-
2
-
-
84892875805
-
At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy
-
Shen, H.M. & N. Mizushima. 2014. At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends. Biochem. Sci. 39: 61–71.
-
(2014)
Trends. Biochem. Sci
, vol.39
, pp. 61-71
-
-
Shen, H.M.1
Mizushima, N.2
-
3
-
-
84880376355
-
Emerging regulation and functions of autophagy
-
Boya, P., F. Reggiori & P. Codogno. 2013. Emerging regulation and functions of autophagy. Nat. Cell Biol. 15: 713–720.
-
(2013)
Nat. Cell Biol
, vol.15
, pp. 713-720
-
-
Boya, P.1
Reggiori, F.2
Codogno, P.3
-
4
-
-
84904860445
-
mTOR and lysosome regulation
-
Puertollano, R. 2014. mTOR and lysosome regulation. F1000Prime Rep. 6: 52.
-
(2014)
F1000Prime Rep
, vol.6
, pp. 52
-
-
Puertollano, R.1
-
5
-
-
84876812269
-
Signals from the lysosome: a control centre for cellular clearance and energy metabolism
-
Settembre, C. et al. 2013. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 14: 283–296.
-
(2013)
Nat. Rev. Mol. Cell Biol
, vol.14
, pp. 283-296
-
-
Settembre, C.1
-
6
-
-
54949137644
-
Lysosomal membrane permeabilization in cell death
-
Boya, P. & G. Kroemer. 2008. Lysosomal membrane permeabilization in cell death. Oncogene 27: 6434–6451.
-
(2008)
Oncogene
, vol.27
, pp. 6434-6451
-
-
Boya, P.1
Kroemer, G.2
-
7
-
-
84857260144
-
Lysosomal acidification mechanisms
-
Mindell, J.A. 2012. Lysosomal acidification mechanisms. Annu. Rev. Physiol. 74: 69–86.
-
(2012)
Annu. Rev. Physiol
, vol.74
, pp. 69-86
-
-
Mindell, J.A.1
-
8
-
-
0037184523
-
NAADP mobilizes Ca(2+) from reserve granules, lysosome-related organelles, in sea urchin eggs
-
Churchill, G.C. et al. 2002. NAADP mobilizes Ca(2+) from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell 111: 703–708.
-
(2002)
Cell
, vol.111
, pp. 703-708
-
-
Churchill, G.C.1
-
9
-
-
34548479246
-
2+ release channel from liver lysosomes of rats
-
2+ release channel from liver lysosomes of rats. J. Biol. Chem. 282: 25259–25269.
-
(2007)
J. Biol. Chem
, vol.282
, pp. 25259-25269
-
-
Zhang, F.1
Li, P.L.2
-
11
-
-
79959853238
-
A key enzyme in the biogenesis of lysosomes is a protease that regulates cholesterol metabolism
-
Marschner, K. et al. 2011. A key enzyme in the biogenesis of lysosomes is a protease that regulates cholesterol metabolism. Science 333: 87–90.
-
(2011)
Science
, vol.333
, pp. 87-90
-
-
Marschner, K.1
-
12
-
-
67749122634
-
A gene network regulating lysosomal biogenesis and function
-
Sardiello, M. et al. 2009. A gene network regulating lysosomal biogenesis and function. Science 325: 473–477.
-
(2009)
Science
, vol.325
, pp. 473-477
-
-
Sardiello, M.1
-
13
-
-
84939787271
-
Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism
-
Perera, R.M. et al. 2015. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 524:361–365.
-
(2015)
Nature
, vol.524
, pp. 361-365
-
-
Perera, R.M.1
-
14
-
-
0034028669
-
Lysosome–endosome fusion and lysosome biogenesis
-
Luzio, J.P. et al. 2000. Lysosome–endosome fusion and lysosome biogenesis. J. Cell Sci. 113: 1515–1524.
-
(2000)
J. Cell Sci
, vol.113
, pp. 1515-1524
-
-
Luzio, J.P.1
-
15
-
-
77953699711
-
Termination of autophagy and reformation of lysosomes regulated by mTOR
-
Yu, L. et al. 2010. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465: 942–946.
-
(2010)
Nature
, vol.465
, pp. 942-946
-
-
Yu, L.1
-
16
-
-
84865776097
-
Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation
-
Rong, Y. et al. 2012. Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation. Nat. Cell Biol. 14: 924–934.
