메뉴 건너뛰기




Volumn 22, Issue 6, 2016, Pages 458-478

Antibiotic-Induced Changes in the Intestinal Microbiota and Disease

Author keywords

Antibiotic resistance; Antibiotics; Disease; Gut microbiota; Immunity

Indexed keywords

ANTIBIOTIC AGENT; ANTIINFECTIVE AGENT;

EID: 84969921123     PISSN: 14714914     EISSN: 1471499X     Source Type: Journal    
DOI: 10.1016/j.molmed.2016.04.003     Document Type: Review
Times cited : (637)

References (151)
  • 1
    • 77950251400 scopus 로고    scopus 로고
    • A human gut microbial gene catalogue established by metagenomic sequencing
    • Qin J., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464:59-65.
    • (2010) Nature , vol.464 , pp. 59-65
    • Qin, J.1
  • 2
    • 80051856839 scopus 로고    scopus 로고
    • The human gut microbiome: ecology and recent evolutionary changes
    • Walter J., Ley R. The human gut microbiome: ecology and recent evolutionary changes. Annu. Rev. Microbiol. 2011, 65:411-429.
    • (2011) Annu. Rev. Microbiol. , vol.65 , pp. 411-429
    • Walter, J.1    Ley, R.2
  • 3
    • 84879369738 scopus 로고    scopus 로고
    • Commensal bacteria at the interface of host metabolism and the immune system
    • Brestoff J.R., Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 2013, 14:676-684.
    • (2013) Nat. Immunol. , vol.14 , pp. 676-684
    • Brestoff, J.R.1    Artis, D.2
  • 4
    • 84886795788 scopus 로고    scopus 로고
    • Microbiota-mediated colonization resistance against intestinal pathogens
    • Buffie C.G., Pamer E.G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 2013, 13:790-801.
    • (2013) Nat. Rev. Immunol. , vol.13 , pp. 790-801
    • Buffie, C.G.1    Pamer, E.G.2
  • 5
    • 84947461438 scopus 로고    scopus 로고
    • Feeding the brain and nurturing the mind: linking nutrition and the gut microbiota to brain development
    • Goyal M.S., et al. Feeding the brain and nurturing the mind: linking nutrition and the gut microbiota to brain development. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:14105-14112.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 14105-14112
    • Goyal, M.S.1
  • 6
    • 84938078684 scopus 로고    scopus 로고
    • Microbiome influences on allergy in mice and humans
    • Marsland B.J., Salami O. Microbiome influences on allergy in mice and humans. Curr. Opin. Immunol. 2015, 36:94-100.
    • (2015) Curr. Opin. Immunol. , vol.36 , pp. 94-100
    • Marsland, B.J.1    Salami, O.2
  • 7
    • 84927662069 scopus 로고    scopus 로고
    • Microbiota-mediated inflammation and antimicrobial defense in the intestine
    • Caballero S., Pamer E.G. Microbiota-mediated inflammation and antimicrobial defense in the intestine. Annu. Rev. Immunol. 2015, 33:227-256.
    • (2015) Annu. Rev. Immunol. , vol.33 , pp. 227-256
    • Caballero, S.1    Pamer, E.G.2
  • 8
    • 33745594044 scopus 로고    scopus 로고
    • The gut flora as a forgotten organ
    • O'Hara A.M., Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006, 7:688-693.
    • (2006) EMBO Rep. , vol.7 , pp. 688-693
    • O'Hara, A.M.1    Shanahan, F.2
  • 9
    • 84876414806 scopus 로고    scopus 로고
    • The gut microbiota-masters of host development and physiology
    • Sommer F., Backhed F. The gut microbiota-masters of host development and physiology. Nat. Rev. Microbiol. 2013, 11:227-238.
    • (2013) Nat. Rev. Microbiol. , vol.11 , pp. 227-238
    • Sommer, F.1    Backhed, F.2
  • 10
    • 84929502588 scopus 로고    scopus 로고
    • Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function
    • Kelly C.J., et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015, 17:662-671.
    • (2015) Cell Host Microbe. , vol.17 , pp. 662-671
    • Kelly, C.J.1
  • 11
    • 84859209652 scopus 로고    scopus 로고
    • Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling
    • Reinhardt C., et al. Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature 2012, 483:627-631.
    • (2012) Nature , vol.483 , pp. 627-631
    • Reinhardt, C.1
  • 12
    • 84911485386 scopus 로고    scopus 로고
    • Gut brain axis: diet microbiota interactions and implications for modulation of anxiety and depression
    • Luna R.A., Foster J.A. Gut brain axis: diet microbiota interactions and implications for modulation of anxiety and depression. Curr. Opin. Biotechnol. 2015, 32:35-41.
    • (2015) Curr. Opin. Biotechnol. , vol.32 , pp. 35-41
    • Luna, R.A.1    Foster, J.A.2
  • 13
    • 84924085783 scopus 로고    scopus 로고
    • Gut/brain axis and the microbiota
    • Mayer E.A., et al. Gut/brain axis and the microbiota. J. Clin. Invest. 2015, 125:926-938.
    • (2015) J. Clin. Invest. , vol.125 , pp. 926-938
    • Mayer, E.A.1
  • 14
    • 84964350668 scopus 로고    scopus 로고
    • Gut microbiota: the brain peacekeeper
    • Mu C., et al. Gut microbiota: the brain peacekeeper. Front. Microbiol. 2016, 7:345.
    • (2016) Front. Microbiol. , vol.7 , pp. 345
    • Mu, C.1
  • 15
    • 84867845255 scopus 로고    scopus 로고
    • The interplay between the intestinal microbiota and the brain
    • Collins S.M., et al. The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol. 2012, 10:735-742.
