-
1
-
-
77950251400
-
A human gut microbial gene catalogue established by metagenomic sequencing
-
Qin J., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464:59-65.
-
(2010)
Nature
, vol.464
, pp. 59-65
-
-
Qin, J.1
-
2
-
-
80051856839
-
The human gut microbiome: ecology and recent evolutionary changes
-
Walter J., Ley R. The human gut microbiome: ecology and recent evolutionary changes. Annu. Rev. Microbiol. 2011, 65:411-429.
-
(2011)
Annu. Rev. Microbiol.
, vol.65
, pp. 411-429
-
-
Walter, J.1
Ley, R.2
-
3
-
-
84879369738
-
Commensal bacteria at the interface of host metabolism and the immune system
-
Brestoff J.R., Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 2013, 14:676-684.
-
(2013)
Nat. Immunol.
, vol.14
, pp. 676-684
-
-
Brestoff, J.R.1
Artis, D.2
-
4
-
-
84886795788
-
Microbiota-mediated colonization resistance against intestinal pathogens
-
Buffie C.G., Pamer E.G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 2013, 13:790-801.
-
(2013)
Nat. Rev. Immunol.
, vol.13
, pp. 790-801
-
-
Buffie, C.G.1
Pamer, E.G.2
-
5
-
-
84947461438
-
Feeding the brain and nurturing the mind: linking nutrition and the gut microbiota to brain development
-
Goyal M.S., et al. Feeding the brain and nurturing the mind: linking nutrition and the gut microbiota to brain development. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:14105-14112.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 14105-14112
-
-
Goyal, M.S.1
-
6
-
-
84938078684
-
Microbiome influences on allergy in mice and humans
-
Marsland B.J., Salami O. Microbiome influences on allergy in mice and humans. Curr. Opin. Immunol. 2015, 36:94-100.
-
(2015)
Curr. Opin. Immunol.
, vol.36
, pp. 94-100
-
-
Marsland, B.J.1
Salami, O.2
-
7
-
-
84927662069
-
Microbiota-mediated inflammation and antimicrobial defense in the intestine
-
Caballero S., Pamer E.G. Microbiota-mediated inflammation and antimicrobial defense in the intestine. Annu. Rev. Immunol. 2015, 33:227-256.
-
(2015)
Annu. Rev. Immunol.
, vol.33
, pp. 227-256
-
-
Caballero, S.1
Pamer, E.G.2
-
8
-
-
33745594044
-
The gut flora as a forgotten organ
-
O'Hara A.M., Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006, 7:688-693.
-
(2006)
EMBO Rep.
, vol.7
, pp. 688-693
-
-
O'Hara, A.M.1
Shanahan, F.2
-
9
-
-
84876414806
-
The gut microbiota-masters of host development and physiology
-
Sommer F., Backhed F. The gut microbiota-masters of host development and physiology. Nat. Rev. Microbiol. 2013, 11:227-238.
-
(2013)
Nat. Rev. Microbiol.
, vol.11
, pp. 227-238
-
-
Sommer, F.1
Backhed, F.2
-
10
-
-
84929502588
-
Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function
-
Kelly C.J., et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015, 17:662-671.
-
(2015)
Cell Host Microbe.
, vol.17
, pp. 662-671
-
-
Kelly, C.J.1
-
11
-
-
84859209652
-
Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling
-
Reinhardt C., et al. Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature 2012, 483:627-631.
-
(2012)
Nature
, vol.483
, pp. 627-631
-
-
Reinhardt, C.1
-
12
-
-
84911485386
-
Gut brain axis: diet microbiota interactions and implications for modulation of anxiety and depression
-
Luna R.A., Foster J.A. Gut brain axis: diet microbiota interactions and implications for modulation of anxiety and depression. Curr. Opin. Biotechnol. 2015, 32:35-41.
-
(2015)
Curr. Opin. Biotechnol.
, vol.32
, pp. 35-41
-
-
Luna, R.A.1
Foster, J.A.2
-
13
-
-
84924085783
-
Gut/brain axis and the microbiota
-
Mayer E.A., et al. Gut/brain axis and the microbiota. J. Clin. Invest. 2015, 125:926-938.
-
(2015)
J. Clin. Invest.
, vol.125
, pp. 926-938
-
-
Mayer, E.A.1
-
14
-
-
84964350668
-
Gut microbiota: the brain peacekeeper
-
Mu C., et al. Gut microbiota: the brain peacekeeper. Front. Microbiol. 2016, 7:345.
-
(2016)
Front. Microbiol.
, vol.7
, pp. 345
-
-
Mu, C.1
-
15
-
-
84867845255
-
The interplay between the intestinal microbiota and the brain
-
Collins S.M., et al. The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol. 2012, 10:735-742.
-
(2012)
Nat. Rev. Microbiol.
, vol.10
, pp. 735-742
-
-
Collins, S.M.1
-
16
-
-
3242664636
-
Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis
-
Rakoff-Nahoum S., et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004, 118:229-241.
-
(2004)
Cell
, vol.118
, pp. 229-241
-
-
Rakoff-Nahoum, S.1
-
17
-
-
33748039462
-
Symbiotic bacteria direct expression of an intestinal bactericidal lectin
-
Cash H.L., et al. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 2006, 313:1126-1130.