-
(2012)
Nat. Cell Biol
, vol.14
, pp. 924-934
-
-
Rong, Y.1
-
17
-
-
84915793059
-
Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation
-
Chang, J., S. Lee & C. Blackstone. 2014. Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation. J. Clin. Invest. 124: 5249–5262.
-
(2014)
J. Clin. Invest
, vol.124
, pp. 5249-5262
-
-
Chang, J.1
Lee, S.2
Blackstone, C.3
-
18
-
-
84906342558
-
Impairment of homeostasis in lysosomal storage disorders
-
Segatori, L. 2014. Impairment of homeostasis in lysosomal storage disorders. IUBMB Life 66: 472–477.
-
(2014)
IUBMB Life
, vol.66
, pp. 472-477
-
-
Segatori, L.1
-
19
-
-
84863482530
-
Lysosomal function and dysfunction: mechanism and disease
-
Boya, P. 2012. Lysosomal function and dysfunction: mechanism and disease. Antioxid. Redox Signal. 17: 766–774.
-
(2012)
Antioxid. Redox Signal
, vol.17
, pp. 766-774
-
-
Boya, P.1
-
20
-
-
84882254367
-
The role of autophagy in neurodegenerative disease
-
Nixon, R.A. 2013. The role of autophagy in neurodegenerative disease. Nat. Med. 19: 983–997.
-
(2013)
Nat. Med
, vol.19
, pp. 983-997
-
-
Nixon, R.A.1
-
21
-
-
84911442818
-
Lysosomal membrane permeabilization in cell death: concepts and challenges
-
Repnik, U., M. Hafner Cesen & B. Turk. 2014. Lysosomal membrane permeabilization in cell death: concepts and challenges. Mitochondrion 19: 49–57.
-
(2014)
Mitochondrion
, vol.19
, pp. 49-57
-
-
Repnik, U.1
Hafner Cesen, M.2
Turk, B.3
-
22
-
-
75749102680
-
Hsp70 stabilizes lysosomes and reverts Niemann–Pick disease-associated lysosomal pathology
-
Kirkegaard, T. et al. 2010. Hsp70 stabilizes lysosomes and reverts Niemann–Pick disease-associated lysosomal pathology. Nature 463: 549–553.
-
(2010)
Nature
, vol.463
, pp. 549-553
-
-
Kirkegaard, T.1
-
23
-
-
84899765035
-
BAX channel activity mediates lysosomal disruption linked to Parkinson disease
-
Bove, J. et al. 2014. BAX channel activity mediates lysosomal disruption linked to Parkinson disease. Autophagy 10: 889–900.
-
(2014)
Autophagy
, vol.10
, pp. 889-900
-
-
Bove, J.1
-
24
-
-
84927661476
-
DRAM1 regulates apoptosis through increasing protein levels and lysosomal localization of BAX
-
Guan, J.J. et al. 2015. DRAM1 regulates apoptosis through increasing protein levels and lysosomal localization of BAX. Cell Death Dis. 6: e1624.
-
(2015)
Cell Death Dis
, vol.6
-
-
Guan, J.J.1
-
25
-
-
33745885329
-
DRAM, a p53-induced modulator of autophagy, is critical for apoptosis
-
Crighton, D. et al. 2006. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126: 121–134.
-
(2006)
Cell
, vol.126
, pp. 121-134
-
-
Crighton, D.1
-
26
-
-
33749146320
-
Lysosomal labilization
-
Terman, A. et al. 2006. Lysosomal labilization. IUBMB Life 58: 531–539.
-
(2006)
IUBMB Life
, vol.58
, pp. 531-539
-
-
Terman, A.1
-
27
-
-
84921342274
-
Ferritin-stimulated lipid peroxidation, lysosomal leak, and macroautophagy promote lysosomal “metastability” in primary hepatocytes determining in vitro cell survival
-
Krenn, M.A. et al. 2015. Ferritin-stimulated lipid peroxidation, lysosomal leak, and macroautophagy promote lysosomal “metastability” in primary hepatocytes determining in vitro cell survival. Free Radic. Biol. Med. 80: 48–58.
-
(2015)
Free Radic. Biol. Med
, vol.80
, pp. 48-58
-
-
Krenn, M.A.1
-
28
-
-
0038529617
-
Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion
-
Boya, P. et al. 2003. Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J. Exp. Med. 197: 1323–1334.
-
(2003)
J. Exp. Med
, vol.197
, pp. 1323-1334
-
-
Boya, P.1
-
29
-
-
77954164469
-
Connecting Hsp70, sphingolipid metabolism and lysosomal stability
-
Petersen, N.H. et al. 2010. Connecting Hsp70, sphingolipid metabolism and lysosomal stability. Cell Cycle 9: 2305–2309.