    • (2012) Nat. Rev. Microbiol. , vol.10 , pp. 735-742
    • Collins, S.M.1
  • 16
    • 3242664636 scopus 로고    scopus 로고
    • Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis
    • Rakoff-Nahoum S., et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004, 118:229-241.
    • (2004) Cell , vol.118 , pp. 229-241
    • Rakoff-Nahoum, S.1
  • 17
    • 33748039462 scopus 로고    scopus 로고
    • Symbiotic bacteria direct expression of an intestinal bactericidal lectin
    • Cash H.L., et al. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 2006, 313:1126-1130.
    • (2006) Science , vol.313 , pp. 1126-1130
    • Cash, H.L.1
  • 18
    • 53649098280 scopus 로고    scopus 로고
    • Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits
    • Brandl K., et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 2008, 455:804-807.
    • (2008) Nature , vol.455 , pp. 804-807
    • Brandl, K.1
  • 19
    • 75749133608 scopus 로고    scopus 로고
    • Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection
    • Kinnebrew M.A., et al. Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. J. Infect. Dis. 2010, 201:534-543.
    • (2010) J. Infect. Dis. , vol.201 , pp. 534-543
    • Kinnebrew, M.A.1
  • 20
    • 84857444876 scopus 로고    scopus 로고
    • + dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense
    • + dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 2012, 36:276-287.
    • (2012) Immunity , vol.36 , pp. 276-287
    • Kinnebrew, M.A.1
  • 21
    • 84901979873 scopus 로고    scopus 로고
    • Focused specificity of intestinal TH17 cells towards commensal bacterial antigens
    • Yang Y., et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 2014, 510:152-156.
    • (2014) Nature , vol.510 , pp. 152-156
    • Yang, Y.1
  • 22
    • 76249120134 scopus 로고    scopus 로고
    • Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity
    • Clarke T.B., et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med. 2010, 16:228-231.
    • (2010) Nat. Med. , vol.16 , pp. 228-231
    • Clarke, T.B.1
  • 23
    • 84902996531 scopus 로고    scopus 로고
    • The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice
    • Deshmukh H.S., et al. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat. Med. 2014, 20:524-530.
    • (2014) Nat. Med. , vol.20 , pp. 524-530
    • Deshmukh, H.S.1
  • 24
    • 84862777474 scopus 로고    scopus 로고
    • Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation
    • Hill D.A., et al. Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat. Med. 2012, 18:538-546.
    • (2012) Nat. Med. , vol.18 , pp. 538-546
    • Hill, D.A.1
  • 25
    • 79955121049 scopus 로고    scopus 로고
    • Microbiota regulates immune defense against respiratory tract influenza A virus infection
    • Ichinohe T., et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:5354-5359.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 5354-5359
    • Ichinohe, T.1
  • 26
    • 84864311450 scopus 로고    scopus 로고
    • Commensal bacteria calibrate the activation threshold of innate antiviral immunity
    • Abt M.C., et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 2012, 37:158-170.
    • (2012) Immunity , vol.37 , pp. 158-170
    • Abt, M.C.1
  • 27
    • 84864322646 scopus 로고    scopus 로고
    • Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota
    • Ganal S.C., et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 2012, 37:171-186.
    • (2012) Immunity , vol.37 , pp. 171-186
    • Ganal, S.C.1
  • 28
    • 22144490199 scopus 로고    scopus 로고
    • An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system
    • Mazmanian S.K., et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 2005, 122:107-118.
    • (2005) Cell , vol.122 , pp. 107-118
    • Mazmanian, S.K.1
  • 29
    • 53349173070 scopus 로고    scopus 로고
    • Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine
    • Ivanov I.I., et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008, 4:337-349.
    • (2008) Cell Host Microbe. , vol.4 , pp. 337-349
    • Ivanov, I.I.1
  • 30
    • 53649100675 scopus 로고    scopus 로고
    • H17 cell differentiation
    • H17 cell differentiation. Nature 2008, 455:808-812.
    • (2008) Nature , vol.455 , pp. 808-812
    • Atarashi, K.1
  • 31
    • 70350343544 scopus 로고    scopus 로고
    • Induction of intestinal Th17 cells by segmented filamentous bacteria
    • Ivanov I.I., et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009, 139:485-498.
    • (2009) Cell , vol.139 , pp. 485-498
    • Ivanov, I.I.1
  • 32
    • 70349742524 scopus 로고    scopus 로고
    • The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses
    • Gaboriau-Routhiau V., et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009, 31:677-689.
    • (2009) Immunity , vol.31 , pp. 677-689
    • Gaboriau-Routhiau, V.1
  • 33
    • 84943638660 scopus 로고    scopus 로고
    • An IL-23R/IL-22 circuit regulates epithelial serum amyloid a to promote local effector Th17 responses
    • Sano T., et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid a to promote local effector Th17 responses. Cell 2015, 163:381-393.
    • (2015) Cell , vol.163 , pp. 381-393
    • Sano, T.1
  • 34
    • 84943639694 scopus 로고    scopus 로고
    • Th17 cell induction by adhesion of microbes to intestinal epithelial cells
    • Atarashi K., et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 2015, 163:367-380.
    • (2015) Cell , vol.163 , pp. 367-380
    • Atarashi, K.1
  • 35
    • 84897053496 scopus 로고    scopus 로고
    • Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis
    • Mortha A., et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 2014, 343:1249288.
    • (2014) Science , vol.343 , pp. 1249288
    • Mortha, A.1
  • 36
    • 85027947787 scopus 로고    scopus 로고
    • Induction of colonic regulatory T cells by indigenous Clostridium species
    • Atarashi K., et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011, 331:337-341.