-
(2006)
Science
, vol.313
, pp. 1126-1130
-
-
Cash, H.L.1
-
18
-
-
53649098280
-
Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits
-
Brandl K., et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 2008, 455:804-807.
-
(2008)
Nature
, vol.455
, pp. 804-807
-
-
Brandl, K.1
-
19
-
-
75749133608
-
Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection
-
Kinnebrew M.A., et al. Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. J. Infect. Dis. 2010, 201:534-543.
-
(2010)
J. Infect. Dis.
, vol.201
, pp. 534-543
-
-
Kinnebrew, M.A.1
-
20
-
-
84857444876
-
+ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense
-
+ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 2012, 36:276-287.
-
(2012)
Immunity
, vol.36
, pp. 276-287
-
-
Kinnebrew, M.A.1
-
21
-
-
84901979873
-
Focused specificity of intestinal TH17 cells towards commensal bacterial antigens
-
Yang Y., et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 2014, 510:152-156.
-
(2014)
Nature
, vol.510
, pp. 152-156
-
-
Yang, Y.1
-
22
-
-
76249120134
-
Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity
-
Clarke T.B., et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med. 2010, 16:228-231.
-
(2010)
Nat. Med.
, vol.16
, pp. 228-231
-
-
Clarke, T.B.1
-
23
-
-
84902996531
-
The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice
-
Deshmukh H.S., et al. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat. Med. 2014, 20:524-530.
-
(2014)
Nat. Med.
, vol.20
, pp. 524-530
-
-
Deshmukh, H.S.1
-
24
-
-
84862777474
-
Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation
-
Hill D.A., et al. Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat. Med. 2012, 18:538-546.
-
(2012)
Nat. Med.
, vol.18
, pp. 538-546
-
-
Hill, D.A.1
-
25
-
-
79955121049
-
Microbiota regulates immune defense against respiratory tract influenza A virus infection
-
Ichinohe T., et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:5354-5359.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 5354-5359
-
-
Ichinohe, T.1
-
26
-
-
84864311450
-
Commensal bacteria calibrate the activation threshold of innate antiviral immunity
-
Abt M.C., et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 2012, 37:158-170.
-
(2012)
Immunity
, vol.37
, pp. 158-170
-
-
Abt, M.C.1
-
27
-
-
84864322646
-
Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota
-
Ganal S.C., et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 2012, 37:171-186.
-
(2012)
Immunity
, vol.37
, pp. 171-186
-
-
Ganal, S.C.1
-
28
-
-
22144490199
-
An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system
-
Mazmanian S.K., et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 2005, 122:107-118.
-
(2005)
Cell
, vol.122
, pp. 107-118
-
-
Mazmanian, S.K.1
-
29
-
-
53349173070
-
Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine
-
Ivanov I.I., et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008, 4:337-349.
-
(2008)
Cell Host Microbe.
, vol.4
, pp. 337-349
-
-
Ivanov, I.I.1
-
30
-
-
53649100675
-
H17 cell differentiation
-
H17 cell differentiation. Nature 2008, 455:808-812.
-
(2008)
Nature
, vol.455
, pp. 808-812
-
-
Atarashi, K.1
-
31
-
-
70350343544
-
Induction of intestinal Th17 cells by segmented filamentous bacteria
-
Ivanov I.I., et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009, 139:485-498.
-
(2009)
Cell
, vol.139
, pp. 485-498
-
-
Ivanov, I.I.1
-
32
-
-
70349742524
-
The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses
-
Gaboriau-Routhiau V., et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009, 31:677-689.
-
(2009)
Immunity
, vol.31
, pp. 677-689
-
-
Gaboriau-Routhiau, V.1
-
33
-
-
84943638660
-
An IL-23R/IL-22 circuit regulates epithelial serum amyloid a to promote local effector Th17 responses
-
Sano T., et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid a to promote local effector Th17 responses. Cell 2015, 163:381-393.
-
(2015)
Cell
, vol.163
, pp. 381-393
-
-
Sano, T.1
-
34
-
-
84943639694
-
Th17 cell induction by adhesion of microbes to intestinal epithelial cells
-
Atarashi K., et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 2015, 163:367-380.
-
(2015)
Cell
, vol.163
, pp. 367-380
-
-
Atarashi, K.1
-
35
-
-
84897053496
-
Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis
-
Mortha A., et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 2014, 343:1249288.
-
(2014)
Science
, vol.343
, pp. 1249288
-
-
Mortha, A.1
-
36
-
-
85027947787
-
Induction of colonic regulatory T cells by indigenous Clostridium species
-
Atarashi K., et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011, 331:337-341.
-
(2011)
Science
, vol.331
, pp. 337-341
-
-
Atarashi, K.1
-
37
-
-
84881477044
-
Treg induction by a rationally selected mixture of clostridia strains from the human microbiota
-
Atarashi K., et al. Treg induction by a rationally selected mixture of clostridia strains from the human microbiota. Nature 2013, 500:232-236.
-
(2013)
Nature
, vol.500
, pp. 232-236
-
-
Atarashi, K.1
-
38
-
-
84890550163
-
Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
-
Arpaia N., et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013, 504:451-455.
