-
2
-
-
80755153309
-
K11-linked ubiquitin chains as novel regulators of cell division
-
Wickliffe KE, Williamson A, Meyer HJ, Kelly A, Rape M. K11-linked ubiquitin chains as novel regulators of cell division. Trends Cell Biol 2011; 21:656-663.
-
(2011)
Trends Cell Biol
, vol.21
, pp. 656-663
-
-
Wickliffe, K.E.1
Williamson, A.2
Meyer, H.J.3
Kelly, A.4
Rape, M.5
-
3
-
-
49549117842
-
Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies
-
Newton K, Matsumoto ML, Wertz IE, et al. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 2008; 134:668-678.
-
(2008)
Cell
, vol.134
, pp. 668-678
-
-
Newton, K.1
Matsumoto, M.L.2
Wertz, I.E.3
-
4
-
-
43049162227
-
Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex
-
Jin L, Williamson A, Banerjee S, Philipp I, Rape M. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. 2008; Cell 133:653-665.
-
(2008)
Cell
, vol.133
, pp. 653-665
-
-
Jin, L.1
Williamson, A.2
Banerjee, S.3
Philipp, I.4
Rape, M.5
-
5
-
-
84858124845
-
Generation and physiological roles of linear ubiquitin chains
-
Walczak H, Iwai K, Dikic I. Generation and physiological roles of linear ubiquitin chains. BMC Biol 2012; 10:23-23.
-
(2012)
BMC Biol
, vol.10
, pp. 23
-
-
Walczak, H.1
Iwai, K.2
Dikic, I.3
-
6
-
-
28344456279
-
A genomic and functional inventory of deubiquitinating enzymes
-
Nijman SM, Luna-Vargas MP, Velds A, et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 2005; 123:773-786.
-
(2005)
Cell
, vol.123
, pp. 773-786
-
-
Nijman, S.M.1
Luna-Vargas, M.P.2
Velds, A.3
-
7
-
-
68049084674
-
Breaking the chains: Structure and function of the deubiquitinases
-
Komander D, Clague MJ, Urbe S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 2009; 10:550-563.
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, pp. 550-563
-
-
Komander, D.1
Clague, M.J.2
Urbe, S.3
-
8
-
-
84922393807
-
Ubiquitination in disease pathogenesis and treatment
-
Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med 2014; 20:1242-1253.
-
(2014)
Nat Med
, vol.20
, pp. 1242-1253
-
-
Popovic, D.1
Vucic, D.2
Dikic, I.3
-
9
-
-
0032499264
-
Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
-
Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998; 392:605-608.
-
(1998)
Nature
, vol.392
, pp. 605-608
-
-
Kitada, T.1
Asakawa, S.2
Hattori, N.3
-
10
-
-
1542615085
-
USP6 (Tre2) fusion oncogenes in aneurysmal bone cyst
-
Oliveira AM, Hsi BL, Weremowicz S, et al. USP6 (Tre2) fusion oncogenes in aneurysmal bone cyst. Cancer Res 2004; 64:1920-1923;
-
(2004)
Cancer Res
, vol.64
, pp. 1920-1923
-
-
Oliveira, A.M.1
Hsi, B.L.2
Weremowicz, S.3
-
11
-
-
57749188299
-
Targeting cancer with small molecule kinase inhibitors
-
Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 2009; 9:28-39.
-
(2009)
Nat Rev Cancer
, vol.9
, pp. 28-39
-
-
Zhang, J.1
Yang, P.L.2
Gray, N.S.3
-
12
-
-
75149130051
-
Targeting the cancer kinome through polypharmacology
-
Knight ZA, Lin H, Shokat KM. Targeting the cancer kinome through polypharmacology. Nat Rev Cancer 2010; 10:130-137.
-
(2010)
Nat Rev Cancer
, vol.10
, pp. 130-137
-
-
Knight, Z.A.1
Lin, H.2
Shokat, K.M.3
-
13
-
-
67349256160
-
Ubiquitin-like protein activation by E1 enzymes: The apex for downstream signalling pathways
-
Schulman BA, Wade Harper J. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol 2009; 10:319-331.
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, pp. 319-331
-
-
Schulman, B.A.1
Wade Harper, J.2
-
14
-
-
34347329214
-
Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging
-
Jin J, Li X, Gygi SP, Harper JW. Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature 2007; 447:1135-1138.
-
(2007)
Nature
, vol.447
, pp. 1135-1138
-
-
Jin, J.1
Li, X.2
Gygi, S.P.3
Harper, J.W.4
-
15
-
-
35148886143
-
Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics
-
Yang, Y, Kitagaki J, Dai RM, et al. Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res 2007; 67:9472-9481.
-
(2007)
Cancer Res
, vol.67
, pp. 9472-9481
-
-
Yang, Y.1
Kitagaki, J.2
Dai, R.M.3
-
16
-
-
77950421253
-
The ubiquitin-activating enzyme E1 as a therapeutic target for the treatment of leukemia and multiple myeloma
-
Xu GW, Ali M, Wood TE, et al. The ubiquitin-activating enzyme E1 as a therapeutic target for the treatment of leukemia and multiple myeloma. Blood 2010; 115:2251-2259.
-
(2010)
Blood
, vol.115
, pp. 2251-2259
-
-
Xu, G.W.1
Ali, M.2
Wood, T.E.3
-
17
-
-
84901988917
-
Structural and functional insights to ubiquitin-like protein conjugation
-
Streich FC, Lima CD. Structural and functional insights to ubiquitin-like protein conjugation. Annu Rev Biophys 2014; 43:357-379.
-
(2014)
Annu Rev Biophys
, vol.43
, pp. 357-379
-
-
Streich, F.C.1
Lima, C.D.2
-
18
-
-
64749098830
-
An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer
-
Soucy TA, Smith PG, Milhollen MA, et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 2009; 458:732-736.