-
(2010)
Cell Cycle
, vol.9
, pp. 2305-2309
-
-
Petersen, N.H.1
-
30
-
-
4344651318
-
Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization
-
Nylandsted, J. et al. 2004. Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J. Exp. Med. 200: 425–435.
-
(2004)
J. Exp. Med
, vol.200
, pp. 425-435
-
-
Nylandsted, J.1
-
31
-
-
77949488942
-
Calpain-mediated Hsp70.1 cleavage in hippocampal CA1 neuronal death
-
Sahara, S. & T. Yamashima. 2010. Calpain-mediated Hsp70.1 cleavage in hippocampal CA1 neuronal death. Biochem. Biophys. Res. Commun. 393: 806–811.
-
(2010)
Biochem. Biophys. Res. Commun
, vol.393
, pp. 806-811
-
-
Sahara, S.1
Yamashima, T.2
-
32
-
-
84907504498
-
Heat shock protein 70.1 (Hsp70.1) affects neuronal cell fate by regulating lysosomal acid sphingomyelinase
-
Zhu, H., T. Yoshimoto & T. Yamashima. 2014. Heat shock protein 70.1 (Hsp70.1) affects neuronal cell fate by regulating lysosomal acid sphingomyelinase. J. Biol. Chem. 289: 27432–27443.
-
(2014)
J. Biol. Chem
, vol.289
, pp. 27432-27443
-
-
Zhu, H.1
Yoshimoto, T.2
Yamashima, T.3
-
33
-
-
84899957348
-
High sphingomyelin levels induce lysosomal damage and autophagy dysfunction in Niemann Pick disease type A
-
Gabande-Rodriguez, E. et al. 2014. High sphingomyelin levels induce lysosomal damage and autophagy dysfunction in Niemann Pick disease type A. Cell Death Differ 21: 864–875.
-
(2014)
Cell Death Differ
, vol.21
, pp. 864-875
-
-
Gabande-Rodriguez, E.1
-
34
-
-
79952257741
-
Stat3 controls lysosomal-mediated cell death in vivo
-
Kreuzaler, P.A. et al. 2011. Stat3 controls lysosomal-mediated cell death in vivo. Nat. Cell Biol. 13: 303–309.
-
(2011)
Nat. Cell Biol
, vol.13
, pp. 303-309
-
-
Kreuzaler, P.A.1
-
35
-
-
84865177539
-
Calpains mediate epithelial-cell death during mammary gland involution: mitochondria and lysosomal destabilization
-
Arnandis, T. et al. 2012. Calpains mediate epithelial-cell death during mammary gland involution: mitochondria and lysosomal destabilization. Cell Death Differ. 19: 1536–1548.
-
(2012)
Cell Death Differ
, vol.19
, pp. 1536-1548
-
-
Arnandis, T.1
-
36
-
-
84879328325
-
Calpain 1 induce lysosomal permeabilization by cleavage of lysosomal associated membrane protein 2
-
Villalpando Rodriguez, G.E. & A. Torriglia. 2013. Calpain 1 induce lysosomal permeabilization by cleavage of lysosomal associated membrane protein 2. Biochim. Biophys. Acta 1833: 2244–2253.
-
(2013)
Biochim. Biophys. Acta
, vol.1833
, pp. 2244-2253
-
-
Villalpando Rodriguez, G.E.1
Torriglia, A.2
-
37
-
-
84878111480
-
Reconsider Alzheimer's disease by the ‘calpain-cathepsin hypothesis’—a perspective review
-
Yamashima, T. 2013. Reconsider Alzheimer's disease by the ‘calpain-cathepsin hypothesis’—a perspective review. Prog. Neurobiol. 105: 1–23.
-
(2013)
Prog. Neurobiol
, vol.105
, pp. 1-23
-
-
Yamashima, T.1
-
38
-
-
33749162486
-
Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis
-
Yousefi, S. et al. 2006. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat. Cell Biol. 8: 1124–1132.
-
(2006)
Nat. Cell Biol
, vol.8
, pp. 1124-1132
-
-
Yousefi, S.1
-
39
-
-
78649251041
-
The in vitro cleavage of the hAtg proteins by cell death proteases
-
Norman, J.M., G.M. Cohen & E.T. Bampton. 2010. The in vitro cleavage of the hAtg proteins by cell death proteases. Autophagy 6: 1042–1056.
