lysosomal destabilization. Cell Death Differ. 19: 1536–1548.
    • (2012) Cell Death Differ , vol.19 , pp. 1536-1548
    • Arnandis, T.1
  • 36
    • 84879328325 scopus 로고    scopus 로고
    • Calpain 1 induce lysosomal permeabilization by cleavage of lysosomal associated membrane protein 2
    • Villalpando Rodriguez, G.E. & A. Torriglia. 2013. Calpain 1 induce lysosomal permeabilization by cleavage of lysosomal associated membrane protein 2. Biochim. Biophys. Acta 1833: 2244–2253.
    • (2013) Biochim. Biophys. Acta , vol.1833 , pp. 2244-2253
    • Villalpando Rodriguez, G.E.1    Torriglia, A.2
  • 37
    • 84878111480 scopus 로고    scopus 로고
    • Reconsider Alzheimer's disease by the ‘calpain-cathepsin hypothesis’—a perspective review
    • Yamashima, T. 2013. Reconsider Alzheimer's disease by the ‘calpain-cathepsin hypothesis’—a perspective review. Prog. Neurobiol. 105: 1–23.
    • (2013) Prog. Neurobiol , vol.105 , pp. 1-23
    • Yamashima, T.1
  • 38
    • 33749162486 scopus 로고    scopus 로고
    • Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis
    • Yousefi, S. et al. 2006. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat. Cell Biol. 8: 1124–1132.
    • (2006) Nat. Cell Biol , vol.8 , pp. 1124-1132
    • Yousefi, S.1
  • 39
    • 78649251041 scopus 로고    scopus 로고
    • The in vitro cleavage of the hAtg proteins by cell death proteases
    • Norman, J.M., G.M. Cohen & E.T. Bampton. 2010. The in vitro cleavage of the hAtg proteins by cell death proteases. Autophagy 6: 1042–1056.
    • (2010) Autophagy , vol.6 , pp. 1042-1056
    • Norman, J.M.1    Cohen, G.M.2    Bampton, E.T.3
  • 40
    • 3442880143 scopus 로고    scopus 로고
    • Sensitization to the lysosomal cell death pathway upon immortalization and transformation
    • Fehrenbacher, N. et al. 2004. Sensitization to the lysosomal cell death pathway upon immortalization and transformation. Cancer Res. 64: 5301–5310.
    • (2004) Cancer Res , vol.64 , pp. 5301-5310
    • Fehrenbacher, N.1
  • 41
    • 84883627583 scopus 로고    scopus 로고
    • Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase
    • Petersen, N.H. et al. 2013. Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase. Cancer Cell 24: 379–393.
    • (2013) Cancer Cell , vol.24 , pp. 379-393
    • Petersen, N.H.1
  • 42
    • 84925582722 scopus 로고    scopus 로고
    • BH3-only proteins: a 20-year stock-take
    • Doerflinger, M., J.A. Glab & H. Puthalakath. 2015. BH3-only proteins: a 20-year stock-take. FEBS J. 282: 1006–1016.
    • (2015) FEBS J , vol.282 , pp. 1006-1016
    • Doerflinger, M.1    Glab, J.A.2    Puthalakath, H.3
  • 43
    • 84884538348 scopus 로고    scopus 로고
    • Noxa couples lysosomal membrane permeabilization and apoptosis during oxidative stress
    • Eno, C.O. et al. 2013. Noxa couples lysosomal membrane permeabilization and apoptosis during oxidative stress. Free Radic. Biol. Med. 65: 26–37.
    • (2013) Free Radic. Biol. Med , vol.65 , pp. 26-37
    • Eno, C.O.1
  • 44
    • 0035904232 scopus 로고    scopus 로고
    • S-Nitrosylation of mitochondrial caspases
    • Mannick, J.B. et al. 2001. S-Nitrosylation of mitochondrial caspases. J. Cell Biol. 154: 1111–1116.
    • (2001) J. Cell Biol , vol.154 , pp. 1111-1116
    • Mannick, J.B.1
  • 45
    • 57249103355 scopus 로고    scopus 로고
    • Multiple apoptogenic proteins are involved in the nuclear translocation of apoptosis inducing factor during transient focal cerebral ischemia in rat
    • Chaitanya, G.V. & P.P. Babu. 2008. Multiple apoptogenic proteins are involved in the nuclear translocation of apoptosis inducing factor during transient focal cerebral ischemia in rat. Brain Res. 1246: 178–190.