-
(2009)
Nature
, vol.458
, pp. 732-736
-
-
Soucy, T.A.1
Smith, P.G.2
Milhollen, M.A.3
-
19
-
-
73649110303
-
Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: The NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ
-
Brownell JE, Sintchak MD, Gavin JM, et al. Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ. Mol Cell 2010; 37:102-111.
-
(2010)
Mol Cell
, vol.37
, pp. 102-111
-
-
Brownell, J.E.1
Sintchak, M.D.2
Gavin, J.M.3
-
20
-
-
50449108516
-
Structural insights into NEDD8 activation of cullin-RING ligases: Conformational control of conjugation
-
Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M, Schulman BA. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 2008; 134:995-1006.
-
(2008)
Cell
, vol.134
, pp. 995-1006
-
-
Duda, D.M.1
Borg, L.A.2
Scott, D.C.3
Hunt, H.W.4
Hammel, M.5
Schulman, B.A.6
-
21
-
-
78649974984
-
Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics
-
Bennett EJ, Rush J, Gygi SP, Harper JW. Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell 2010; 143:951-965.
-
(2010)
Cell
, vol.143
, pp. 951-965
-
-
Bennett, E.J.1
Rush, J.2
Gygi, S.P.3
Harper, J.W.4
-
22
-
-
82455179484
-
Systematic and quantitative assessment of the ubiquitin-modified proteome
-
Kim W, Bennett EJ, Huttlin EL, et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 2011; 44:325-340.
-
(2011)
Mol Cell
, vol.44
, pp. 325-340
-
-
Kim, W.1
Bennett, E.J.2
Huttlin, E.L.3
-
23
-
-
80054694510
-
Global identification of modular cullin-RING ligase substrates
-
Emanuele MJ, Elia AE, Xu Q, et al. Global identification of modular cullin-RING ligase substrates. Cell 2011; 147, 459-474.
-
(2011)
Cell
, vol.147
, pp. 459-474
-
-
Emanuele, M.J.1
Elia, A.E.2
Xu, Q.3
-
24
-
-
70350461507
-
Building ubiquitin chains: E2 enzymes at work
-
Ye Y, Rape M. Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 2009; 10:755-764.
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, pp. 755-764
-
-
Ye, Y.1
Rape, M.2
-
25
-
-
79959656754
-
An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme
-
Ceccarelli DF, Tang X, Pelletier B, et al. An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme. Cell 2011; 145:1075-1087.
-
(2011)
Cell
, vol.145
, pp. 1075-1087
-
-
Ceccarelli, D.F.1
Tang, X.2
Pelletier, B.3
-
26
-
-
0034644474
-
Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain
-
Deng L, Wang C, Spencer E, et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 2000; 103:351-361.
-
(2000)
Cell
, vol.103
, pp. 351-361
-
-
Deng, L.1
Wang, C.2
Spencer, E.3
-
27
-
-
84865415118
-
Inhibition of proliferation and survival of diffuse large B-cell lymphoma cells by a small-molecule inhibitor of the ubiquitin-conjugating enzyme Ubc13-Uev1A
-
Pulvino M, Liang Y, Oleksyn D, et al. Inhibition of proliferation and survival of diffuse large B-cell lymphoma cells by a small-molecule inhibitor of the ubiquitin-conjugating enzyme Ubc13-Uev1A. Blood 2012; 120:1668-1677.
-
(2012)
Blood
, vol.120
, pp. 1668-1677
-
-
Pulvino, M.1
Liang, Y.2
Oleksyn, D.3
-
28
-
-
0030772376
-
Novel inhibitors of cytokine-induced IκBα phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo
-
Pierce JW, Schoenleber R, Jesmok G, et al. Novel inhibitors of cytokine-induced IκBα phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J Biol Chem 1997; 272:21096-21103.
-
(1997)
J Biol Chem
, vol.272
, pp. 21096-21103
-
-
Pierce, J.W.1
Schoenleber, R.2
Jesmok, G.3
-
29
-
-
84876240899
-
The anti-inflammatory drug BAY 11-7082 suppresses the MyD88-dependent signalling network by targeting the ubiquitin system
-
Strickson S, Campbell DG, Emmerich CH, et al. The anti-inflammatory drug BAY 11-7082 suppresses the MyD88-dependent signalling network by targeting the ubiquitin system. Biochem J 2013; 451:427-437.
-
(2013)
Biochem J
, vol.451
, pp. 427-437
-
-
Strickson, S.1
Campbell, D.G.2
Emmerich, C.H.3
-
30
-
-
44949231368
-
Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling
-
Li W, Bengtson MH, Ulbrich A, et al. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS One 2008; 3:e1487.
-
(2008)
PLoS One
, vol.3
-
-
Li, W.1
Bengtson, M.H.2
Ulbrich, A.3
-
31
-
-
84898754901
-
New insights into ubiquitin E3 ligase mechanism
-
Berndsen CE, Wolberger C. New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol 2014; 21:301-307.
-
(2014)
Nat Struct Mol Biol
, vol.21
, pp. 301-307
-
-
Berndsen, C.E.1
Wolberger, C.2
-
33
-
-
84896870884
-
RBR E3 ubiquitin ligases: New structures, new insights, new questions
-
Spratt Donald E, Walden H, Shaw GS. RBR E3 ubiquitin ligases: new structures, new insights, new questions. Biochem J 2014; 458:421-437.
-
(2014)
Biochem J
, vol.458
, pp. 421-437
-
-
Spratt Donald, E.1
Walden, H.2
Shaw, G.S.3
-
35
-
-
0033176887
-
SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27
-
Carrano AC, Eytan E, Hershko A, Pagano M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1999; 1:193-199.