-
(2013)
Nature
, vol.504
, pp. 451-455
-
-
Arpaia, N.1
-
39
-
-
84890564250
-
Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells
-
Furusawa Y., et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504:446-450.
-
(2013)
Nature
, vol.504
, pp. 446-450
-
-
Furusawa, Y.1
-
40
-
-
84881068658
-
The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
-
Smith P.M., et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013, 341:569-573.
-
(2013)
Science
, vol.341
, pp. 569-573
-
-
Smith, P.M.1
-
41
-
-
84940998804
-
Pancreatic beta-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota
-
Sun J., et al. Pancreatic beta-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota. Immunity 2015, 43:304-317.
-
(2015)
Immunity
, vol.43
, pp. 304-317
-
-
Sun, J.1
-
42
-
-
84874357602
-
Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity
-
Markle J.G., et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 2013, 339:1084-1088.
-
(2013)
Science
, vol.339
, pp. 1084-1088
-
-
Markle, J.G.1
-
43
-
-
0026536483
-
Androgen treatment prevents diabetes in nonobese diabetic mice
-
Fox H.S. Androgen treatment prevents diabetes in nonobese diabetic mice. J. Exp. Med. 1992, 175:1409-1412.
-
(1992)
J. Exp. Med.
, vol.175
, pp. 1409-1412
-
-
Fox, H.S.1
-
44
-
-
8444230022
-
Augmentation of T cell levels and responses induced by androgen deprivation
-
Roden A.C., et al. Augmentation of T cell levels and responses induced by androgen deprivation. J. Immunol. 2004, 173:6098-6108.
-
(2004)
J. Immunol.
, vol.173
, pp. 6098-6108
-
-
Roden, A.C.1
-
45
-
-
84903977462
-
Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation
-
Kissick H.T., et al. Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:9887-9892.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 9887-9892
-
-
Kissick, H.T.1
-
46
-
-
84893704050
-
Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis
-
Trompette A., et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 2014, 20:159-166.
-
(2014)
Nat. Med.
, vol.20
, pp. 159-166
-
-
Trompette, A.1
-
47
-
-
84912086043
-
ATP-gated ionotropic P2X7 receptor controls follicular T helper cell numbers in Peyer's patches to promote host-microbiota mutualism
-
Proietti M., et al. ATP-gated ionotropic P2X7 receptor controls follicular T helper cell numbers in Peyer's patches to promote host-microbiota mutualism. Immunity 2014, 41:789-801.
-
(2014)
Immunity
, vol.41
, pp. 789-801
-
-
Proietti, M.1
-
48
-
-
84908003512
-
TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination
-
Oh J.Z., et al. TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination. Immunity 2014, 41:478-492.
-
(2014)
Immunity
, vol.41
, pp. 478-492
-
-
Oh, J.Z.1
-
49
-
-
79952763437
-
Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis
-
Wlodarska M., et al. Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect. Immun. 2011, 79:1536-1545.
-
(2011)
Infect. Immun.
, vol.79
, pp. 1536-1545
-
-
Wlodarska, M.1
-
50
-
-
84896691062
-
NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion
-
Wlodarska M., et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 2014, 156:1045-1059.
-
(2014)
Cell
, vol.156
, pp. 1045-1059
-
-
Wlodarska, M.1
-
51
-
-
84936891126
-
Activation of HIF-1alpha and LL-37 by commensal bacteria inhibits Candida albicans colonization
-
Fan D., et al. Activation of HIF-1alpha and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat. Med. 2015, 21:808-814.
-
(2015)
Nat. Med.
, vol.21
, pp. 808-814
-
-
Fan, D.1
-
52
-
-
79251584066
-
Bifidobacteria can protect from enteropathogenic infection through production of acetate
-
Fukuda S., et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011, 469:543-547.
-
(2011)
Nature
, vol.469
, pp. 543-547
-
-
Fukuda, S.1
-
53
-
-
84873019302
-
Duodenal infusion of donor feces for recurrent Clostridium difficile
-
van Nood E., et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 2013, 368:407-415.
-
(2013)
N. Engl. J. Med.
, vol.368
, pp. 407-415
-
-
van Nood, E.1
-
54
-
-
84925500413
-
Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile
-
Buffie C.G., et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 2015, 517:205-208.
-
(2015)
Nature
, vol.517
, pp. 205-208
-
-
Buffie, C.G.1
-
55
-
-
84911468185
-
Members of the human gut microbiota involved in recovery from Vibrio cholerae infection
-
Hsiao A., et al. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 2014, 515:423-426.
-
(2014)
Nature
, vol.515
, pp. 423-426
-
-
Hsiao, A.1
-
56
-
-
84945964162
-
Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract
-
Kommineni S., et al. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 2015, 526:719-722.
-
(2015)
Nature
, vol.526
, pp. 719-722
-
-
Kommineni, S.1
-
57
-
-
84892828465
-
Diet rapidly and reproducibly alters the human gut microbiome
-
David L.A., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505:559-563.
-
(2014)
Nature
, vol.505
, pp. 559-563
-
-
David, L.A.1
-
58
-
-
84908325271
-
Artificial sweeteners induce glucose intolerance by altering the gut microbiota
-
Suez J., et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014, 514:181-186.