-
(2010)
Autophagy
, vol.6
, pp. 1042-1056
-
-
Norman, J.M.1
Cohen, G.M.2
Bampton, E.T.3
-
40
-
-
3442880143
-
Sensitization to the lysosomal cell death pathway upon immortalization and transformation
-
Fehrenbacher, N. et al. 2004. Sensitization to the lysosomal cell death pathway upon immortalization and transformation. Cancer Res. 64: 5301–5310.
-
(2004)
Cancer Res
, vol.64
, pp. 5301-5310
-
-
Fehrenbacher, N.1
-
41
-
-
84883627583
-
Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase
-
Petersen, N.H. et al. 2013. Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase. Cancer Cell 24: 379–393.
-
(2013)
Cancer Cell
, vol.24
, pp. 379-393
-
-
Petersen, N.H.1
-
42
-
-
84925582722
-
BH3-only proteins: a 20-year stock-take
-
Doerflinger, M., J.A. Glab & H. Puthalakath. 2015. BH3-only proteins: a 20-year stock-take. FEBS J. 282: 1006–1016.
-
(2015)
FEBS J
, vol.282
, pp. 1006-1016
-
-
Doerflinger, M.1
Glab, J.A.2
Puthalakath, H.3
-
43
-
-
84884538348
-
Noxa couples lysosomal membrane permeabilization and apoptosis during oxidative stress
-
Eno, C.O. et al. 2013. Noxa couples lysosomal membrane permeabilization and apoptosis during oxidative stress. Free Radic. Biol. Med. 65: 26–37.
-
(2013)
Free Radic. Biol. Med
, vol.65
, pp. 26-37
-
-
Eno, C.O.1
-
44
-
-
0035904232
-
S-Nitrosylation of mitochondrial caspases
-
Mannick, J.B. et al. 2001. S-Nitrosylation of mitochondrial caspases. J. Cell Biol. 154: 1111–1116.
-
(2001)
J. Cell Biol
, vol.154
, pp. 1111-1116
-
-
Mannick, J.B.1
-
45
-
-
57249103355
-
Multiple apoptogenic proteins are involved in the nuclear translocation of apoptosis inducing factor during transient focal cerebral ischemia in rat
-
Chaitanya, G.V. & P.P. Babu. 2008. Multiple apoptogenic proteins are involved in the nuclear translocation of apoptosis inducing factor during transient focal cerebral ischemia in rat. Brain Res. 1246: 178–190.
-
(2008)
Brain Res
, vol.1246
, pp. 178-190
-
-
Chaitanya, G.V.1
Babu, P.P.2
-
46
-
-
27344458981
-
Cysteine protease inhibition prevents mitochondrial apoptosis-inducing factor (AIF) release
-
Yuste, V.J. et al. 2005. Cysteine protease inhibition prevents mitochondrial apoptosis-inducing factor (AIF) release. Cell Death Differ. 12: 1445–1448.
-
(2005)
Cell Death Differ
, vol.12
, pp. 1445-1448
-
-
Yuste, V.J.1
-
47
-
-
84255210700
-
Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012
-
Galluzzi, L. et al. 2012. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 19: 107–120.
-
(2012)
Cell Death Differ
, vol.19
, pp. 107-120
-
-
Galluzzi, L.1
-
48
-
-
77951800951
-
NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals
-
Duewell, P. et al. 2010. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464: 1357–1361.
-
(2010)
Nature
, vol.464
, pp. 1357-1361
-
-
Duewell, P.1
-
49
-
-
47849085872
-
The NALP3 inflammasome is involved in the innate immune response to amyloid-beta
-
Halle, A. et al. 2008. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol. 9: 857–865.
-
(2008)
Nat. Immunol
, vol.9
, pp. 857-865
-
-
Halle, A.1
-
50
-
-
84938909778
-
Multiple cathepsins promote Pro-IL-1beta synthesis and NLRP3-mediated IL-1beta activation
-
Orlowski, G.M. et al. 2015. Multiple cathepsins promote Pro-IL-1beta synthesis and NLRP3-mediated IL-1beta activation. J. Immunol. 195: 1685–1697.
-
(2015)
J. Immunol
, vol.195
, pp. 1685-1697
-
-
Orlowski, G.M.1
-
51
-
-
84949118277
-
Endothelial Nlrp3 inflammasome activation associated with lysosomal destabilization during coronary arteritis
-
Chen, Y. et al. 2015. Endothelial Nlrp3 inflammasome activation associated with lysosomal destabilization during coronary arteritis. Biochim. Biophys. Acta 1853: 396–408.