    • (2011) Science , vol.331 , pp. 337-341
    • Atarashi, K.1
  • 37
    • 84881477044 scopus 로고    scopus 로고
    • Treg induction by a rationally selected mixture of clostridia strains from the human microbiota
    • Atarashi K., et al. Treg induction by a rationally selected mixture of clostridia strains from the human microbiota. Nature 2013, 500:232-236.
    • (2013) Nature , vol.500 , pp. 232-236
    • Atarashi, K.1
  • 38
    • 84890550163 scopus 로고    scopus 로고
    • Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
    • Arpaia N., et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013, 504:451-455.
    • (2013) Nature , vol.504 , pp. 451-455
    • Arpaia, N.1
  • 39
    • 84890564250 scopus 로고    scopus 로고
    • Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells
    • Furusawa Y., et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504:446-450.
    • (2013) Nature , vol.504 , pp. 446-450
    • Furusawa, Y.1
  • 40
    • 84881068658 scopus 로고    scopus 로고
    • The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
    • Smith P.M., et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013, 341:569-573.
    • (2013) Science , vol.341 , pp. 569-573
    • Smith, P.M.1
  • 41
    • 84940998804 scopus 로고    scopus 로고
    • Pancreatic beta-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota
    • Sun J., et al. Pancreatic beta-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota. Immunity 2015, 43:304-317.
    • (2015) Immunity , vol.43 , pp. 304-317
    • Sun, J.1
  • 42
    • 84874357602 scopus 로고    scopus 로고
    • Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity
    • Markle J.G., et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 2013, 339:1084-1088.
    • (2013) Science , vol.339 , pp. 1084-1088
    • Markle, J.G.1
  • 43
    • 0026536483 scopus 로고
    • Androgen treatment prevents diabetes in nonobese diabetic mice
    • Fox H.S. Androgen treatment prevents diabetes in nonobese diabetic mice. J. Exp. Med. 1992, 175:1409-1412.
    • (1992) J. Exp. Med. , vol.175 , pp. 1409-1412
    • Fox, H.S.1
  • 44
    • 8444230022 scopus 로고    scopus 로고
    • Augmentation of T cell levels and responses induced by androgen deprivation
    • Roden A.C., et al. Augmentation of T cell levels and responses induced by androgen deprivation. J. Immunol. 2004, 173:6098-6108.
    • (2004) J. Immunol. , vol.173 , pp. 6098-6108
    • Roden, A.C.1
  • 45
    • 84903977462 scopus 로고    scopus 로고
    • Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation
    • Kissick H.T., et al. Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:9887-9892.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 9887-9892
    • Kissick, H.T.1
  • 46
    • 84893704050 scopus 로고    scopus 로고
    • Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis
    • Trompette A., et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 2014, 20:159-166.
    • (2014) Nat. Med. , vol.20 , pp. 159-166
    • Trompette, A.1
  • 47
    • 84912086043 scopus 로고    scopus 로고
    • ATP-gated ionotropic P2X7 receptor controls follicular T helper cell numbers in Peyer's patches to promote host-microbiota mutualism
    • Proietti M., et al. ATP-gated ionotropic P2X7 receptor controls follicular T helper cell numbers in Peyer's patches to promote host-microbiota mutualism. Immunity 2014, 41:789-801.
    • (2014) Immunity , vol.41 , pp. 789-801
    • Proietti, M.1
  • 48
    • 84908003512 scopus 로고    scopus 로고
    • TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination
    • Oh J.Z., et al. TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination. Immunity 2014, 41:478-492.
    • (2014) Immunity , vol.41 , pp. 478-492
    • Oh, J.Z.1
  • 49
    • 79952763437 scopus 로고    scopus 로고
    • Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis
    • Wlodarska M., et al. Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect. Immun. 2011, 79:1536-1545.
    • (2011) Infect. Immun. , vol.79 , pp. 1536-1545
    • Wlodarska, M.1
  • 50
    • 84896691062 scopus 로고    scopus 로고
    • NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion
    • Wlodarska M., et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 2014, 156:1045-1059.
    • (2014) Cell , vol.156 , pp. 1045-1059
    • Wlodarska, M.1
  • 51
    • 84936891126 scopus 로고    scopus 로고
    • Activation of HIF-1alpha and LL-37 by commensal bacteria inhibits Candida albicans colonization
    • Fan D., et al. Activation of HIF-1alpha and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat. Med. 2015, 21:808-814.
    • (2015) Nat. Med. , vol.21 , pp. 808-814
    • Fan, D.1
  • 52
    • 79251584066 scopus 로고    scopus 로고
    • Bifidobacteria can protect from enteropathogenic infection through production of acetate
    • Fukuda S., et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011, 469:543-547.
    • (2011) Nature , vol.469 , pp. 543-547
    • Fukuda, S.1
  • 53
    • 84873019302 scopus 로고    scopus 로고
    • Duodenal infusion of donor feces for recurrent Clostridium difficile
    • van Nood E., et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 2013, 368:407-415.
    • (2013) N. Engl. J. Med. , vol.368 , pp. 407-415
    • van Nood, E.1
  • 54
    • 84925500413 scopus 로고    scopus 로고
    • Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile
    • Buffie C.G., et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 2015, 517:205-208.
    • (2015) Nature , vol.517 , pp. 205-208
    • Buffie, C.G.1
  • 55
    • 84911468185 scopus 로고    scopus 로고
    • Members of the human gut microbiota involved in recovery from Vibrio cholerae infection
    • Hsiao A., et al. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 2014, 515:423-426.
    • (2014) Nature , vol.515 , pp. 423-426
    • Hsiao, A.1
  • 56
    • 84945964162 scopus 로고    scopus 로고
    • Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract
    • Kommineni S., et al. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 2015, 526:719-722.