    • (2008) Brain Res , vol.1246 , pp. 178-190
    • Chaitanya, G.V.1    Babu, P.P.2
  • 46
    • 27344458981 scopus 로고    scopus 로고
    • Cysteine protease inhibition prevents mitochondrial apoptosis-inducing factor (AIF) release
    • Yuste, V.J. et al. 2005. Cysteine protease inhibition prevents mitochondrial apoptosis-inducing factor (AIF) release. Cell Death Differ. 12: 1445–1448.
    • (2005) Cell Death Differ , vol.12 , pp. 1445-1448
    • Yuste, V.J.1
  • 47
    • 84255210700 scopus 로고    scopus 로고
    • Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012
    • Galluzzi, L. et al. 2012. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 19: 107–120.
    • (2012) Cell Death Differ , vol.19 , pp. 107-120
    • Galluzzi, L.1
  • 48
    • 77951800951 scopus 로고    scopus 로고
    • NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals
    • Duewell, P. et al. 2010. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464: 1357–1361.
    • (2010) Nature , vol.464 , pp. 1357-1361
    • Duewell, P.1
  • 49
    • 47849085872 scopus 로고    scopus 로고
    • The NALP3 inflammasome is involved in the innate immune response to amyloid-beta
    • Halle, A. et al. 2008. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol. 9: 857–865.
    • (2008) Nat. Immunol , vol.9 , pp. 857-865
    • Halle, A.1
  • 50
    • 84938909778 scopus 로고    scopus 로고
    • Multiple cathepsins promote Pro-IL-1beta synthesis and NLRP3-mediated IL-1beta activation
    • Orlowski, G.M. et al. 2015. Multiple cathepsins promote Pro-IL-1beta synthesis and NLRP3-mediated IL-1beta activation. J. Immunol. 195: 1685–1697.
    • (2015) J. Immunol , vol.195 , pp. 1685-1697
    • Orlowski, G.M.1
  • 51
    • 84949118277 scopus 로고    scopus 로고
    • Endothelial Nlrp3 inflammasome activation associated with lysosomal destabilization during coronary arteritis
    • Chen, Y. et al. 2015. Endothelial Nlrp3 inflammasome activation associated with lysosomal destabilization during coronary arteritis. Biochim. Biophys. Acta 1853: 396–408.
    • (2015) Biochim. Biophys. Acta , vol.1853 , pp. 396-408
    • Chen, Y.1
  • 52
    • 84883441989 scopus 로고    scopus 로고
    • Cytosolic flagellin-induced lysosomal pathway regulates inflammasome-dependent and-independent macrophage responses
    • Lage, S.L. et al. 2013. Cytosolic flagellin-induced lysosomal pathway regulates inflammasome-dependent and-independent macrophage responses. Proc. Natl. Acad. Sci. U.S.A. 110: E3321–E3330.
    • (2013) Proc. Natl. Acad. Sci. U.S.A , vol.110 , pp. 3321-3330
    • Lage, S.L.1
  • 53
    • 84901833411 scopus 로고    scopus 로고
    • Autophagy and human disease: emerging themes
    • Schneider, J.L. & A.M. Cuervo. 2014. Autophagy and human disease: emerging themes. Curr. Opin. Genet. Dev. 26C: 16–23.
    • (2014) Curr. Opin. Genet. Dev , vol.26C , pp. 16-23
    • Schneider, J.L.1    Cuervo, A.M.2
  • 54
    • 84920400982 scopus 로고    scopus 로고
    • Autophagy: a druggable process that is deregulated in aging and human disease
    • Kroemer, G. 2015. Autophagy: a druggable process that is deregulated in aging and human disease. J. Clin. Invest. 125: 1–4.
    • (2015) J. Clin. Invest , vol.125 , pp. 1-4
    • Kroemer, G.1
  • 55
    • 84857249654 scopus 로고    scopus 로고
    • Axonal damage, autophagy and neuronal survival
    • Rodriguez-Muela, N. & P. Boya. 2012. Axonal damage, autophagy and neuronal survival. Autophagy 8: 286–288.