-
(2015)
Biochim. Biophys. Acta
, vol.1853
, pp. 396-408
-
-
Chen, Y.1
-
52
-
-
84883441989
-
Cytosolic flagellin-induced lysosomal pathway regulates inflammasome-dependent and-independent macrophage responses
-
Lage, S.L. et al. 2013. Cytosolic flagellin-induced lysosomal pathway regulates inflammasome-dependent and-independent macrophage responses. Proc. Natl. Acad. Sci. U.S.A. 110: E3321–E3330.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A
, vol.110
, pp. 3321-3330
-
-
Lage, S.L.1
-
53
-
-
84901833411
-
Autophagy and human disease: emerging themes
-
Schneider, J.L. & A.M. Cuervo. 2014. Autophagy and human disease: emerging themes. Curr. Opin. Genet. Dev. 26C: 16–23.
-
(2014)
Curr. Opin. Genet. Dev
, vol.26C
, pp. 16-23
-
-
Schneider, J.L.1
Cuervo, A.M.2
-
54
-
-
84920400982
-
Autophagy: a druggable process that is deregulated in aging and human disease
-
Kroemer, G. 2015. Autophagy: a druggable process that is deregulated in aging and human disease. J. Clin. Invest. 125: 1–4.
-
(2015)
J. Clin. Invest
, vol.125
, pp. 1-4
-
-
Kroemer, G.1
-
55
-
-
84857249654
-
Axonal damage, autophagy and neuronal survival
-
Rodriguez-Muela, N. & P. Boya. 2012. Axonal damage, autophagy and neuronal survival. Autophagy 8: 286–288.
-
(2012)
Autophagy
, vol.8
, pp. 286-288
-
-
Rodriguez-Muela, N.1
Boya, P.2
-
56
-
-
0038677510
-
Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine
-
Boya, P. et al. 2003. Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene 22: 3927–3936.
-
(2003)
Oncogene
, vol.22
, pp. 3927-3936
-
-
Boya, P.1
-
57
-
-
84880108306
-
Spatiotemporally controlled induction of autophagy-mediated lysosome turnover
-
Hung, Y.H. et al. 2013. Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nat. Commun. 4: 2111.
-
(2013)
Nat. Commun
, vol.4
, pp. 2111
-
-
Hung, Y.H.1
-
58
-
-
84883291965
-
Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury
-
Maejima, I. et al. 2013. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 32: 2336–2347.
-
(2013)
EMBO J
, vol.32
, pp. 2336-2347
-
-
Maejima, I.1
-
59
-
-
84908489221
-
Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization
-
Sargeant, T.J. et al. 2014. Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization. Nat. Cell Biol. 16: 1057–1068.
-
(2014)
Nat. Cell Biol
, vol.16
, pp. 1057-1068
-
-
Sargeant, T.J.1
-
60
-
-
84907494620
-
Proteinase 3–dependent caspase-3 cleavage modulates neutrophil death and inflammation
-
Loison, F. et al. 2014. Proteinase 3–dependent caspase-3 cleavage modulates neutrophil death and inflammation. J. Clin. Invest. 124: 4445–4458.
-
(2014)
J. Clin. Invest
, vol.124
, pp. 4445-4458
-
-
Loison, F.1
-
61
-
-
84926461892
-
Sensing cytosolic RpsL by macrophages induces lysosomal cell death and termination of bacterial infection
-
Zhu, W. et al. 2015. Sensing cytosolic RpsL by macrophages induces lysosomal cell death and termination of bacterial infection. PLoS Pathog. 11: e1004704.
-
(2015)
PLoS Pathog
, vol.11
-
-
Zhu, W.1
-
62
-
-
79551546341
-
A cardinal role for cathepsin d in co-ordinating the host-mediated apoptosis of macrophages and killing of pneumococci
-
Bewley, M.A. et al. 2011. A cardinal role for cathepsin d in co-ordinating the host-mediated apoptosis of macrophages and killing of pneumococci. PLoS Pathog. 7: e1001262.
-
(2011)
PLoS Pathog
, vol.7
-
-
Bewley, M.A.1
-
63
-
-
84878487502
-
DRAM triggers lysosomal membrane permeabilization and cell death in CD4(+) T cells infected with HIV
-
Laforge, M. et al. 2013. DRAM triggers lysosomal membrane permeabilization and cell death in CD4(+) T cells infected with HIV. PLoS Pathog. 9: e1003328.