    • (2015) Nature , vol.526 , pp. 719-722
    • Kommineni, S.1
  • 57
    • 84892828465 scopus 로고    scopus 로고
    • Diet rapidly and reproducibly alters the human gut microbiome
    • David L.A., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505:559-563.
    • (2014) Nature , vol.505 , pp. 559-563
    • David, L.A.1
  • 58
    • 84908325271 scopus 로고    scopus 로고
    • Artificial sweeteners induce glucose intolerance by altering the gut microbiota
    • Suez J., et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014, 514:181-186.
    • (2014) Nature , vol.514 , pp. 181-186
    • Suez, J.1
  • 59
    • 84947812071 scopus 로고    scopus 로고
    • Personalized nutrition by prediction of glycemic responses
    • Zeevi D., et al. Personalized nutrition by prediction of glycemic responses. Cell 2015, 163:1079-1094.
    • (2015) Cell , vol.163 , pp. 1079-1094
    • Zeevi, D.1
  • 60
    • 84878709716 scopus 로고    scopus 로고
    • Gut metagenome in European women with normal, impaired and diabetic glucose control
    • Karlsson F.H., et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013, 498:99-103.
    • (2013) Nature , vol.498 , pp. 99-103
    • Karlsson, F.H.1
  • 61
    • 84867074831 scopus 로고    scopus 로고
    • A metagenome-wide association study of gut microbiota in type 2 diabetes
    • Qin J., et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490:55-60.
    • (2012) Nature , vol.490 , pp. 55-60
    • Qin, J.1
  • 62
    • 84949772416 scopus 로고    scopus 로고
    • Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota
    • Forslund K., et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015, 528:262-266.
    • (2015) Nature , vol.528 , pp. 262-266
    • Forslund, K.1
  • 63
    • 84944220492 scopus 로고    scopus 로고
    • Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn's disease
    • Lewis J.D., et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn's disease. Cell Host Microbe. 2015, 18:489-500.
    • (2015) Cell Host Microbe. , vol.18 , pp. 489-500
    • Lewis, J.D.1
  • 64
    • 33845874101 scopus 로고    scopus 로고
    • An obesity-associated gut microbiome with increased capacity for energy harvest
    • Turnbaugh P.J., et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444:1027-1031.
    • (2006) Nature , vol.444 , pp. 1027-1031
    • Turnbaugh, P.J.1
  • 65
    • 84883478660 scopus 로고    scopus 로고
    • Gut microbiota from twins discordant for obesity modulate metabolism in mice
    • Ridaura V.K., et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013, 341:1241214.
    • (2013) Science , vol.341 , pp. 1241214
    • Ridaura, V.K.1
  • 66
    • 84879888338 scopus 로고    scopus 로고
    • Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome
    • Yoshimoto S., et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013, 499:97-101.
    • (2013) Nature , vol.499 , pp. 97-101
    • Yoshimoto, S.1
  • 67
    • 84904543667 scopus 로고    scopus 로고
    • Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells
    • Belcheva A., et al. Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells. Cell 2014, 158:288-299.
    • (2014) Cell , vol.158 , pp. 288-299
    • Belcheva, A.1
  • 68
    • 84877331372 scopus 로고    scopus 로고
    • Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis
    • Koeth R.A., et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013, 19:576-585.
    • (2013) Nat. Med. , vol.19 , pp. 576-585
    • Koeth, R.A.1
  • 69
    • 79953733693 scopus 로고    scopus 로고
    • Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease
    • Wang Z., et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472:57-63.
    • (2011) Nature , vol.472 , pp. 57-63
    • Wang, Z.1
  • 70
    • 84876563088 scopus 로고    scopus 로고
    • Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk
    • Tang W.H., et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 2013, 368:1575-1584.
    • (2013) N. Engl. J. Med. , vol.368 , pp. 1575-1584
    • Tang, W.H.1
  • 71
    • 84950297830 scopus 로고    scopus 로고
    • Non-lethal Inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis
    • Wang Z., et al. Non-lethal Inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 2015, 163:1585-1595.
    • (2015) Cell , vol.163 , pp. 1585-1595
    • Wang, Z.1
  • 72
    • 84880439384 scopus 로고    scopus 로고
    • Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta
    • Haiser H.J., et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 2013, 341:295-298.
    • (2013) Science , vol.341 , pp. 295-298
    • Haiser, H.J.1
  • 73
    • 79957576718 scopus 로고    scopus 로고
    • NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis
    • Elinav E., et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 2011, 145:745-757.
    • (2011) Cell , vol.145 , pp. 745-757
    • Elinav, E.1
  • 74
    • 84873513423 scopus 로고    scopus 로고
    • Host-derived nitrate boosts growth of E. coli in the inflamed gut
    • Winter S.E., et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 2013, 339:708-711.
    • (2013) Science , vol.339 , pp. 708-711
    • Winter, S.E.1
  • 75
    • 84928175356 scopus 로고    scopus 로고
    • Distinct commensals induce interleukin-1beta via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury
    • Seo S.U., et al. Distinct commensals induce interleukin-1beta via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity 2015, 42:744-755.
    • (2015) Immunity , vol.42 , pp. 744-755
    • Seo, S.U.1
  • 76
    • 84860668802 scopus 로고    scopus 로고
    • Lethal inflammasome activation by a multidrug-resistant pathobiont upon antibiotic disruption of the microbiota
    • Ayres J.S., et al. Lethal inflammasome activation by a multidrug-resistant pathobiont upon antibiotic disruption of the microbiota. Nat. Med. 2012, 18:799-806.
    • (2012) Nat. Med. , vol.18 , pp. 799-806
    • Ayres, J.S.1
  • 77
    • 84870501494 scopus 로고    scopus 로고
    • Fucose sensing regulates bacterial intestinal colonization
    • Pacheco A.R., et al. Fucose sensing regulates bacterial intestinal colonization. Nature 2012, 492:113-117.