    • (2012) Autophagy , vol.8 , pp. 286-288
    • Rodriguez-Muela, N.1    Boya, P.2
  • 56
    • 0038677510 scopus 로고    scopus 로고
    • Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine
    • Boya, P. et al. 2003. Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene 22: 3927–3936.
    • (2003) Oncogene , vol.22 , pp. 3927-3936
    • Boya, P.1
  • 57
    • 84880108306 scopus 로고    scopus 로고
    • Spatiotemporally controlled induction of autophagy-mediated lysosome turnover
    • Hung, Y.H. et al. 2013. Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nat. Commun. 4: 2111.
    • (2013) Nat. Commun , vol.4 , pp. 2111
    • Hung, Y.H.1
  • 58
    • 84883291965 scopus 로고    scopus 로고
    • Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury
    • Maejima, I. et al. 2013. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 32: 2336–2347.
    • (2013) EMBO J , vol.32 , pp. 2336-2347
    • Maejima, I.1
  • 59
    • 84908489221 scopus 로고    scopus 로고
    • Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization
    • Sargeant, T.J. et al. 2014. Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization. Nat. Cell Biol. 16: 1057–1068.
    • (2014) Nat. Cell Biol , vol.16 , pp. 1057-1068
    • Sargeant, T.J.1
  • 60
    • 84907494620 scopus 로고    scopus 로고
    • Proteinase 3–dependent caspase-3 cleavage modulates neutrophil death and inflammation
    • Loison, F. et al. 2014. Proteinase 3–dependent caspase-3 cleavage modulates neutrophil death and inflammation. J. Clin. Invest. 124: 4445–4458.
    • (2014) J. Clin. Invest , vol.124 , pp. 4445-4458
    • Loison, F.1
  • 61
    • 84926461892 scopus 로고    scopus 로고
    • Sensing cytosolic RpsL by macrophages induces lysosomal cell death and termination of bacterial infection
    • Zhu, W. et al. 2015. Sensing cytosolic RpsL by macrophages induces lysosomal cell death and termination of bacterial infection. PLoS Pathog. 11: e1004704.
    • (2015) PLoS Pathog , vol.11
    • Zhu, W.1
  • 62
    • 79551546341 scopus 로고    scopus 로고
    • A cardinal role for cathepsin d in co-ordinating the host-mediated apoptosis of macrophages and killing of pneumococci
    • Bewley, M.A. et al. 2011. A cardinal role for cathepsin d in co-ordinating the host-mediated apoptosis of macrophages and killing of pneumococci. PLoS Pathog. 7: e1001262.
    • (2011) PLoS Pathog , vol.7
    • Bewley, M.A.1
  • 63
    • 84878487502 scopus 로고    scopus 로고
    • DRAM triggers lysosomal membrane permeabilization and cell death in CD4(+) T cells infected with HIV
    • Laforge, M. et al. 2013. DRAM triggers lysosomal membrane permeabilization and cell death in CD4(+) T cells infected with HIV. PLoS Pathog. 9: e1003328.
    • (2013) PLoS Pathog , vol.9
    • Laforge, M.1
  • 64
    • 84888289357 scopus 로고    scopus 로고
    • Lysosomal membrane permeabilization as a key player in brain ischemic cell death: a “lysosomocentric” hypothesis for ischemic brain damage
    • Lipton, P. 2013. Lysosomal membrane permeabilization as a key player in brain ischemic cell death: a “lysosomocentric” hypothesis for ischemic brain damage. Transl. Stroke Res. 4: 672–684.
    • (2013) Transl. Stroke Res , vol.4 , pp. 672-684
    • Lipton, P.1
  • 65
    • 84904972855 scopus 로고    scopus 로고
    • Necrotic cell death in Caenorhabditis elegans
    • Nikoletopoulou, V. & N. Tavernarakis. 2014. Necrotic cell death in Caenorhabditis elegans. Methods Enzymol. 545: 127–155.
    • (2014) Methods Enzymol , vol.545 , pp. 127-155
    • Nikoletopoulou, V.1    Tavernarakis, N.2
  • 66
    • 0029784671 scopus 로고    scopus 로고
    • 2+, PIP2 and calpain responses prior to delayed neuronal death in monkeys
    • 2+, PIP2 and calpain responses prior to delayed neuronal death in monkeys. Eur. J. Neurosci. 8: 1932–1944.