-
(1999)
Nat Cell Biol
, vol.1
, pp. 193-199
-
-
Carrano, A.C.1
Eytan, E.2
Hershko, A.3
Pagano, M.4
-
36
-
-
0033174070
-
P45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells
-
Sutterluty H, Chatelain E, Marti A, et al. p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Cell Biol 1999; 1:207-214.
-
(1999)
Nat Cell Biol
, vol.1
, pp. 207-214
-
-
Sutterluty, H.1
Chatelain, E.2
Marti, A.3
-
37
-
-
0032530151
-
Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins
-
Yu ZK, Gervais JL, Zhang H. Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci USA 1998; 95:11324-11329.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 11324-11329
-
-
Yu, Z.K.1
Gervais, J.L.2
Zhang, H.3
-
38
-
-
84861552793
-
The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis
-
Chan CH, Li CF, Yang WL, et al. The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell 2012; 149:1098-1111.
-
(2012)
Cell
, vol.149
, pp. 1098-1111
-
-
Chan, C.H.1
Li, C.F.2
Yang, W.L.3
-
39
-
-
19444367346
-
Differential expression of the F-box proteins Skp2 and Skp2B in breast cancer
-
Radke S, Pirkmaier A, Germain D. Differential expression of the F-box proteins Skp2 and Skp2B in breast cancer. Oncogene 2005; 24:3448-3458.
-
(2005)
Oncogene
, vol.24
, pp. 3448-3458
-
-
Radke, S.1
Pirkmaier, A.2
Germain, D.3
-
40
-
-
21644448195
-
Correlation of Skp2 with carcinogenesis, invasion, metastasis, and prognosis in colorectal tumors
-
Li J-Q, Wu F, Masaki T, et al. Correlation of Skp2 with carcinogenesis, invasion, metastasis, and prognosis in colorectal tumors. Int J Oncol 2004; 25:87-95.
-
(2004)
Int J Oncol
, vol.25
, pp. 87-95
-
-
Li, J.-Q.1
Wu, F.2
Masaki, T.3
-
41
-
-
77950916977
-
Prognostic significance of S-phase kinase-associated protein 2 and p27kip1 in patients with diffuse large B-cell lymphoma: Effects of rituximab
-
Seki R, Ohshima K, Fujisaki T, et al. Prognostic significance of S-phase kinase-associated protein 2 and p27kip1 in patients with diffuse large B-cell lymphoma: effects of rituximab. Ann Oncol 2010; 21:833-841.
-
(2010)
Ann Oncol
, vol.21
, pp. 833-841
-
-
Seki, R.1
Ohshima, K.2
Fujisaki, T.3
-
42
-
-
0035942224
-
Skp2 is oncogenic and overexpressed in human cancers
-
Gstaiger M, Jordan R, Lim M, et al. Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci USA 2001; 98:5043-5048.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 5043-5048
-
-
Gstaiger, M.1
Jordan, R.2
Lim, M.3
-
43
-
-
75049085839
-
The expression and prognosis of FOXO3a and Skp2 in human hepatocellular carcinoma
-
Lu M, Ma J, Xue W, et al. The expression and prognosis of FOXO3a and Skp2 in human hepatocellular carcinoma. Pathol Oncol Res 2009; 15:679-687.
-
(2009)
Pathol Oncol Res
, vol.15
, pp. 679-687
-
-
Lu, M.1
Ma, J.2
Xue, W.3
-
44
-
-
84873540049
-
ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets
-
Souers AJ, Leverson JD, Boghaert ER, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 2013; 19:202-208.
-
(2013)
Nat Med
, vol.19
, pp. 202-208
-
-
Souers, A.J.1
Leverson, J.D.2
Boghaert, E.R.3
-
45
-
-
84871569969
-
Specific small molecule inhibitors of Skp2-mediated p27 degradation
-
Wu L, Grigoryan AV, Li Y, Hao B, Pagano M, Cardozo TJ. Specific small molecule inhibitors of Skp2-mediated p27 degradation. Chem Biol 2012; 19:1515-1524.
-
(2012)
Chem Biol
, vol.19
, pp. 1515-1524
-
-
Wu, L.1
Grigoryan, A.V.2
Li, Y.3
Hao, B.4
Pagano, M.5
Cardozo, T.J.6
-
46
-
-
84881192827
-
Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression
-
Chan CH, Morrow JK, Li CF, et al. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 2013; 154:556-568.
-
(2013)
Cell
, vol.154
, pp. 556-568
-
-
Chan, C.H.1
Morrow, J.K.2
Li, C.F.3
-
47
-
-
18344391432
-
Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex
-
Zheng N, Schulman BA, Song L, et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 2002; 416:703-709.
-
(2002)
Nature
, vol.416
, pp. 703-709
-
-
Zheng, N.1
Schulman, B.A.2
Song, L.3
-
48
-
-
0030941458
-
P53, the cellular gatekeeper for growth and division
-
Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997; 88:323-331.
-
(1997)
Cell
, vol.88
, pp. 323-331
-
-
Levine, A.J.1
-
49
-
-
0026649648
-
The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation
-
Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992; 69:1237-1245.
-
(1992)
Cell
, vol.69
, pp. 1237-1245
-
-
Momand, J.1
Zambetti, G.P.2
Olson, D.C.3
George, D.4
Levine, A.J.5
-
50
-
-
0030575937
-
Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain
-
Kussie PH, Gorina S, Marechal V, et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 1996; 274:948-953.
-
(1996)
Science
, vol.274
, pp. 948-953
-
-
Kussie, P.H.1
Gorina, S.2
Marechal, V.3
-
51
-
-
0030905284
-
Mdm2 promotes the rapid degradation of p53
-
Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature 1997; 387:296-299.