-
(2013)
PLoS Pathog
, vol.9
-
-
Laforge, M.1
-
64
-
-
84888289357
-
Lysosomal membrane permeabilization as a key player in brain ischemic cell death: a “lysosomocentric” hypothesis for ischemic brain damage
-
Lipton, P. 2013. Lysosomal membrane permeabilization as a key player in brain ischemic cell death: a “lysosomocentric” hypothesis for ischemic brain damage. Transl. Stroke Res. 4: 672–684.
-
(2013)
Transl. Stroke Res
, vol.4
, pp. 672-684
-
-
Lipton, P.1
-
65
-
-
84904972855
-
Necrotic cell death in Caenorhabditis elegans
-
Nikoletopoulou, V. & N. Tavernarakis. 2014. Necrotic cell death in Caenorhabditis elegans. Methods Enzymol. 545: 127–155.
-
(2014)
Methods Enzymol
, vol.545
, pp. 127-155
-
-
Nikoletopoulou, V.1
Tavernarakis, N.2
-
66
-
-
0029784671
-
2+, PIP2 and calpain responses prior to delayed neuronal death in monkeys
-
2+, PIP2 and calpain responses prior to delayed neuronal death in monkeys. Eur. J. Neurosci. 8: 1932–1944.
-
(1996)
Eur. J. Neurosci
, vol.8
, pp. 1932-1944
-
-
Yamashima, T.1
-
67
-
-
84863393821
-
Why are hippocampal CA1 neurons vulnerable but motor cortex neurons resistant to transient ischemia?
-
Zhu, H. et al. 2012. Why are hippocampal CA1 neurons vulnerable but motor cortex neurons resistant to transient ischemia? J. Neurochem. 120: 574–585.
-
(2012)
J. Neurochem
, vol.120
, pp. 574-585
-
-
Zhu, H.1
-
68
-
-
84893259725
-
Control of photoreceptor autophagy after retinal detachment: the switch from survival to death
-
Chinskey, N.D., Q.D. Zheng & D.N. Zacks. 2014. Control of photoreceptor autophagy after retinal detachment: the switch from survival to death. Invest. Ophthalmol. Vis. Sci. 55: 688–695.
-
(2014)
Invest. Ophthalmol. Vis. Sci
, vol.55
, pp. 688-695
-
-
Chinskey, N.D.1
Zheng, Q.D.2
Zacks, D.N.3
-
69
-
-
84922506217
-
Lysosomal membrane permeabilization and autophagy blockade contribute to photoreceptor cell death in a mouse model of retinitis pigmentosa
-
Rodriguez-Muela, N. et al. 2015. Lysosomal membrane permeabilization and autophagy blockade contribute to photoreceptor cell death in a mouse model of retinitis pigmentosa. Cell Death Differ. 22: 476–487.
-
(2015)
Cell Death Differ
, vol.22
, pp. 476-487
-
-
Rodriguez-Muela, N.1
-
70
-
-
84863726751
-
Impairment of lysosomal integrity by B10, a glycosylated derivative of betulinic acid, leads to lysosomal cell death and converts autophagy into a detrimental process
-
Gonzalez, P. et al. 2012. Impairment of lysosomal integrity by B10, a glycosylated derivative of betulinic acid, leads to lysosomal cell death and converts autophagy into a detrimental process. Cell Death Differ. 19: 1337–1346.
-
(2012)
Cell Death Differ
, vol.19
, pp. 1337-1346
-
-
Gonzalez, P.1
-
71
-
-
84892458642
-
Modulation of cellular signaling pathways in P23H rhodopsin photoreceptors
-
Sizova, O.S. et al. 2014. Modulation of cellular signaling pathways in P23H rhodopsin photoreceptors. Cell Signal. 26: 665–672.
-
(2014)
Cell Signal
, vol.26
, pp. 665-672
-
-
Sizova, O.S.1
-
72
-
-
84908032996
-
The heat-shock response co-inducer arimoclomol protects against retinal degeneration in rhodopsin retinitis pigmentosa
-
Parfitt, D.A. et al. 2014. The heat-shock response co-inducer arimoclomol protects against retinal degeneration in rhodopsin retinitis pigmentosa. Cell Death Dis. 5: e1236.
-
(2014)
Cell Death Dis
, vol.5
-
-
Parfitt, D.A.1
-
73
-
-
77956855813
-
Pathogenic lysosomal depletion in Parkinson's disease
-
Dehay, B. et al. 2010. Pathogenic lysosomal depletion in Parkinson's disease. J. Neurosci. 30: 12535–12544.