-
(2014)
Nature
, vol.514
, pp. 181-186
-
-
Suez, J.1
-
59
-
-
84947812071
-
Personalized nutrition by prediction of glycemic responses
-
Zeevi D., et al. Personalized nutrition by prediction of glycemic responses. Cell 2015, 163:1079-1094.
-
(2015)
Cell
, vol.163
, pp. 1079-1094
-
-
Zeevi, D.1
-
60
-
-
84878709716
-
Gut metagenome in European women with normal, impaired and diabetic glucose control
-
Karlsson F.H., et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013, 498:99-103.
-
(2013)
Nature
, vol.498
, pp. 99-103
-
-
Karlsson, F.H.1
-
61
-
-
84867074831
-
A metagenome-wide association study of gut microbiota in type 2 diabetes
-
Qin J., et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490:55-60.
-
(2012)
Nature
, vol.490
, pp. 55-60
-
-
Qin, J.1
-
62
-
-
84949772416
-
Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota
-
Forslund K., et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015, 528:262-266.
-
(2015)
Nature
, vol.528
, pp. 262-266
-
-
Forslund, K.1
-
63
-
-
84944220492
-
Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn's disease
-
Lewis J.D., et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn's disease. Cell Host Microbe. 2015, 18:489-500.
-
(2015)
Cell Host Microbe.
, vol.18
, pp. 489-500
-
-
Lewis, J.D.1
-
64
-
-
33845874101
-
An obesity-associated gut microbiome with increased capacity for energy harvest
-
Turnbaugh P.J., et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444:1027-1031.
-
(2006)
Nature
, vol.444
, pp. 1027-1031
-
-
Turnbaugh, P.J.1
-
65
-
-
84883478660
-
Gut microbiota from twins discordant for obesity modulate metabolism in mice
-
Ridaura V.K., et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013, 341:1241214.
-
(2013)
Science
, vol.341
, pp. 1241214
-
-
Ridaura, V.K.1
-
66
-
-
84879888338
-
Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome
-
Yoshimoto S., et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013, 499:97-101.
-
(2013)
Nature
, vol.499
, pp. 97-101
-
-
Yoshimoto, S.1
-
67
-
-
84904543667
-
Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells
-
Belcheva A., et al. Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells. Cell 2014, 158:288-299.
-
(2014)
Cell
, vol.158
, pp. 288-299
-
-
Belcheva, A.1
-
68
-
-
84877331372
-
Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis
-
Koeth R.A., et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013, 19:576-585.
-
(2013)
Nat. Med.
, vol.19
, pp. 576-585
-
-
Koeth, R.A.1
-
69
-
-
79953733693
-
Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease
-
Wang Z., et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472:57-63.
-
(2011)
Nature
, vol.472
, pp. 57-63
-
-
Wang, Z.1
-
70
-
-
84876563088
-
Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk
-
Tang W.H., et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 2013, 368:1575-1584.
-
(2013)
N. Engl. J. Med.
, vol.368
, pp. 1575-1584
-
-
Tang, W.H.1
-
71
-
-
84950297830
-
Non-lethal Inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis
-
Wang Z., et al. Non-lethal Inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 2015, 163:1585-1595.
-
(2015)
Cell
, vol.163
, pp. 1585-1595
-
-
Wang, Z.1
-
72
-
-
84880439384
-
Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta
-
Haiser H.J., et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 2013, 341:295-298.
-
(2013)
Science
, vol.341
, pp. 295-298
-
-
Haiser, H.J.1
-
73
-
-
79957576718
-
NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis
-
Elinav E., et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 2011, 145:745-757.
-
(2011)
Cell
, vol.145
, pp. 745-757
-
-
Elinav, E.1
-
74
-
-
84873513423
-
Host-derived nitrate boosts growth of E. coli in the inflamed gut
-
Winter S.E., et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 2013, 339:708-711.
-
(2013)
Science
, vol.339
, pp. 708-711
-
-
Winter, S.E.1
-
75
-
-
84928175356
-
Distinct commensals induce interleukin-1beta via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury
-
Seo S.U., et al. Distinct commensals induce interleukin-1beta via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity 2015, 42:744-755.
-
(2015)
Immunity
, vol.42
, pp. 744-755
-
-
Seo, S.U.1
-
76
-
-
84860668802
-
Lethal inflammasome activation by a multidrug-resistant pathobiont upon antibiotic disruption of the microbiota
-
Ayres J.S., et al. Lethal inflammasome activation by a multidrug-resistant pathobiont upon antibiotic disruption of the microbiota. Nat. Med. 2012, 18:799-806.
-
(2012)
Nat. Med.
, vol.18
, pp. 799-806
-
-
Ayres, J.S.1
-
77
-
-
84870501494
-
Fucose sensing regulates bacterial intestinal colonization
-
Pacheco A.R., et al. Fucose sensing regulates bacterial intestinal colonization. Nature 2012, 492:113-117.
-
(2012)
Nature
, vol.492
, pp. 113-117
-
-
Pacheco, A.R.1
-
78
-
-
84885573828
-
Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens
-
Ng K.M., et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 2013, 502:96-99.