    • (1996) Eur. J. Neurosci , vol.8 , pp. 1932-1944
    • Yamashima, T.1
  • 67
    • 84863393821 scopus 로고    scopus 로고
    • Why are hippocampal CA1 neurons vulnerable but motor cortex neurons resistant to transient ischemia?
    • Zhu, H. et al. 2012. Why are hippocampal CA1 neurons vulnerable but motor cortex neurons resistant to transient ischemia? J. Neurochem. 120: 574–585.
    • (2012) J. Neurochem , vol.120 , pp. 574-585
    • Zhu, H.1
  • 68
    • 84893259725 scopus 로고    scopus 로고
    • Control of photoreceptor autophagy after retinal detachment: the switch from survival to death
    • Chinskey, N.D., Q.D. Zheng & D.N. Zacks. 2014. Control of photoreceptor autophagy after retinal detachment: the switch from survival to death. Invest. Ophthalmol. Vis. Sci. 55: 688–695.
    • (2014) Invest. Ophthalmol. Vis. Sci , vol.55 , pp. 688-695
    • Chinskey, N.D.1    Zheng, Q.D.2    Zacks, D.N.3
  • 69
    • 84922506217 scopus 로고    scopus 로고
    • Lysosomal membrane permeabilization and autophagy blockade contribute to photoreceptor cell death in a mouse model of retinitis pigmentosa
    • Rodriguez-Muela, N. et al. 2015. Lysosomal membrane permeabilization and autophagy blockade contribute to photoreceptor cell death in a mouse model of retinitis pigmentosa. Cell Death Differ. 22: 476–487.
    • (2015) Cell Death Differ , vol.22 , pp. 476-487
    • Rodriguez-Muela, N.1
  • 70
    • 84863726751 scopus 로고    scopus 로고
    • Impairment of lysosomal integrity by B10, a glycosylated derivative of betulinic acid, leads to lysosomal cell death and converts autophagy into a detrimental process
    • Gonzalez, P. et al. 2012. Impairment of lysosomal integrity by B10, a glycosylated derivative of betulinic acid, leads to lysosomal cell death and converts autophagy into a detrimental process. Cell Death Differ. 19: 1337–1346.
    • (2012) Cell Death Differ , vol.19 , pp. 1337-1346
    • Gonzalez, P.1
  • 71
    • 84892458642 scopus 로고    scopus 로고
    • Modulation of cellular signaling pathways in P23H rhodopsin photoreceptors
    • Sizova, O.S. et al. 2014. Modulation of cellular signaling pathways in P23H rhodopsin photoreceptors. Cell Signal. 26: 665–672.
    • (2014) Cell Signal , vol.26 , pp. 665-672
    • Sizova, O.S.1
  • 72
    • 84908032996 scopus 로고    scopus 로고
    • The heat-shock response co-inducer arimoclomol protects against retinal degeneration in rhodopsin retinitis pigmentosa
    • Parfitt, D.A. et al. 2014. The heat-shock response co-inducer arimoclomol protects against retinal degeneration in rhodopsin retinitis pigmentosa. Cell Death Dis. 5: e1236.
    • (2014) Cell Death Dis , vol.5
    • Parfitt, D.A.1
  • 73
    • 77956855813 scopus 로고    scopus 로고
    • Pathogenic lysosomal depletion in Parkinson's disease
    • Dehay, B. et al. 2010. Pathogenic lysosomal depletion in Parkinson's disease. J. Neurosci. 30: 12535–12544.
    • (2010) J. Neurosci , vol.30 , pp. 12535-12544
    • Dehay, B.1
  • 74
    • 78650802376 scopus 로고    scopus 로고
    • Lysosomal membrane permeabilization in Parkinson disease
    • Vila, M. et al. 2011. Lysosomal membrane permeabilization in Parkinson disease. Autophagy 7: 98–100.
    • (2011) Autophagy , vol.7 , pp. 98-100
    • Vila, M.1
  • 75
    • 84862539692 scopus 로고    scopus 로고
    • The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
    • Roczniak-Ferguson, A. et al. 2012. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 5: ra42.
    • (2012) Sci. Signal , vol.5 , pp. ra42
    • Roczniak-Ferguson, A.1
  • 76
    • 80955177196 scopus 로고    scopus 로고
    • TFEB links autophagy to lysosomal biogenesis
    • Settembre, C. et al. 2011. TFEB links autophagy to lysosomal biogenesis. Science 332: 1429–1433.