-
(1997)
Nature
, vol.387
, pp. 296-299
-
-
Haupt, Y.1
Maya, R.2
Kazaz, A.3
Oren, M.4
-
52
-
-
0027508958
-
MDM2 gene amplification in metastatic osteosarcoma
-
Ladanyi M, Cha C, Lewis R, Jhanwar SC, Huvos AG, Healey JH. MDM2 gene amplification in metastatic osteosarcoma. Cancer Res 1993; 53:16-18.
-
(1993)
Cancer Res
, vol.53
, pp. 16-18
-
-
Ladanyi, M.1
Cha, C.2
Lewis, R.3
Jhanwar, S.C.4
Huvos, A.G.5
Healey, J.H.6
-
53
-
-
0028172753
-
Over-expression of the MDM2 gene is found in some cases of haematological malignancies
-
Quesnel B, Preudhomme C, Oscier D, et al. Over-expression of the MDM2 gene is found in some cases of haematological malignancies. Br J Haematol 1994; 88:415-418.
-
(1994)
Br J Haematol
, vol.88
, pp. 415-418
-
-
Quesnel, B.1
Preudhomme, C.2
Oscier, D.3
-
54
-
-
0029020147
-
Amplification of the MDM2 gene in human breast cancer and its association with MDM2 and p53 protein status
-
McCann AH, Kirley A, Carney DN, et al. Amplification of the MDM2 gene in human breast cancer and its association with MDM2 and p53 protein status. Br J Cancer 1995; 71:981-985.
-
(1995)
Br J Cancer
, vol.71
, pp. 981-985
-
-
McCann, A.H.1
Kirley, A.2
Carney, D.N.3
-
55
-
-
10744221485
-
In vivo activation of the p53 pathway by small-molecule antagonists of MDM2
-
Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303:844-848.
-
(2004)
Science
, vol.303
, pp. 844-848
-
-
Vassilev, L.T.1
Vu, B.T.2
Graves, B.3
-
56
-
-
41649102468
-
Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition
-
Shangary S, Qin D, McEachern D, et al. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci USA 2008; 105:3933-3938.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 3933-3938
-
-
Shangary, S.1
Qin, D.2
McEachern, D.3
-
57
-
-
11144315535
-
Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors
-
Issaeva N, Bozko P, Enge M, et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 2004; 10:1321-1328.
-
(2004)
Nat Med
, vol.10
, pp. 1321-1328
-
-
Issaeva, N.1
Bozko, P.2
Enge, M.3
-
58
-
-
36849035345
-
Ubiquitination and degradation of mutant p53
-
Lukashchuk N, Vousden KH. Ubiquitination and degradation of mutant p53. Mol Cell Biol 2007; 27:8284-8295.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 8284-8295
-
-
Lukashchuk, N.1
Vousden, K.H.2
-
59
-
-
65449144050
-
PRIMA-1 reactivates mutant p53 by covalent binding to the core domain
-
Lambert JM, Gorzov P, Veprintsev DB, et al. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell 2009; 15:376-388.
-
(2009)
Cancer Cell
, vol.15
, pp. 376-388
-
-
Lambert, J.M.1
Gorzov, P.2
Veprintsev, D.B.3
-
60
-
-
0033082995
-
IAP family proteins-suppressors of apoptosis
-
Deveraux QL, Reed JC. IAP family proteins-suppressors of apoptosis. Genes Dev 1999; 13:239-252.
-
(1999)
Genes Dev
, vol.13
, pp. 239-252
-
-
Deveraux, Q.L.1
Reed, J.C.2
-
62
-
-
84905014915
-
IAP family of cell death and signaling regulators
-
Ashkenazi A, Wells JA, Yuan JY, eds. Academic Press
-
Silke J, Vucic D. IAP family of cell death and signaling regulators. In: Ashkenazi A, Wells JA, Yuan JY, eds. Methods in Enzymology Vol 545. Academic Press, 2014: 35-65.
-
(2014)
Methods in Enzymology
, vol.545
, pp. 35-65
-
-
Silke, J.1
Vucic, D.2
-
63
-
-
84856495152
-
Targeting IAP proteins for therapeutic intervention in cancer
-
Fulda S, Vucic D. Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov 2012; 11:109-124.
-
(2012)
Nat Rev Drug Discov
, vol.11
, pp. 109-124
-
-
Fulda, S.1
Vucic, D.2
-
64
-
-
0034616945
-
Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition
-
Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000; 102:33-42.
-
(2000)
Cell
, vol.102
, pp. 33-42
-
-
Du, C.1
Fang, M.2
Li, Y.3
Li, L.4
Wang, X.5
-
65
-
-
0034616942
-
Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins
-
Verhagen AM, Ekert PG, Pakusch M, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000; 102:43-53.
-
(2000)
Cell
, vol.102
, pp. 43-53
-
-
Verhagen, A.M.1
Ekert, P.G.2
Pakusch, M.3
-
66
-
-
36048999753
-
IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis
-
Varfolomeev E, Blankenship JW, Wayson SM, et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 2007; 131:669-681.
-
(2007)
Cell
, vol.131
, pp. 669-681
-
-
Varfolomeev, E.1
Blankenship, J.W.2
Wayson, S.M.3
-
67
-
-
80054837173
-
Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination
-
Dueber EC, Schoeffler AJ, Lingel A, et al. Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination. Science 2011; 334:376-380.
-
(2011)
Science
, vol.334
, pp. 376-380
-
-
Dueber, E.C.1
Schoeffler, A.J.2
Lingel, A.3
-
68
-
-
0036295676
-
Molecular regulation of muscle cachexia: It may be more than the proteasome
-
Hasselgren PO, Wray C, Mammen J. Molecular regulation of muscle cachexia: it may be more than the proteasome. Biochem Biophys Res Commun 2002; 290:1-10.