    • (2012) Nature , vol.492 , pp. 113-117
    • Pacheco, A.R.1
  • 78
    • 84885573828 scopus 로고    scopus 로고
    • Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens
    • Ng K.M., et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 2013, 502:96-99.
    • (2013) Nature , vol.502 , pp. 96-99
    • Ng, K.M.1
  • 79
    • 84943653785 scopus 로고    scopus 로고
    • Microbiota-dependent sequelae of acute infection compromise tissue-specific immunity
    • Fonseca D.M., et al. Microbiota-dependent sequelae of acute infection compromise tissue-specific immunity. Cell 2015, 163:354-366.
    • (2015) Cell , vol.163 , pp. 354-366
    • Fonseca, D.M.1
  • 80
    • 84940930030 scopus 로고    scopus 로고
    • Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged Site
    • Horai R., et al. Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged Site. Immunity 2015, 43:343-353.
    • (2015) Immunity , vol.43 , pp. 343-353
    • Horai, R.1
  • 81
    • 34248152283 scopus 로고    scopus 로고
    • Long-term ecological impacts of antibiotic administration on the human intestinal microbiota
    • Jernberg C., et al. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007, 1:56-66.
    • (2007) ISME J. , vol.1 , pp. 56-66
    • Jernberg, C.1
  • 82
    • 84857067037 scopus 로고    scopus 로고
    • Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis
    • Buffie C.G., et al. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect. Immun. 2012, 80:62-73.
    • (2012) Infect. Immun. , vol.80 , pp. 62-73
    • Buffie, C.G.1
  • 83
    • 78649895980 scopus 로고    scopus 로고
    • Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans
    • Ubeda C., et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J. Clin. Invest. 2010, 120:4332-4341.
    • (2010) J. Clin. Invest. , vol.120 , pp. 4332-4341
    • Ubeda, C.1
  • 84
    • 84983048071 scopus 로고    scopus 로고
    • Loss of microbiota-mediated colonization resistance to Clostridium difficile infection with oral vancomycin compared with metronidazole
    • Lewis B.B., et al. Loss of microbiota-mediated colonization resistance to Clostridium difficile infection with oral vancomycin compared with metronidazole. J. Infect. Dis. 2015, 212:1656-1665.
    • (2015) J. Infect. Dis. , vol.212 , pp. 1656-1665
    • Lewis, B.B.1
  • 85
    • 77955386857 scopus 로고    scopus 로고
    • Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns
    • Dominguez-Bello M.G., et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:11971-11975.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 11971-11975
    • Dominguez-Bello, M.G.1
  • 86
    • 84978619185 scopus 로고    scopus 로고
    • Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer
    • Dominguez-Bello M.G., et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. 2016, 22:250-253.
    • (2016) Nat. Med. , vol.22 , pp. 250-253
    • Dominguez-Bello, M.G.1
  • 87
    • 34250861286 scopus 로고    scopus 로고
    • Increased risk of childhood asthma from antibiotic use in early life
    • Kozyrskyj A.L., et al. Increased risk of childhood asthma from antibiotic use in early life. Chest 2007, 131:1753-1759.
    • (2007) Chest , vol.131 , pp. 1753-1759
    • Kozyrskyj, A.L.1
  • 88
    • 79251477530 scopus 로고    scopus 로고
    • Antibiotic exposure by 6 months and asthma and allergy at 6 years: findings in a cohort of 1,401 US children
    • Risnes K.R., et al. Antibiotic exposure by 6 months and asthma and allergy at 6 years: findings in a cohort of 1,401 US children. Am. J. Epidemiol. 2011, 173:310-318.
    • (2011) Am. J. Epidemiol. , vol.173 , pp. 310-318
    • Risnes, K.R.1
  • 89
    • 84955480509 scopus 로고    scopus 로고
    • Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children
    • Korpela K., et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat. Commun. 2016, 7:10410.
    • (2016) Nat. Commun. , vol.7 , pp. 10410
    • Korpela, K.1
  • 90
    • 84860436361 scopus 로고    scopus 로고
    • Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma
    • Russell S.L., et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep. 2012, 13:440-447.
    • (2012) EMBO Rep. , vol.13 , pp. 440-447
    • Russell, S.L.1
  • 91
    • 84907563983 scopus 로고    scopus 로고
    • Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences
    • Cox L.M., et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 2014, 158:705-721.
    • (2014) Cell , vol.158 , pp. 705-721
    • Cox, L.M.1
  • 92
    • 0023794266 scopus 로고
    • High frequency of antimicrobial resistance in human fecal flora
    • Levy S.B., et al. High frequency of antimicrobial resistance in human fecal flora. Antimicrob. Agents Chemother. 1988, 32:1801-1806.
    • (1988) Antimicrob. Agents Chemother. , vol.32 , pp. 1801-1806
    • Levy, S.B.1
  • 93
    • 69549086653 scopus 로고    scopus 로고
    • Functional characterization of the antibiotic resistance reservoir in the human microflora
    • Sommer M.O., et al. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 2009, 325:1128-1131.
    • (2009) Science , vol.325 , pp. 1128-1131
    • Sommer, M.O.1
  • 94
    • 84947795829 scopus 로고    scopus 로고
    • Gut microbiome of an 11th Century A.D. pre-Columbian Andean mummy
    • Santiago-Rodriguez T.M., et al. Gut microbiome of an 11th Century A.D. pre-Columbian Andean mummy. PloS ONE 2015, 10:e0138135.
    • (2015) PloS ONE , vol.10 , pp. e0138135
    • Santiago-Rodriguez, T.M.1
  • 95
    • 80053130409 scopus 로고    scopus 로고
    • Antibiotic resistance is ancient
    • D'Costa V.M., et al. Antibiotic resistance is ancient. Nature 2011, 477:457-461.