-
(2013)
Nature
, vol.502
, pp. 96-99
-
-
Ng, K.M.1
-
79
-
-
84943653785
-
Microbiota-dependent sequelae of acute infection compromise tissue-specific immunity
-
Fonseca D.M., et al. Microbiota-dependent sequelae of acute infection compromise tissue-specific immunity. Cell 2015, 163:354-366.
-
(2015)
Cell
, vol.163
, pp. 354-366
-
-
Fonseca, D.M.1
-
80
-
-
84940930030
-
Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged Site
-
Horai R., et al. Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged Site. Immunity 2015, 43:343-353.
-
(2015)
Immunity
, vol.43
, pp. 343-353
-
-
Horai, R.1
-
81
-
-
34248152283
-
Long-term ecological impacts of antibiotic administration on the human intestinal microbiota
-
Jernberg C., et al. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007, 1:56-66.
-
(2007)
ISME J.
, vol.1
, pp. 56-66
-
-
Jernberg, C.1
-
82
-
-
84857067037
-
Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis
-
Buffie C.G., et al. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect. Immun. 2012, 80:62-73.
-
(2012)
Infect. Immun.
, vol.80
, pp. 62-73
-
-
Buffie, C.G.1
-
83
-
-
78649895980
-
Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans
-
Ubeda C., et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J. Clin. Invest. 2010, 120:4332-4341.
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 4332-4341
-
-
Ubeda, C.1
-
84
-
-
84983048071
-
Loss of microbiota-mediated colonization resistance to Clostridium difficile infection with oral vancomycin compared with metronidazole
-
Lewis B.B., et al. Loss of microbiota-mediated colonization resistance to Clostridium difficile infection with oral vancomycin compared with metronidazole. J. Infect. Dis. 2015, 212:1656-1665.
-
(2015)
J. Infect. Dis.
, vol.212
, pp. 1656-1665
-
-
Lewis, B.B.1
-
85
-
-
77955386857
-
Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns
-
Dominguez-Bello M.G., et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:11971-11975.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 11971-11975
-
-
Dominguez-Bello, M.G.1
-
86
-
-
84978619185
-
Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer
-
Dominguez-Bello M.G., et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. 2016, 22:250-253.
-
(2016)
Nat. Med.
, vol.22
, pp. 250-253
-
-
Dominguez-Bello, M.G.1
-
87
-
-
34250861286
-
Increased risk of childhood asthma from antibiotic use in early life
-
Kozyrskyj A.L., et al. Increased risk of childhood asthma from antibiotic use in early life. Chest 2007, 131:1753-1759.
-
(2007)
Chest
, vol.131
, pp. 1753-1759
-
-
Kozyrskyj, A.L.1
-
88
-
-
79251477530
-
Antibiotic exposure by 6 months and asthma and allergy at 6 years: findings in a cohort of 1,401 US children
-
Risnes K.R., et al. Antibiotic exposure by 6 months and asthma and allergy at 6 years: findings in a cohort of 1,401 US children. Am. J. Epidemiol. 2011, 173:310-318.
-
(2011)
Am. J. Epidemiol.
, vol.173
, pp. 310-318
-
-
Risnes, K.R.1
-
89
-
-
84955480509
-
Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children
-
Korpela K., et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat. Commun. 2016, 7:10410.
-
(2016)
Nat. Commun.
, vol.7
, pp. 10410
-
-
Korpela, K.1
-
90
-
-
84860436361
-
Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma
-
Russell S.L., et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep. 2012, 13:440-447.
-
(2012)
EMBO Rep.
, vol.13
, pp. 440-447
-
-
Russell, S.L.1
-
91
-
-
84907563983
-
Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences
-
Cox L.M., et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 2014, 158:705-721.
-
(2014)
Cell
, vol.158
, pp. 705-721
-
-
Cox, L.M.1
-
92
-
-
0023794266
-
High frequency of antimicrobial resistance in human fecal flora
-
Levy S.B., et al. High frequency of antimicrobial resistance in human fecal flora. Antimicrob. Agents Chemother. 1988, 32:1801-1806.
-
(1988)
Antimicrob. Agents Chemother.
, vol.32
, pp. 1801-1806
-
-
Levy, S.B.1
-
93
-
-
69549086653
-
Functional characterization of the antibiotic resistance reservoir in the human microflora
-
Sommer M.O., et al. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 2009, 325:1128-1131.
-
(2009)
Science
, vol.325
, pp. 1128-1131
-
-
Sommer, M.O.1
-
94
-
-
84947795829
-
Gut microbiome of an 11th Century A.D. pre-Columbian Andean mummy
-
Santiago-Rodriguez T.M., et al. Gut microbiome of an 11th Century A.D. pre-Columbian Andean mummy. PloS ONE 2015, 10:e0138135.
-
(2015)
PloS ONE
, vol.10
, pp. e0138135
-
-
Santiago-Rodriguez, T.M.1
-
95
-
-
80053130409
-
Antibiotic resistance is ancient
-
D'Costa V.M., et al. Antibiotic resistance is ancient. Nature 2011, 477:457-461.