-
(2002)
Biochem Biophys Res Commun
, vol.290
, pp. 1-10
-
-
Hasselgren, P.O.1
Wray, C.2
Mammen, J.3
-
69
-
-
0036830917
-
Cachexia in cancer patients
-
Tisdale MJ. Cachexia in cancer patients. Nat Rev Cancer 2002; 2:862-871.
-
(2002)
Nat Rev Cancer
, vol.2
, pp. 862-871
-
-
Tisdale, M.J.1
-
70
-
-
2342667387
-
The development of proteasome inhibitors as anticancer drugs
-
Adams J. The development of proteasome inhibitors as anticancer drugs. Cancer Cell 2004; 5:417-421.
-
(2004)
Cancer Cell
, vol.5
, pp. 417-421
-
-
Adams, J.1
-
71
-
-
0035300479
-
The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells
-
Hideshima T, Richardson P, Chauhan D, et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 2001; 61:3071-3076.
-
(2001)
Cancer Res
, vol.61
, pp. 3071-3076
-
-
Hideshima, T.1
Richardson, P.2
Chauhan, D.3
-
72
-
-
18044395798
-
Proteasome inhibitor therapy in multiple myeloma
-
Chauhan D, Hideshima T, Mitsiades C, Richardson P, Anderson KC. Proteasome inhibitor therapy in multiple myeloma. Mol Cancer Ther 2005; 4:686-692.
-
(2005)
Mol Cancer Ther
, vol.4
, pp. 686-692
-
-
Chauhan, D.1
Hideshima, T.2
Mitsiades, C.3
Richardson, P.4
Anderson, K.C.5
-
73
-
-
0037441760
-
Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341
-
Hideshima T, Richardson P, Chauhan D, et al. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood 2002; 101:1530-1534.
-
(2002)
Blood
, vol.101
, pp. 1530-1534
-
-
Hideshima, T.1
Richardson, P.2
Chauhan, D.3
-
74
-
-
41949136647
-
Bortezomib blocks Bax degradation in malignant B cells during treatment with TRAIL
-
Liu FT, Agrawal SG, Gribben JG, et al. Bortezomib blocks Bax degradation in malignant B cells during treatment with TRAIL. Blood 2007; 111:2797-2805.
-
(2007)
Blood
, vol.111
, pp. 2797-2805
-
-
Liu, F.T.1
Agrawal, S.G.2
Gribben, J.G.3
-
75
-
-
2542523228
-
Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors
-
Pei XY, Dai Y, Grant S. Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin Cancer Res 2004; 10:3839-3852.
-
(2004)
Clin Cancer Res
, vol.10
, pp. 3839-3852
-
-
Pei, X.Y.1
Dai, Y.2
Grant, S.3
-
77
-
-
0033621047
-
Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity
-
Meng L, Mohan R, Kwok BH, Elofsson M, Sin N, Crews CM. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci USA 1999; 96:10403-10408.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 10403-10408
-
-
Meng, L.1
Mohan, R.2
Kwok, B.H.3
Elofsson, M.4
Sin, N.5
Crews, C.M.6
-
78
-
-
34447116376
-
Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome
-
Demo SD, Kirk CJ, Aujay MA, et al. Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res 2007; 67:6383-6391.
-
(2007)
Cancer Res
, vol.67
, pp. 6383-6391
-
-
Demo, S.D.1
Kirk, C.J.2
Aujay, M.A.3
-
79
-
-
0343262654
-
Crystal structure of epoxomicin:20S proteasome reveals a molecular basis for selectivity of α',β'-epoxyketone proteasome inhibitors
-
Groll M, Kim KB, Kairies N, Huber R, Crews CM. Crystal structure of epoxomicin:20S proteasome reveals a molecular basis for selectivity of α',β'-epoxyketone proteasome inhibitors. J Am Chem Soc 2000; 122:1237-1238.
-
(2000)
J Am Chem Soc
, vol.122
, pp. 1237-1238
-
-
Groll, M.1
Kim, K.B.2
Kairies, N.3
Huber, R.4
Crews, C.M.5
-
81
-
-
80051691845
-
In vitro and in vivo selective antitumor activity of a novel orally ioavailable proteasome inhibitor MLN9708 against multiple myeloma cells
-
Chauhan D, Tian Z, Zhou B, et al. In vitro and in vivo selective antitumor activity of a novel orally ioavailable proteasome inhibitor MLN9708 against multiple myeloma cells. Clin Cancer Res 2011; 17:5311-5321.
-
(2011)
Clin Cancer Res
, vol.17
, pp. 5311-5321
-
-
Chauhan, D.1
Tian, Z.2
Zhou, B.3
-
82
-
-
84856103470
-
Novel, orally active, proteasome inhibitor, delanzomib (CEP-18770, ameliorates disease symptoms and glomerulonephritis in two preclinical mouse models of SLE
-
Seavey MM, Lu LD, Stump KL, Wallace NH, Ruggeri BA. Novel, orally active, proteasome inhibitor, delanzomib (CEP-18770, ameliorates disease symptoms and glomerulonephritis in two preclinical mouse models of SLE. Int Immunopharmacol 2012; 12:257-270.
-
(2012)
Int Immunopharmacol
, vol.12
, pp. 257-270
-
-
Seavey, M.M.1
Lu, L.D.2
Stump, K.L.3
Wallace, N.H.4
Ruggeri, B.A.5
-
83
-
-
59649114341
-
Inactivation of murine Usp1 results in genomic instability and a fanconi anemia phenotype
-
Kim JM, Parmar K, Huang M, et al. Inactivation of murine Usp1 results in genomic instability and a fanconi anemia phenotype. Dev Cell 2009; 16:314-320.
-
(2009)
Dev Cell
, vol.16
, pp. 314-320
-
-
Kim, J.M.1
Parmar, K.2
Huang, M.3
-
84
-
-
73849083434
-
Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival
-
Schwickart M, Huang X, Lill JR, et al. Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature 2010; 463:103-107.