    • (2011) Nature , vol.477 , pp. 457-461
    • D'Costa, V.M.1
  • 96
    • 84859574738 scopus 로고    scopus 로고
    • Antibiotic resistance is prevalent in an isolated cave microbiome
    • Bhullar K., et al. Antibiotic resistance is prevalent in an isolated cave microbiome. PloS ONE 2012, 7:e34953.
    • (2012) PloS ONE , vol.7 , pp. e34953
    • Bhullar, K.1
  • 97
    • 84907486974 scopus 로고    scopus 로고
    • Antibiotics and the gut microbiota
    • Modi S.R., et al. Antibiotics and the gut microbiota. J. Clin. Invest. 2014, 124:4212-4218.
    • (2014) J. Clin. Invest. , vol.124 , pp. 4212-4218
    • Modi, S.R.1
  • 98
    • 84865571191 scopus 로고    scopus 로고
    • TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification
    • Oldenburg M., et al. TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science 2012, 337:1111-1115.
    • (2012) Science , vol.337 , pp. 1111-1115
    • Oldenburg, M.1
  • 99
    • 84923273687 scopus 로고    scopus 로고
    • Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation
    • Cullen T.W., et al. Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation. Science 2015, 347:170-175.
    • (2015) Science , vol.347 , pp. 170-175
    • Cullen, T.W.1
  • 100
    • 84907346425 scopus 로고    scopus 로고
    • Evolution of resistance to a last-resort antibiotic in Staphylococcus aureus via bacterial competition
    • Koch G., et al. Evolution of resistance to a last-resort antibiotic in Staphylococcus aureus via bacterial competition. Cell 2014, 158:1060-1071.
    • (2014) Cell , vol.158 , pp. 1060-1071
    • Koch, G.1
  • 101
    • 84857135712 scopus 로고    scopus 로고
    • In-feed antibiotic effects on the swine intestinal microbiome
    • Looft T., et al. In-feed antibiotic effects on the swine intestinal microbiome. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:1691-1696.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 1691-1696
    • Looft, T.1
  • 102
    • 84865531061 scopus 로고    scopus 로고
    • The shared antibiotic resistome of soil bacteria and human pathogens
    • Forsberg K.J., et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 2012, 337:1107-1111.
    • (2012) Science , vol.337 , pp. 1107-1111
    • Forsberg, K.J.1
  • 103
    • 84925223057 scopus 로고    scopus 로고
    • The abundance of antibiotic resistance genes in human guts has correlation to the consumption of antibiotics in animal
    • Hu Y., et al. The abundance of antibiotic resistance genes in human guts has correlation to the consumption of antibiotics in animal. Gut Microbes 2014, 5:245-249.
    • (2014) Gut Microbes , vol.5 , pp. 245-249
    • Hu, Y.1
  • 104
    • 84979849749 scopus 로고    scopus 로고
    • Alarmingly high segregation frequencies of quinolone resistance alleles within human and animal microbiomes are not explained by direct clinical antibiotic exposure
    • Field W., Hershberg R. Alarmingly high segregation frequencies of quinolone resistance alleles within human and animal microbiomes are not explained by direct clinical antibiotic exposure. Genome. Biol. Evol. 2015, 7:1743-1757.
    • (2015) Genome. Biol. Evol. , vol.7 , pp. 1743-1757
    • Field, W.1    Hershberg, R.2
  • 105
    • 84966643593 scopus 로고    scopus 로고
    • Gut resistome development in healthy twin pairs in the first year of life
    • Moore A.M., et al. Gut resistome development in healthy twin pairs in the first year of life. Microbiome 2015, 3:27.
    • (2015) Microbiome , vol.3 , pp. 27
    • Moore, A.M.1
  • 106
    • 84896311548 scopus 로고    scopus 로고
    • DNA microarray analysis reveals that antibiotic resistance-gene diversity in human gut microbiota is age related
    • Lu N., et al. DNA microarray analysis reveals that antibiotic resistance-gene diversity in human gut microbiota is age related. Sci. Rep. 2014, 4:4302.
    • (2014) Sci. Rep. , vol.4 , pp. 4302
    • Lu, N.1
  • 107
    • 84555171441 scopus 로고    scopus 로고
    • Evolutionary paths to antibiotic resistance under dynamically sustained drug selection
    • Toprak E., et al. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat. Genet. 2012, 44:101-105.
    • (2012) Nat. Genet. , vol.44 , pp. 101-105
    • Toprak, E.1
  • 108
    • 77956328000 scopus 로고    scopus 로고
    • Bacterial charity work leads to population-wide resistance
    • Lee H.H., et al. Bacterial charity work leads to population-wide resistance. Nature 2010, 467:82-85.
    • (2010) Nature , vol.467 , pp. 82-85
    • Lee, H.H.1
  • 109
    • 84930678786 scopus 로고    scopus 로고
    • Counteraction of antibiotic production and degradation stabilizes microbial communities
    • Kelsic E.D., et al. Counteraction of antibiotic production and degradation stabilizes microbial communities. Nature 2015, 521:516-519.
    • (2015) Nature , vol.521 , pp. 516-519
    • Kelsic, E.D.1
  • 110
    • 84861992014 scopus 로고    scopus 로고
    • The application of ecological theory toward an understanding of the human microbiome
    • Costello E.K., et al. The application of ecological theory toward an understanding of the human microbiome. Science 2012, 336:1255-1262.
    • (2012) Science , vol.336 , pp. 1255-1262
    • Costello, E.K.1
  • 111
    • 77950847866 scopus 로고    scopus 로고
    • Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota
    • Hehemann J.H., et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 2010, 464:908-912.