-
(2011)
Nature
, vol.477
, pp. 457-461
-
-
D'Costa, V.M.1
-
96
-
-
84859574738
-
Antibiotic resistance is prevalent in an isolated cave microbiome
-
Bhullar K., et al. Antibiotic resistance is prevalent in an isolated cave microbiome. PloS ONE 2012, 7:e34953.
-
(2012)
PloS ONE
, vol.7
, pp. e34953
-
-
Bhullar, K.1
-
97
-
-
84907486974
-
Antibiotics and the gut microbiota
-
Modi S.R., et al. Antibiotics and the gut microbiota. J. Clin. Invest. 2014, 124:4212-4218.
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 4212-4218
-
-
Modi, S.R.1
-
98
-
-
84865571191
-
TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification
-
Oldenburg M., et al. TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science 2012, 337:1111-1115.
-
(2012)
Science
, vol.337
, pp. 1111-1115
-
-
Oldenburg, M.1
-
99
-
-
84923273687
-
Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation
-
Cullen T.W., et al. Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation. Science 2015, 347:170-175.
-
(2015)
Science
, vol.347
, pp. 170-175
-
-
Cullen, T.W.1
-
100
-
-
84907346425
-
Evolution of resistance to a last-resort antibiotic in Staphylococcus aureus via bacterial competition
-
Koch G., et al. Evolution of resistance to a last-resort antibiotic in Staphylococcus aureus via bacterial competition. Cell 2014, 158:1060-1071.
-
(2014)
Cell
, vol.158
, pp. 1060-1071
-
-
Koch, G.1
-
101
-
-
84857135712
-
In-feed antibiotic effects on the swine intestinal microbiome
-
Looft T., et al. In-feed antibiotic effects on the swine intestinal microbiome. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:1691-1696.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 1691-1696
-
-
Looft, T.1
-
102
-
-
84865531061
-
The shared antibiotic resistome of soil bacteria and human pathogens
-
Forsberg K.J., et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 2012, 337:1107-1111.
-
(2012)
Science
, vol.337
, pp. 1107-1111
-
-
Forsberg, K.J.1
-
103
-
-
84925223057
-
The abundance of antibiotic resistance genes in human guts has correlation to the consumption of antibiotics in animal
-
Hu Y., et al. The abundance of antibiotic resistance genes in human guts has correlation to the consumption of antibiotics in animal. Gut Microbes 2014, 5:245-249.
-
(2014)
Gut Microbes
, vol.5
, pp. 245-249
-
-
Hu, Y.1
-
104
-
-
84979849749
-
Alarmingly high segregation frequencies of quinolone resistance alleles within human and animal microbiomes are not explained by direct clinical antibiotic exposure
-
Field W., Hershberg R. Alarmingly high segregation frequencies of quinolone resistance alleles within human and animal microbiomes are not explained by direct clinical antibiotic exposure. Genome. Biol. Evol. 2015, 7:1743-1757.
-
(2015)
Genome. Biol. Evol.
, vol.7
, pp. 1743-1757
-
-
Field, W.1
Hershberg, R.2
-
105
-
-
84966643593
-
Gut resistome development in healthy twin pairs in the first year of life
-
Moore A.M., et al. Gut resistome development in healthy twin pairs in the first year of life. Microbiome 2015, 3:27.
-
(2015)
Microbiome
, vol.3
, pp. 27
-
-
Moore, A.M.1
-
106
-
-
84896311548
-
DNA microarray analysis reveals that antibiotic resistance-gene diversity in human gut microbiota is age related
-
Lu N., et al. DNA microarray analysis reveals that antibiotic resistance-gene diversity in human gut microbiota is age related. Sci. Rep. 2014, 4:4302.
-
(2014)
Sci. Rep.
, vol.4
, pp. 4302
-
-
Lu, N.1
-
107
-
-
84555171441
-
Evolutionary paths to antibiotic resistance under dynamically sustained drug selection
-
Toprak E., et al. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat. Genet. 2012, 44:101-105.
-
(2012)
Nat. Genet.
, vol.44
, pp. 101-105
-
-
Toprak, E.1
-
108
-
-
77956328000
-
Bacterial charity work leads to population-wide resistance
-
Lee H.H., et al. Bacterial charity work leads to population-wide resistance. Nature 2010, 467:82-85.
-
(2010)
Nature
, vol.467
, pp. 82-85
-
-
Lee, H.H.1
-
109
-
-
84930678786
-
Counteraction of antibiotic production and degradation stabilizes microbial communities
-
Kelsic E.D., et al. Counteraction of antibiotic production and degradation stabilizes microbial communities. Nature 2015, 521:516-519.
-
(2015)
Nature
, vol.521
, pp. 516-519
-
-
Kelsic, E.D.1
-
110
-
-
84861992014
-
The application of ecological theory toward an understanding of the human microbiome
-
Costello E.K., et al. The application of ecological theory toward an understanding of the human microbiome. Science 2012, 336:1255-1262.
-
(2012)
Science
, vol.336
, pp. 1255-1262
-
-
Costello, E.K.1
-
111
-
-
77950847866
-
Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota
-
Hehemann J.H., et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 2010, 464:908-912.