-
(2010)
Nature
, vol.463
, pp. 103-107
-
-
Schwickart, M.1
Huang, X.2
Lill, J.R.3
-
85
-
-
79955977893
-
Deubiquitinase USP37 is activated by CDK2 to antagonize APC(CDH1) and promote S phase entry
-
Huang X, Summers MK, Pham V, et al. Deubiquitinase USP37 is activated by CDK2 to antagonize APC(CDH1) and promote S phase entry. Mol Cell 2011; 42:511-523.
-
(2011)
Mol Cell
, vol.42
, pp. 511-523
-
-
Huang, X.1
Summers, M.K.2
Pham, V.3
-
86
-
-
84937966446
-
USP37 directly deubiquitinates and stabilizes c-Myc in lung cancer
-
Pan J, Deng Q, Jiang C, et al. USP37 directly deubiquitinates and stabilizes c-Myc in lung cancer. Oncogene 2015; 34:3957-3967.
-
(2015)
Oncogene
, vol.34
, pp. 3957-3967
-
-
Pan, J.1
Deng, Q.2
Jiang, C.3
-
87
-
-
84898802930
-
Toward understanding ubiquitin-modifying enzymes: From pharmacological targeting to proteomics
-
Lill JR, Wertz IE. Toward understanding ubiquitin-modifying enzymes: from pharmacological targeting to proteomics. Trends Pharmacol Sci 2014; 35:187-207.
-
(2014)
Trends Pharmacol Sci
, vol.35
, pp. 187-207
-
-
Lill, J.R.1
Wertz, I.E.2
-
88
-
-
84860112066
-
Discovery of specific inhibitors of human USP7/HAUSP deubiquitinating enzyme
-
Reverdy C, Conrath S, Lopez R, et al. Discovery of specific inhibitors of human USP7/HAUSP deubiquitinating enzyme. Chem Biol 2012; 19:467-477.
-
(2012)
Chem Biol
, vol.19
, pp. 467-477
-
-
Reverdy, C.1
Conrath, S.2
Lopez, R.3
-
89
-
-
84866021069
-
A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance
-
Chauhan D, Tian Z, Nicholson B, et al. A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell 2012; 22:345-358.
-
(2012)
Cancer Cell
, vol.22
, pp. 345-358
-
-
Chauhan, D.1
Tian, Z.2
Nicholson, B.3
-
91
-
-
84856085129
-
Inhibition of proteasome deubiquitinating activity as a new cancer therapy
-
D'Arcy P, Brnjic S, Olofsson MH, et al. Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat Med 2011; 17:1636-1640.
-
(2011)
Nat Med
, vol.17
, pp. 1636-1640
-
-
D'Arcy, P.1
Brnjic, S.2
Olofsson, M.H.3
-
92
-
-
77956527159
-
Enhancement of proteasome activity by a small-molecule inhibitor of USP14
-
Lee BH, Lee MJ, Park S, et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 2010; 467:179-184.
-
(2010)
Nature
, vol.467
, pp. 179-184
-
-
Lee, B.H.1
Lee, M.J.2
Park, S.3
-
93
-
-
84897443073
-
Oncogenic protein interfaces: Small molecules, big challenges
-
Nero TL, Morton CJ, Holien JK, Wielens J, Parker MW. Oncogenic protein interfaces: small molecules, big challenges. Nat Rev Cancer 2014; 14:248-262.
-
(2014)
Nat Rev Cancer
, vol.14
, pp. 248-262
-
-
Nero, T.L.1
Morton, C.J.2
Holien, J.K.3
Wielens, J.4
Parker, M.W.5
-
94
-
-
0035890987
-
Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins
-
Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 2001; 414:271-276.
-
(2001)
Nature
, vol.414
, pp. 271-276
-
-
Gray, W.M.1
Kepinski, S.2
Rouse, D.3
Leyser, O.4
Estelle, M.5
-
95
-
-
0031975589
-
The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p
-
Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M et al. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Genes Dev 1998; 12:198-207.
-
(1998)
Genes Dev
, vol.12
, pp. 198-207
-
-
Ruegger, M.1
Dewey, E.2
Gray, W.M.3
Hobbie, L.4
Turner, J.5
Estelle, M.6
-
96
-
-
78549274705
-
Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor
-
Sheard LB, Tan X, Mao H, et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 2010; 468:400-405.
-
(2010)
Nature
, vol.468
, pp. 400-405
-
-
Sheard, L.B.1
Tan, X.2
Mao, H.3
-
97
-
-
79955617241
-
RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling
-
Zhang Y, Liu S, Mickanin C, et al. RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat Cell Biol 2011; 13:623-629.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 623-629
-
-
Zhang, Y.1
Liu, S.2
Mickanin, C.3
-
98
-
-
79960727271
-
Ubiquitin ligase RNF146 regulates tankyrase and axin to promote Wnt signaling
-
Callow MG, Tran H, Phu L, et al. Ubiquitin ligase RNF146 regulates tankyrase and axin to promote Wnt signaling. PLoS One 2011; 6:e22595.
-
(2011)
PLoS One
, vol.6
-
-
Callow, M.G.1
Tran, H.2
Phu, L.3
-
99
-
-
84920024622
-
Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal
-
DaRosa PA, Wang Z2, Jiang X, et al. Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal. Nature 2015; 517:223-226.
-
(2015)
Nature
, vol.517
, pp. 223-226
-
-
DaRosa, P.A.1
Wang, Z.2
Jiang, X.3
-
100
-
-
84877787623
-
Lenalidomide treatment for multiple myeloma: Systematic review and meta-analysis of randomized controlled trials
-
Yang B, Yu RL, Chi XH, Lu XC. Lenalidomide treatment for multiple myeloma: systematic review and meta-analysis of randomized controlled trials. PLoS One 2013; 8:e64354.