-
(2010)
J. Neurosci
, vol.30
, pp. 12535-12544
-
-
Dehay, B.1
-
74
-
-
78650802376
-
Lysosomal membrane permeabilization in Parkinson disease
-
Vila, M. et al. 2011. Lysosomal membrane permeabilization in Parkinson disease. Autophagy 7: 98–100.
-
(2011)
Autophagy
, vol.7
, pp. 98-100
-
-
Vila, M.1
-
75
-
-
84862539692
-
The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
-
Roczniak-Ferguson, A. et al. 2012. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 5: ra42.
-
(2012)
Sci. Signal
, vol.5
, pp. ra42
-
-
Roczniak-Ferguson, A.1
-
76
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
Settembre, C. et al. 2011. TFEB links autophagy to lysosomal biogenesis. Science 332: 1429–1433.
-
(2011)
Science
, vol.332
, pp. 1429-1433
-
-
Settembre, C.1
-
77
-
-
77953913051
-
Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations
-
Lee, J.H. et al. 2010. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141: 1146–1158.
-
(2010)
Cell
, vol.141
, pp. 1146-1158
-
-
Lee, J.H.1
-
78
-
-
84905111905
-
Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer's disease
-
Lee, J.K. et al. 2014. Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer's disease. J. Exp. Med. 211: 1551–1570.
-
(2014)
J. Exp. Med
, vol.211
, pp. 1551-1570
-
-
Lee, J.K.1
-
79
-
-
77951249136
-
Lysosome dysfunction triggers Atg7-dependent neural apoptosis
-
Walls, K.C. et al. 2010. Lysosome dysfunction triggers Atg7-dependent neural apoptosis. J. Biol. Chem. 285: 10497–10507.
-
(2010)
J. Biol. Chem
, vol.285
, pp. 10497-10507
-
-
Walls, K.C.1
-
80
-
-
84922506219
-
Calpain inhibition mediates autophagy-dependent protection against polyglutamine toxicity
-
Menzies, F.M. et al. 2015. Calpain inhibition mediates autophagy-dependent protection against polyglutamine toxicity. Cell Death Differ. 22: 433–444.
-
(2015)
Cell Death Differ
, vol.22
, pp. 433-444
-
-
Menzies, F.M.1
-
81
-
-
84879309945
-
Lysosomal membrane permeability stimulates protein aggregate formation in neurons of a lysosomal disease
-
Micsenyi, M.C. et al. 2013. Lysosomal membrane permeability stimulates protein aggregate formation in neurons of a lysosomal disease. J. Neurosci. 33: 10815–10827.
-
(2013)
J. Neurosci
, vol.33
, pp. 10815-10827
-
-
Micsenyi, M.C.1
-
82
-
-
84862602473
-
Autophagy in lysosomal storage disorders
-
Lieberman, A.P. et al. 2012. Autophagy in lysosomal storage disorders. Autophagy 8: 719–730.
-
(2012)
Autophagy
, vol.8
, pp. 719-730
-
-
Lieberman, A.P.1
-
83
-
-
84873578783
-
Alterations in ROS activity and lysosomal pH account for distinct patterns of macroautophagy in LINCL and JNCL fibroblasts
-
Vidal-Donet, J.M. et al. 2013. Alterations in ROS activity and lysosomal pH account for distinct patterns of macroautophagy in LINCL and JNCL fibroblasts. PLoS One 8: e55526.
-
(2013)
PLoS One
, vol.8
-
-
Vidal-Donet, J.M.1
-
84
-
-
84969856768
-
Lysosomal storage of heparan sulfate causes mitochondrial defects; altered autophagy and neuronal death in the mouse model of mucopolysaccharidosis III type C
-
Pshezhetsky, A.V. 2015. Lysosomal storage of heparan sulfate causes mitochondrial defects; altered autophagy and neuronal death in the mouse model of mucopolysaccharidosis III type C. Autophagy DOI:10.1080/15548627.2015.1046671.
-
(2015)
Autophagy
-
-
Pshezhetsky, A.V.1
-
85
-
-
84901950458
-
Sphingolipid lysosomal storage disorders
-
Platt, F.M. 2014. Sphingolipid lysosomal storage disorders. Nature 510: 68–75.