-
(2010)
Nature
, vol.464
, pp. 908-912
-
-
Hehemann, J.H.1
-
112
-
-
84871732071
-
Genomic variation landscape of the human gut microbiome
-
Schloissnig S., et al. Genomic variation landscape of the human gut microbiome. Nature 2013, 493:45-50.
-
(2013)
Nature
, vol.493
, pp. 45-50
-
-
Schloissnig, S.1
-
113
-
-
0345827436
-
SOS response promotes horizontal dissemination of antibiotic resistance genes
-
Beaber J.W., et al. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 2004, 427:72-74.
-
(2004)
Nature
, vol.427
, pp. 72-74
-
-
Beaber, J.W.1
-
114
-
-
84880509968
-
Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome
-
Modi S.R., et al. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 2013, 499:219-222.
-
(2013)
Nature
, vol.499
, pp. 219-222
-
-
Modi, S.R.1
-
115
-
-
84898662127
-
Antibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the origin
-
Slager J., et al. Antibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the origin. Cell 2014, 157:395-406.
-
(2014)
Cell
, vol.157
, pp. 395-406
-
-
Slager, J.1
-
116
-
-
84907190279
-
Antibiotic effectiveness: balancing conservation against innovation
-
Laxminarayan R. Antibiotic effectiveness: balancing conservation against innovation. Science 2014, 345:1299-1301.
-
(2014)
Science
, vol.345
, pp. 1299-1301
-
-
Laxminarayan, R.1
-
117
-
-
84903894091
-
Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients
-
Kelly C.R., et al. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am. J. Gastroenterol. 2014, 109:1065-1071.
-
(2014)
Am. J. Gastroenterol.
, vol.109
, pp. 1065-1071
-
-
Kelly, C.R.1
-
118
-
-
84868158515
-
Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice
-
Lawley T.D., et al. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog. 2012, 8:e1002995.
-
(2012)
PLoS Pathog.
, vol.8
, pp. e1002995
-
-
Lawley, T.D.1
-
119
-
-
84867615958
-
Suppression of Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae
-
Reeves A.E., et al. Suppression of Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae. Infect. Immun. 2012, 80:3786-3794.
-
(2012)
Infect. Immun.
, vol.80
, pp. 3786-3794
-
-
Reeves, A.E.1
-
120
-
-
84874672692
-
Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization
-
Ubeda C., et al. Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. Infect. Immun. 2013, 81:965-973.
-
(2013)
Infect. Immun.
, vol.81
, pp. 965-973
-
-
Ubeda, C.1
-
121
-
-
84959431760
-
TLR-7 activation enhances IL-22-mediated colonization resistance against vancomycin-resistant enterococcus
-
Abt M.C., et al. TLR-7 activation enhances IL-22-mediated colonization resistance against vancomycin-resistant enterococcus. Sci. Transl. Med. 2016, 8:327ra325.
-
(2016)
Sci. Transl. Med.
, vol.8
, pp. 325-327
-
-
Abt, M.C.1
-
122
-
-
84908079780
-
A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics
-
Donia M.S., et al. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 2014, 158:1402-1414.
-
(2014)
Cell
, vol.158
, pp. 1402-1414
-
-
Donia, M.S.1
-
123
-
-
84945577962
-
Selective small-molecule inhibition of an RNA structural element
-
Howe J.A., et al. Selective small-molecule inhibition of an RNA structural element. Nature 2015, 526:672-677.
-
(2015)
Nature
, vol.526
, pp. 672-677
-
-
Howe, J.A.1
-
124
-
-
79952773376
-
Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon
-
Rea M.C., et al. Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc. Natl. Acad. Sci. U.S.A. 2011, 108(Suppl 1):4639-4644.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 4639-4644
-
-
Rea, M.C.1
-
125
-
-
84928409059
-
A modified R-type bacteriocin specifically targeting Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity
-
Gebhart D., et al. A modified R-type bacteriocin specifically targeting Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity. MBio 2015, 6.
-
(2015)
MBio
, vol.6
-
-
Gebhart, D.1
-
126
-
-
84947751820
-
Novel antibody-antibiotic conjugate eliminates intracellular S. aureus
-
Lehar S.M., et al. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature 2015, 527:323-328.
-
(2015)
Nature
, vol.527
, pp. 323-328
-
-
Lehar, S.M.1
-
127
-
-
84983142945
-
Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials
-
Bikard D., et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 2014, 32:1146-1150.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 1146-1150
-
-
Bikard, D.1
-
128
-
-
84983208863
-
Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases
-
Citorik R.J., et al. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 2014, 32:1141-1145.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 1141-1145
-
-
Citorik, R.J.1
-
129
-
-
84927692256
-
The first 1000 cultured species of the human gastrointestinal microbiota
-
Rajilic-Stojanovic M., de Vos W.M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 2014, 38:996-1047.
-
(2014)
FEMS Microbiol. Rev.
, vol.38
, pp. 996-1047
-
-
Rajilic-Stojanovic, M.1
de Vos, W.M.2
-
130
-
-
23344442120
-
Obesity alters gut microbial ecology
-
Ley R.E., et al. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:11070-11075.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 11070-11075
-
-
Ley, R.E.1
-
131
-
-
84920404296
-
How informative is the mouse for human gut microbiota research?