    • (2010) Nature , vol.464 , pp. 908-912
    • Hehemann, J.H.1
  • 112
    • 84871732071 scopus 로고    scopus 로고
    • Genomic variation landscape of the human gut microbiome
    • Schloissnig S., et al. Genomic variation landscape of the human gut microbiome. Nature 2013, 493:45-50.
    • (2013) Nature , vol.493 , pp. 45-50
    • Schloissnig, S.1
  • 113
    • 0345827436 scopus 로고    scopus 로고
    • SOS response promotes horizontal dissemination of antibiotic resistance genes
    • Beaber J.W., et al. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 2004, 427:72-74.
    • (2004) Nature , vol.427 , pp. 72-74
    • Beaber, J.W.1
  • 114
    • 84880509968 scopus 로고    scopus 로고
    • Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome
    • Modi S.R., et al. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 2013, 499:219-222.
    • (2013) Nature , vol.499 , pp. 219-222
    • Modi, S.R.1
  • 115
    • 84898662127 scopus 로고    scopus 로고
    • Antibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the origin
    • Slager J., et al. Antibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the origin. Cell 2014, 157:395-406.
    • (2014) Cell , vol.157 , pp. 395-406
    • Slager, J.1
  • 116
    • 84907190279 scopus 로고    scopus 로고
    • Antibiotic effectiveness: balancing conservation against innovation
    • Laxminarayan R. Antibiotic effectiveness: balancing conservation against innovation. Science 2014, 345:1299-1301.
    • (2014) Science , vol.345 , pp. 1299-1301
    • Laxminarayan, R.1
  • 117
    • 84903894091 scopus 로고    scopus 로고
    • Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients
    • Kelly C.R., et al. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am. J. Gastroenterol. 2014, 109:1065-1071.
    • (2014) Am. J. Gastroenterol. , vol.109 , pp. 1065-1071
    • Kelly, C.R.1
  • 118
    • 84868158515 scopus 로고    scopus 로고
    • Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice
    • Lawley T.D., et al. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog. 2012, 8:e1002995.
    • (2012) PLoS Pathog. , vol.8 , pp. e1002995
    • Lawley, T.D.1
  • 119
    • 84867615958 scopus 로고    scopus 로고
    • Suppression of Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae
    • Reeves A.E., et al. Suppression of Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae. Infect. Immun. 2012, 80:3786-3794.
    • (2012) Infect. Immun. , vol.80 , pp. 3786-3794
    • Reeves, A.E.1
  • 120
    • 84874672692 scopus 로고    scopus 로고
    • Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization
    • Ubeda C., et al. Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. Infect. Immun. 2013, 81:965-973.
    • (2013) Infect. Immun. , vol.81 , pp. 965-973
    • Ubeda, C.1
  • 121
    • 84959431760 scopus 로고    scopus 로고
    • TLR-7 activation enhances IL-22-mediated colonization resistance against vancomycin-resistant enterococcus
    • Abt M.C., et al. TLR-7 activation enhances IL-22-mediated colonization resistance against vancomycin-resistant enterococcus. Sci. Transl. Med. 2016, 8:327ra325.
    • (2016) Sci. Transl. Med. , vol.8 , pp. 325-327
    • Abt, M.C.1
  • 122
    • 84908079780 scopus 로고    scopus 로고
    • A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics
    • Donia M.S., et al. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 2014, 158:1402-1414.
    • (2014) Cell , vol.158 , pp. 1402-1414
    • Donia, M.S.1
  • 123
    • 84945577962 scopus 로고    scopus 로고
    • Selective small-molecule inhibition of an RNA structural element
    • Howe J.A., et al. Selective small-molecule inhibition of an RNA structural element. Nature 2015, 526:672-677.
    • (2015) Nature , vol.526 , pp. 672-677
    • Howe, J.A.1
  • 124
    • 79952773376 scopus 로고    scopus 로고
    • Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon
    • Rea M.C., et al. Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc. Natl. Acad. Sci. U.S.A. 2011, 108(Suppl 1):4639-4644.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 4639-4644
    • Rea, M.C.1
  • 125
    • 84928409059 scopus 로고    scopus 로고
    • A modified R-type bacteriocin specifically targeting Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity
    • Gebhart D., et al. A modified R-type bacteriocin specifically targeting Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity. MBio 2015, 6.
    • (2015) MBio , vol.6
    • Gebhart, D.1
  • 126
    • 84947751820 scopus 로고    scopus 로고
    • Novel antibody-antibiotic conjugate eliminates intracellular S. aureus
    • Lehar S.M., et al. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature 2015, 527:323-328.
    • (2015) Nature , vol.527 , pp. 323-328
    • Lehar, S.M.1
  • 127
    • 84983142945 scopus 로고    scopus 로고
    • Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials
    • Bikard D., et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 2014, 32:1146-1150.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 1146-1150
    • Bikard, D.1
  • 128
    • 84983208863 scopus 로고    scopus 로고
    • Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases
    • Citorik R.J., et al. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 2014, 32:1141-1145.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 1141-1145
    • Citorik, R.J.1
  • 129
    • 84927692256 scopus 로고    scopus 로고
    • The first 1000 cultured species of the human gastrointestinal microbiota
    • Rajilic-Stojanovic M., de Vos W.M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 2014, 38:996-1047.
    • (2014) FEMS Microbiol. Rev. , vol.38 , pp. 996-1047
    • Rajilic-Stojanovic, M.1    de Vos, W.M.2
  • 130
    • 23344442120 scopus 로고    scopus 로고
    • Obesity alters gut microbial ecology
    • Ley R.E., et al. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:11070-11075.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 11070-11075
    • Ley, R.E.1
  • 131
    • 84920404296 scopus 로고    scopus 로고
    • How informative is the mouse for human gut microbiota research?