-
(2013)
PLoS One
, vol.8
-
-
Yang, B.1
Yu, R.L.2
Chi, X.H.3
Lu, X.C.4
-
101
-
-
77949350034
-
Identification of a primary target of thalidomide teratogenicity
-
Ito T, Ando H, Suzuki T, et al. Identification of a primary target of thalidomide teratogenicity. Science 2010; 327:1345-1350.
-
(2010)
Science
, vol.327
, pp. 1345-1350
-
-
Ito, T.1
Ando, H.2
Suzuki, T.3
-
102
-
-
84892593087
-
The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins
-
Lu G, Middleton RE, Sun H, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 2014; 343:305-309.
-
(2014)
Science
, vol.343
, pp. 305-309
-
-
Lu, G.1
Middleton, R.E.2
Sun, H.3
-
103
-
-
84892576029
-
Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells
-
Kronke J, Udeshi ND, Narla A, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 2014; 343:301-305.
-
(2014)
Science
, vol.343
, pp. 301-305
-
-
Kronke, J.1
Udeshi, N.D.2
Narla, A.3
-
104
-
-
84893289821
-
A phase 2 trial of lenalidomide, bortezomib, and dexamethasone in patients with relapsed and relapsed/refractory myeloma
-
Richardson PG, Xie W, Jagannath S, et al. A phase 2 trial of lenalidomide, bortezomib, and dexamethasone in patients with relapsed and relapsed/refractory myeloma. Blood 2014; 123:1461-1469.
-
(2014)
Blood
, vol.123
, pp. 1461-1469
-
-
Richardson, P.G.1
Xie, W.2
Jagannath, S.3
-
105
-
-
73349115580
-
Multicenter, phase I, dose-escalation trial of lenalidomide plus bortezomib for relapsed and relapsed/refractory multiple myeloma
-
Richardson PG, Weller E, Jagannath S, et al. Multicenter, phase I, dose-escalation trial of lenalidomide plus bortezomib for relapsed and relapsed/refractory multiple myeloma. J Clin Oncol 2009; 27:5713-5719.
-
(2009)
J Clin Oncol
, vol.27
, pp. 5713-5719
-
-
Richardson, P.G.1
Weller, E.2
Jagannath, S.3
-
106
-
-
84905568369
-
Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide
-
Fischer ES, Böhm K, Lydeard JR, et al. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 2014; 512:49-53.
-
(2014)
Nature
, vol.512
, pp. 49-53
-
-
Fischer, E.S.1
Böhm, K.2
Lydeard, J.R.3
-
107
-
-
0035902475
-
PROTACs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation
-
Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. PROTACs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci USA 2001; 98:8554-8559.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 8554-8559
-
-
Sakamoto, K.M.1
Kim, K.B.2
Kumagai, A.3
Mercurio, F.4
Crews, C.M.5
Deshaies, R.J.6
-
108
-
-
84916880505
-
Structure of the human Cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs
-
Chamberlain PP, Lopez-Girona A, Miller K, et al. Structure of the human Cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat Struct Mol Biol 2014; 21:803-809.
-
(2014)
Nat Struct Mol Biol
, vol.21
, pp. 803-809
-
-
Chamberlain, P.P.1
Lopez-Girona, A.2
Miller, K.3
-
109
-
-
78650847770
-
Selective inhibition of BET bromodomains
-
Filippakopoulos P, Qi J, Picaud S, et al. Selective inhibition of BET bromodomains. Nature 2010; 468:1067-1073.
-
(2010)
Nature
, vol.468
, pp. 1067-1073
-
-
Filippakopoulos, P.1
Qi, J.2
Picaud, S.3
-
110
-
-
80052955256
-
BET bromodomain inhibition as a therapeutic strategy to target c-Myc
-
Delmore JE, Issa GC, Lemieux ME, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146:904-917.
-
(2011)
Cell
, vol.146
, pp. 904-917
-
-
Delmore, J.E.1
Issa, G.C.2
Lemieux, M.E.3
-
111
-
-
84932634729
-
Phthalimide conjugation as a strategy for in vivo target protein degradation
-
Winter GE, Buckley DL, Paulk J, et al. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 2015; 348:1376-1381.
-
(2015)
Science
, vol.348
, pp. 1376-1381
-
-
Winter, G.E.1
Buckley, D.L.2
Paulk, J.3
-
112
-
-
84931560527
-
Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4
-
Lu J, Qian Y, Altieri M, et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem Biol 2015; 22:755-763.
-
(2015)
Chem Biol
, vol.22
, pp. 755-763
-
-
Lu, J.1
Qian, Y.2
Altieri, M.3
-
113
-
-
84939794726
-
HaloPROTACS: Use of small molecule PROTACs to induce degradation of HaloTag fusion proteins
-
Buckley DL, Raina K, Darricarrere N, et al. HaloPROTACS: use of small molecule PROTACs to induce degradation of HaloTag fusion proteins. ACS Chem Biol 2015; 10:1831-1837.
-
(2015)
ACS Chem Biol
, vol.10
, pp. 1831-1837
-
-
Buckley, D.L.1
Raina, K.2
Darricarrere, N.3
-
114
-
-
84939788143
-
Selective small molecule induced degradation of the BET bromodomain protein BRD4
-
Zengerle M, Chan KH, Ciulli A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem Biol 2015; 10:1770-1777.
-
(2015)
ACS Chem Biol
, vol.10
, pp. 1770-1777
-
-
Zengerle, M.1
Chan, K.H.2
Ciulli, A.3
-
115
-
-
84937514576
-
Catalytic in vivo protein knockdown by small-molecule PROTACs
-
Bondeson DP, Mares A, Smith IE, et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat Chem Biol 2015; 11:611-617.