-
(2014)
Nature
, vol.510
, pp. 68-75
-
-
Platt, F.M.1
-
86
-
-
84868102987
-
Impaired proteolysis underlies autophagic dysfunction in Niemann–Pick type C disease
-
Elrick, M.J. et al. 2012. Impaired proteolysis underlies autophagic dysfunction in Niemann–Pick type C disease. Hum. Mol. Genet. 21: 4876–4887.
-
(2012)
Hum. Mol. Genet
, vol.21
, pp. 4876-4887
-
-
Elrick, M.J.1
-
87
-
-
84890144959
-
Impaired autophagy in the lipid-storage disorder Niemann–Pick type C1 disease
-
Sarkar, S. et al. 2013. Impaired autophagy in the lipid-storage disorder Niemann–Pick type C1 disease. Cell Rep. 5: 1302–1315.
-
(2013)
Cell Rep
, vol.5
, pp. 1302-1315
-
-
Sarkar, S.1
-
88
-
-
55549134611
-
Niemann–Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium
-
Lloyd-Evans, E. et al. 2008. Niemann–Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat. Med. 14: 1247–1255.
-
(2008)
Nat. Med
, vol.14
, pp. 1247-1255
-
-
Lloyd-Evans, E.1
-
89
-
-
77956131970
-
Altered expression and distribution of cathepsins in neuronopathic forms of Gaucher disease and in other sphingolipidoses
-
Vitner, E.B. et al. 2010. Altered expression and distribution of cathepsins in neuronopathic forms of Gaucher disease and in other sphingolipidoses. Hum. Mol. Genet. 19: 3583–3590.
-
(2010)
Hum. Mol. Genet
, vol.19
, pp. 3583-3590
-
-
Vitner, E.B.1
-
90
-
-
84893808994
-
RIPK3 as a potential therapeutic target for Gaucher's disease
-
Vitner, E.B. et al. 2014. RIPK3 as a potential therapeutic target for Gaucher's disease. Nat. Med. 20: 204–208.
-
(2014)
Nat. Med
, vol.20
, pp. 204-208
-
-
Vitner, E.B.1
-
91
-
-
84929938704
-
Docosahexanoic acid antagonizes TNF-alpha-induced necroptosis by attenuating oxidative stress, ceramide production, lysosomal dysfunction, and autophagic features
-
Pacheco, F.J. et al. 2014. Docosahexanoic acid antagonizes TNF-alpha-induced necroptosis by attenuating oxidative stress, ceramide production, lysosomal dysfunction, and autophagic features. Inflamm. Res. 63: 859–871.
-
(2014)
Inflamm. Res
, vol.63
, pp. 859-871
-
-
Pacheco, F.J.1
-
92
-
-
84876087934
-
Combating apoptosis and multidrug resistant cancers by targeting lysosomes
-
Groth-Pedersen, L. & M. Jaattela. 2013. Combating apoptosis and multidrug resistant cancers by targeting lysosomes. Cancer Lett. 332: 265–274.
-
(2013)
Cancer Lett
, vol.332
, pp. 265-274
-
-
Groth-Pedersen, L.1
Jaattela, M.2
-
93
-
-
84959362725
-
SAR650984 directly induces multiple myeloma cell death via lysosomal-associated and apoptotic pathways, which is further enhanced by pomalidomide
-
Jiang, H. et al. 2015. SAR650984 directly induces multiple myeloma cell death via lysosomal-associated and apoptotic pathways, which is further enhanced by pomalidomide. Leukemia DOI:10.1038/leu.2015.240.
-
(2015)
Leukemia
-
-
Jiang, H.1
-
94
-
-
84886682963
-
Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles
-
Wang, F. et al. 2013. Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles. Nanoscale 5: 10868–10876.
-
(2013)
Nanoscale
, vol.5
, pp. 10868-10876
-
-
Wang, F.1
-
95
-
-
84879661776
-
Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields
-
Domenech, M. et al. 2013. Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields. ACS Nano. 7: 5091–5101.
-
(2013)
ACS Nano
, vol.7
, pp. 5091-5101
-
-
Domenech, M.1
-
96
-
-
84881080283
-
HSP70 inhibition by 2-phenylethynesulfonamide induces lysosomal cathepsin D release and immunogenic cell death in primary effusion lymphoma
-
Granato, M. et al. 2013. HSP70 inhibition by 2-phenylethynesulfonamide induces lysosomal cathepsin D release and immunogenic cell death in primary effusion lymphoma. Cell Death Dis. 4: e730.
-
(2013)
Cell Death Dis
, vol.4
-
-
Granato, M.1
|