    • Nguyen T.L., et al. How informative is the mouse for human gut microbiota research?. Dis. Model. Mech. 2015, 8:1-16.
    • (2015) Dis. Model. Mech. , vol.8 , pp. 1-16
    • Nguyen, T.L.1
  • 132
    • 84943607837 scopus 로고    scopus 로고
    • A catalog of the mouse gut metagenome
    • Xiao L., et al. A catalog of the mouse gut metagenome. Nat. Biotechnol. 2015, 33:1103-1108.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 1103-1108
    • Xiao, L.1
  • 133
    • 84916884469 scopus 로고    scopus 로고
    • Bacteria from diverse habitats colonize and compete in the mouse gut
    • Seedorf H., et al. Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 2014, 159:253-266.
    • (2014) Cell , vol.159 , pp. 253-266
    • Seedorf, H.1
  • 134
    • 84959016595 scopus 로고    scopus 로고
    • Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children
    • Blanton L.V., et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 2016, 351.
    • (2016) Science , vol.351
    • Blanton, L.V.1
  • 135
    • 84991929179 scopus 로고    scopus 로고
    • Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy
    • Kau A.L., et al. Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Sci. Transl. Med. 2015, 7:276ra224.
    • (2015) Sci. Transl. Med. , vol.7 , pp. 224-276
    • Kau, A.L.1
  • 136
    • 84870266477 scopus 로고    scopus 로고
    • The evolution of mutualism in gut microbiota via host epithelial selection
    • Schluter J., Foster K.R. The evolution of mutualism in gut microbiota via host epithelial selection. PLoS Biol. 2012, 10:e1001424.
    • (2012) PLoS Biol. , vol.10 , pp. e1001424
    • Schluter, J.1    Foster, K.R.2
  • 137
    • 84908403149 scopus 로고    scopus 로고
    • Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness
    • Pickard J.M., et al. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 2014, 514:638-641.
    • (2014) Nature , vol.514 , pp. 638-641
    • Pickard, J.M.1
  • 138
    • 84866436436 scopus 로고    scopus 로고
    • Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses
    • Hand T.W., et al. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science 2012, 337:1553-1556.
    • (2012) Science , vol.337 , pp. 1553-1556
    • Hand, T.W.1
  • 139
    • 84947425582 scopus 로고    scopus 로고
    • Normalization of host intestinal mucus layers requires long-term microbial colonization
    • Johansson M.E., et al. Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe. 2015, 18:582-592.
    • (2015) Cell Host Microbe. , vol.18 , pp. 582-592
    • Johansson, M.E.1
  • 140
    • 84874688283 scopus 로고    scopus 로고
    • hi cells
    • hi cells. Nature 2013, 494:116-120.
    • (2013) Nature , vol.494 , pp. 116-120
    • Diehl, G.E.1
  • 141
    • 84878737123 scopus 로고    scopus 로고
    • + T-cell responses to intestinal commensal bacteria
    • + T-cell responses to intestinal commensal bacteria. Nature 2013, 498:113-117.
    • (2013) Nature , vol.498 , pp. 113-117
    • Hepworth, M.R.1
  • 142
    • 84930663466 scopus 로고    scopus 로고
    • + T cells
    • + T cells. Science 2015, 348:1031-1035.
    • (2015) Science , vol.348 , pp. 1031-1035
    • Hepworth, M.R.1
  • 143
    • 84857128238 scopus 로고    scopus 로고
    • Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection
    • Fanning S., et al. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:2108-2113.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 2108-2113
    • Fanning, S.1
  • 144
    • 84888049920 scopus 로고    scopus 로고
    • Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment
    • Iida N., et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013, 342:967-970.
    • (2013) Science , vol.342 , pp. 967-970
    • Iida, N.1
  • 145
    • 84888059687 scopus 로고    scopus 로고
    • The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide
    • Viaud S., et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013, 342:971-976.
    • (2013) Science , vol.342 , pp. 971-976
    • Viaud, S.1
  • 146
    • 84948451779 scopus 로고    scopus 로고
    • Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy
    • Sivan A., et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015, 350:1084-1089.
    • (2015) Science , vol.350 , pp. 1084-1089
    • Sivan, A.1
  • 147
    • 84948461699 scopus 로고    scopus 로고
    • Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota
    • Vetizou M., et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015, 350:1079-1084.
    • (2015) Science , vol.350 , pp. 1079-1084
    • Vetizou, M.1
  • 148
    • 84957565779 scopus 로고    scopus 로고
    • Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis
    • Dubin K., et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 2016, 7:10391.
    • (2016) Nat. Commun. , vol.7 , pp. 10391
    • Dubin, K.1
  • 149
    • 84925333020 scopus 로고    scopus 로고
    • Antibiotics in agriculture and the risk to human health: how worried should we be?
    • Chang Q., et al. Antibiotics in agriculture and the risk to human health: how worried should we be?. Evol. Appl. 2015, 8:240-247.
    • (2015) Evol. Appl. , vol.8 , pp. 240-247
    • Chang, Q.1
  • 150
    • 84946017452 scopus 로고    scopus 로고
    • Nonmedical uses of antibiotics: time to restrict their use?
    • Meek R.W., et al. Nonmedical uses of antibiotics: time to restrict their use?. PLoS Biol. 2015, 13:e1002266.
    • (2015) PLoS Biol. , vol.13 , pp. e1002266
    • Meek, R.W.1
  • 151
    • 84887769885 scopus 로고    scopus 로고
    • Time to deal with antibiotics
    • Kennedy D. Time to deal with antibiotics. Science 2013, 342:777.
    • (2013) Science , vol.342 , pp. 777
    • Kennedy, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.