    • (2011) Science , vol.332 , pp. 1429-1433
    • Settembre, C.1
  • 77
    • 77953913051 scopus 로고    scopus 로고
    • Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations
    • Lee, J.H. et al. 2010. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141: 1146–1158.
    • (2010) Cell , vol.141 , pp. 1146-1158
    • Lee, J.H.1
  • 78
    • 84905111905 scopus 로고    scopus 로고
    • Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer's disease
    • Lee, J.K. et al. 2014. Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer's disease. J. Exp. Med. 211: 1551–1570.
    • (2014) J. Exp. Med , vol.211 , pp. 1551-1570
    • Lee, J.K.1
  • 79
    • 77951249136 scopus 로고    scopus 로고
    • Lysosome dysfunction triggers Atg7-dependent neural apoptosis
    • Walls, K.C. et al. 2010. Lysosome dysfunction triggers Atg7-dependent neural apoptosis. J. Biol. Chem. 285: 10497–10507.
    • (2010) J. Biol. Chem , vol.285 , pp. 10497-10507
    • Walls, K.C.1
  • 80
    • 84922506219 scopus 로고    scopus 로고
    • Calpain inhibition mediates autophagy-dependent protection against polyglutamine toxicity
    • Menzies, F.M. et al. 2015. Calpain inhibition mediates autophagy-dependent protection against polyglutamine toxicity. Cell Death Differ. 22: 433–444.
    • (2015) Cell Death Differ , vol.22 , pp. 433-444
    • Menzies, F.M.1
  • 81
    • 84879309945 scopus 로고    scopus 로고
    • Lysosomal membrane permeability stimulates protein aggregate formation in neurons of a lysosomal disease
    • Micsenyi, M.C. et al. 2013. Lysosomal membrane permeability stimulates protein aggregate formation in neurons of a lysosomal disease. J. Neurosci. 33: 10815–10827.
    • (2013) J. Neurosci , vol.33 , pp. 10815-10827
    • Micsenyi, M.C.1
  • 82
    • 84862602473 scopus 로고    scopus 로고
    • Autophagy in lysosomal storage disorders
    • Lieberman, A.P. et al. 2012. Autophagy in lysosomal storage disorders. Autophagy 8: 719–730.
    • (2012) Autophagy , vol.8 , pp. 719-730
    • Lieberman, A.P.1
  • 83
    • 84873578783 scopus 로고    scopus 로고
    • Alterations in ROS activity and lysosomal pH account for distinct patterns of macroautophagy in LINCL and JNCL fibroblasts
    • Vidal-Donet, J.M. et al. 2013. Alterations in ROS activity and lysosomal pH account for distinct patterns of macroautophagy in LINCL and JNCL fibroblasts. PLoS One 8: e55526.
    • (2013) PLoS One , vol.8
    • Vidal-Donet, J.M.1
  • 84
    • 84969856768 scopus 로고    scopus 로고
    • Lysosomal storage of heparan sulfate causes mitochondrial defects; altered autophagy and neuronal death in the mouse model of mucopolysaccharidosis III type C
    • Pshezhetsky, A.V. 2015. Lysosomal storage of heparan sulfate causes mitochondrial defects; altered autophagy and neuronal death in the mouse model of mucopolysaccharidosis III type C. Autophagy DOI:10.1080/15548627.2015.1046671.
    • (2015) Autophagy
    • Pshezhetsky, A.V.1
  • 85
    • 84901950458 scopus 로고    scopus 로고
    • Sphingolipid lysosomal storage disorders
    • Platt, F.M. 2014. Sphingolipid lysosomal storage disorders. Nature 510: 68–75.
    • (2014) Nature , vol.510 , pp. 68-75
    • Platt, F.M.1
  • 86
    • 84868102987 scopus 로고    scopus 로고
    • Impaired proteolysis underlies autophagic dysfunction in Niemann–Pick type C disease
    • Elrick, M.J. et al. 2012. Impaired proteolysis underlies autophagic dysfunction in Niemann–Pick type C disease. Hum. Mol. Genet. 21: 4876–4887.