-
Nguyen T.L., et al. How informative is the mouse for human gut microbiota research?. Dis. Model. Mech. 2015, 8:1-16.
-
(2015)
Dis. Model. Mech.
, vol.8
, pp. 1-16
-
-
Nguyen, T.L.1
-
132
-
-
84943607837
-
A catalog of the mouse gut metagenome
-
Xiao L., et al. A catalog of the mouse gut metagenome. Nat. Biotechnol. 2015, 33:1103-1108.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 1103-1108
-
-
Xiao, L.1
-
133
-
-
84916884469
-
Bacteria from diverse habitats colonize and compete in the mouse gut
-
Seedorf H., et al. Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 2014, 159:253-266.
-
(2014)
Cell
, vol.159
, pp. 253-266
-
-
Seedorf, H.1
-
134
-
-
84959016595
-
Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children
-
Blanton L.V., et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 2016, 351.
-
(2016)
Science
, vol.351
-
-
Blanton, L.V.1
-
135
-
-
84991929179
-
Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy
-
Kau A.L., et al. Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Sci. Transl. Med. 2015, 7:276ra224.
-
(2015)
Sci. Transl. Med.
, vol.7
, pp. 224-276
-
-
Kau, A.L.1
-
136
-
-
84870266477
-
The evolution of mutualism in gut microbiota via host epithelial selection
-
Schluter J., Foster K.R. The evolution of mutualism in gut microbiota via host epithelial selection. PLoS Biol. 2012, 10:e1001424.
-
(2012)
PLoS Biol.
, vol.10
, pp. e1001424
-
-
Schluter, J.1
Foster, K.R.2
-
137
-
-
84908403149
-
Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness
-
Pickard J.M., et al. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 2014, 514:638-641.
-
(2014)
Nature
, vol.514
, pp. 638-641
-
-
Pickard, J.M.1
-
138
-
-
84866436436
-
Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses
-
Hand T.W., et al. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science 2012, 337:1553-1556.
-
(2012)
Science
, vol.337
, pp. 1553-1556
-
-
Hand, T.W.1
-
139
-
-
84947425582
-
Normalization of host intestinal mucus layers requires long-term microbial colonization
-
Johansson M.E., et al. Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe. 2015, 18:582-592.
-
(2015)
Cell Host Microbe.
, vol.18
, pp. 582-592
-
-
Johansson, M.E.1
-
140
-
-
84874688283
-
hi cells
-
hi cells. Nature 2013, 494:116-120.
-
(2013)
Nature
, vol.494
, pp. 116-120
-
-
Diehl, G.E.1
-
141
-
-
84878737123
-
+ T-cell responses to intestinal commensal bacteria
-
+ T-cell responses to intestinal commensal bacteria. Nature 2013, 498:113-117.
-
(2013)
Nature
, vol.498
, pp. 113-117
-
-
Hepworth, M.R.1
-
142
-
-
84930663466
-
+ T cells
-
+ T cells. Science 2015, 348:1031-1035.
-
(2015)
Science
, vol.348
, pp. 1031-1035
-
-
Hepworth, M.R.1
-
143
-
-
84857128238
-
Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection
-
Fanning S., et al. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:2108-2113.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 2108-2113
-
-
Fanning, S.1
-
144
-
-
84888049920
-
Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment
-
Iida N., et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013, 342:967-970.
-
(2013)
Science
, vol.342
, pp. 967-970
-
-
Iida, N.1
-
145
-
-
84888059687
-
The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide
-
Viaud S., et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013, 342:971-976.
-
(2013)
Science
, vol.342
, pp. 971-976
-
-
Viaud, S.1
-
146
-
-
84948451779
-
Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy
-
Sivan A., et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015, 350:1084-1089.
-
(2015)
Science
, vol.350
, pp. 1084-1089
-
-
Sivan, A.1
-
147
-
-
84948461699
-
Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota
-
Vetizou M., et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015, 350:1079-1084.
-
(2015)
Science
, vol.350
, pp. 1079-1084
-
-
Vetizou, M.1
-
148
-
-
84957565779
-
Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis
-
Dubin K., et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 2016, 7:10391.
-
(2016)
Nat. Commun.
, vol.7
, pp. 10391
-
-
Dubin, K.1
-
149
-
-
84925333020
-
Antibiotics in agriculture and the risk to human health: how worried should we be?
-
Chang Q., et al. Antibiotics in agriculture and the risk to human health: how worried should we be?. Evol. Appl. 2015, 8:240-247.
-
(2015)
Evol. Appl.
, vol.8
, pp. 240-247
-
-
Chang, Q.1
-
150
-
-
84946017452
-
Nonmedical uses of antibiotics: time to restrict their use?
-
Meek R.W., et al. Nonmedical uses of antibiotics: time to restrict their use?. PLoS Biol. 2015, 13:e1002266.
-
(2015)
PLoS Biol.
, vol.13
, pp. e1002266
-
-
Meek, R.W.1
-
151
-
-
84887769885
-
Time to deal with antibiotics
-
Kennedy D. Time to deal with antibiotics. Science 2013, 342:777.
-
(2013)
Science
, vol.342
, pp. 777
-
-
Kennedy, D.1
|