    • (2012) Hum. Mol. Genet , vol.21 , pp. 4876-4887
    • Elrick, M.J.1
  • 87
    • 84890144959 scopus 로고    scopus 로고
    • Impaired autophagy in the lipid-storage disorder Niemann–Pick type C1 disease
    • Sarkar, S. et al. 2013. Impaired autophagy in the lipid-storage disorder Niemann–Pick type C1 disease. Cell Rep. 5: 1302–1315.
    • (2013) Cell Rep , vol.5 , pp. 1302-1315
    • Sarkar, S.1
  • 88
    • 55549134611 scopus 로고    scopus 로고
    • Niemann–Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium
    • Lloyd-Evans, E. et al. 2008. Niemann–Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat. Med. 14: 1247–1255.
    • (2008) Nat. Med , vol.14 , pp. 1247-1255
    • Lloyd-Evans, E.1
  • 89
    • 77956131970 scopus 로고    scopus 로고
    • Altered expression and distribution of cathepsins in neuronopathic forms of Gaucher disease and in other sphingolipidoses
    • Vitner, E.B. et al. 2010. Altered expression and distribution of cathepsins in neuronopathic forms of Gaucher disease and in other sphingolipidoses. Hum. Mol. Genet. 19: 3583–3590.
    • (2010) Hum. Mol. Genet , vol.19 , pp. 3583-3590
    • Vitner, E.B.1
  • 90
    • 84893808994 scopus 로고    scopus 로고
    • RIPK3 as a potential therapeutic target for Gaucher's disease
    • Vitner, E.B. et al. 2014. RIPK3 as a potential therapeutic target for Gaucher's disease. Nat. Med. 20: 204–208.
    • (2014) Nat. Med , vol.20 , pp. 204-208
    • Vitner, E.B.1
  • 91
    • 84929938704 scopus 로고    scopus 로고
    • Docosahexanoic acid antagonizes TNF-alpha-induced necroptosis by attenuating oxidative stress, ceramide production, lysosomal dysfunction, and autophagic features
    • Pacheco, F.J. et al. 2014. Docosahexanoic acid antagonizes TNF-alpha-induced necroptosis by attenuating oxidative stress, ceramide production, lysosomal dysfunction, and autophagic features. Inflamm. Res. 63: 859–871.
    • (2014) Inflamm. Res , vol.63 , pp. 859-871
    • Pacheco, F.J.1
  • 92
    • 84876087934 scopus 로고    scopus 로고
    • Combating apoptosis and multidrug resistant cancers by targeting lysosomes
    • Groth-Pedersen, L. & M. Jaattela. 2013. Combating apoptosis and multidrug resistant cancers by targeting lysosomes. Cancer Lett. 332: 265–274.
    • (2013) Cancer Lett , vol.332 , pp. 265-274
    • Groth-Pedersen, L.1    Jaattela, M.2
  • 93
    • 84959362725 scopus 로고    scopus 로고
    • SAR650984 directly induces multiple myeloma cell death via lysosomal-associated and apoptotic pathways, which is further enhanced by pomalidomide
    • Jiang, H. et al. 2015. SAR650984 directly induces multiple myeloma cell death via lysosomal-associated and apoptotic pathways, which is further enhanced by pomalidomide. Leukemia DOI:10.1038/leu.2015.240.
    • (2015) Leukemia
    • Jiang, H.1
  • 94
    • 84886682963 scopus 로고    scopus 로고
    • Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles
    • Wang, F. et al. 2013. Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles. Nanoscale 5: 10868–10876.
    • (2013) Nanoscale , vol.5 , pp. 10868-10876
    • Wang, F.1
  • 95
    • 84879661776 scopus 로고    scopus 로고
    • Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields
    • Domenech, M. et al. 2013. Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields. ACS Nano. 7: 5091–5101.
    • (2013) ACS Nano , vol.7 , pp. 5091-5101
    • Domenech, M.1
  • 96
    • 84881080283 scopus 로고    scopus 로고
    • HSP70 inhibition by 2-phenylethynesulfonamide induces lysosomal cathepsin D release and immunogenic cell death in primary effusion lymphoma
    • Granato, M. et al. 2013. HSP70 inhibition by 2-phenylethynesulfonamide induces lysosomal cathepsin D release and immunogenic cell death in primary effusion lymphoma. Cell Death Dis. 4: e730.
    • (2013) Cell Death Dis , vol.4
    • Granato, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.