-
(2015)
Nat Chem Biol
, vol.11
, pp. 611-617
-
-
Bondeson, D.P.1
Mares, A.2
Smith, I.E.3
-
116
-
-
0015859467
-
Principles that govern the folding of protein chains
-
Anfinsen CB. Principles that govern the folding of protein chains. Science 1973; 181:223-230.
-
(1973)
Science
, vol.181
, pp. 223-230
-
-
Anfinsen, C.B.1
-
117
-
-
0030059689
-
Forces contributing to the conformational stability of proteins
-
Pace CN, Shirley BA, McNutt M, Gajiwala K. Forces contributing to the conformational stability of proteins. FASEB J 1996; 10:75-83.
-
(1996)
FASEB J
, vol.10
, pp. 75-83
-
-
Pace, C.N.1
Shirley, B.A.2
McNutt, M.3
Gajiwala, K.4
-
118
-
-
0029002720
-
The hydrophobic effect in protein folding
-
Lins L, Brasseur R. The hydrophobic effect in protein folding. FASEB J 1995; 9:535-540.
-
(1995)
FASEB J
, vol.9
, pp. 535-540
-
-
Lins, L.1
Brasseur, R.2
-
119
-
-
79960562309
-
Small-molecule hydrophobic tagging-induced degradation of HaloTag fusion proteins
-
Neklesa TK, Tae HS, Schneekloth AR, et al. Small-molecule hydrophobic tagging-induced degradation of HaloTag fusion proteins. Nat Chem Biol 2011; 7:538-543.
-
(2011)
Nat Chem Biol
, vol.7
, pp. 538-543
-
-
Neklesa, T.K.1
Tae, H.S.2
Schneekloth, A.R.3
-
121
-
-
84934299225
-
Targeted protein destabilization reveals an estrogen-mediated ER stress response
-
Raina K, Noblin DJ, Serebrenik YV, et al. Targeted protein destabilization reveals an estrogen-mediated ER stress response. Nat Chem Biol 2014; 10:957-962.
-
(2014)
Nat Chem Biol
, vol.10
, pp. 957-962
-
-
Raina, K.1
Noblin, D.J.2
Serebrenik, Y.V.3
-
122
-
-
84920590896
-
Pharmacological targeting of the pseudokinase Her3
-
Xie T, Lim SM, Westover KD, et al. Pharmacological targeting of the pseudokinase Her3. Nat Chem Biol 2014; 10:1006-1012.
-
(2014)
Nat Chem Biol
, vol.10
, pp. 1006-1012
-
-
Xie, T.1
Lim, S.M.2
Westover, K.D.3
-
124
-
-
0037501319
-
The estrogen receptor: A model for molecular medicine
-
Jensen EV, Jordan VC. The estrogen receptor: a model for molecular medicine. Clin Cancer Res 2003; 9:1980-1989.
-
(2003)
Clin Cancer Res
, vol.9
, pp. 1980-1989
-
-
Jensen, E.V.1
Jordan, V.C.2
-
125
-
-
84888391516
-
ESR1 ligand-binding domain mutations in hormone-resistant breast cancer
-
Toy W, Shen Y, Won H, et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet 2013; 45:1439-1445.
-
(2013)
Nat Genet
, vol.45
, pp. 1439-1445
-
-
Toy, W.1
Shen, Y.2
Won, H.3
-
126
-
-
84888381937
-
Activating ESR1 mutations in hormone-resistant metastatic breast cancer
-
Robinson DR, Wu YM, Vats P, et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet 2013; 45:1446-1451.
-
(2013)
Nat Genet
, vol.45
, pp. 1446-1451
-
-
Robinson, D.R.1
Wu, Y.M.2
Vats, P.3
-
127
-
-
0033514930
-
Proteasome-dependent degradation of the human estrogen receptor
-
Nawaz Z, Lonard DM, Dennis AP, Smith CL, O'Malley BW. Proteasome-dependent degradation of the human estrogen receptor. Proc Natl Acad Sci USA 1999; 96:1858-1862.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 1858-1862
-
-
Nawaz, Z.1
Lonard, D.M.2
Dennis, A.P.3
Smith, C.L.4
O'Malley, B.W.5
-
128
-
-
0026395885
-
A potent specific pure antiestrogen with clinical potential
-
Wakeling AE, Dukes M, Bowler J. A potent specific pure antiestrogen with clinical potential. Cancer Res 1991; 51:3867-3873.
-
(1991)
Cancer Res
, vol.51
, pp. 3867-3873
-
-
Wakeling, A.E.1
Dukes, M.2
Bowler, J.3
-
129
-
-
84933059419
-
Identification of GDC-0810 (ARN-810), an orally bioavailable selective estrogen receptor degrader (SERD) that demonstrates robust activity in tamoxifen-resistant breast cancer xenografts
-
Lai A, Kahraman M, Govek S, et al. Identification of GDC-0810 (ARN-810), an orally bioavailable selective estrogen receptor degrader (SERD) that demonstrates robust activity in tamoxifen-resistant breast cancer xenografts. J Med Chem 2015; 58:4888-4904.
-
(2015)
J Med Chem
, vol.58
, pp. 4888-4904
-
-
Lai, A.1
Kahraman, M.2
Govek, S.3
-
130
-
-
0032446607
-
The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen
-
Shiau AK, Barstad D, Loria PM, et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 1998; 95:927-937.
-
(1998)
Cell
, vol.95
, pp. 927-937
-
-
Shiau, A.K.1
Barstad, D.2
Loria, P.M.3
-
131
-
-
0036234964
-
Structural characterization of a subtype-selective ligand reveals a novel mode of estrogen receptor antagonism
-
Shiau AK, Barstad D, Radek JT, et al. Structural characterization of a subtype-selective ligand reveals a novel mode of estrogen receptor antagonism. Nat Struct Mol Biol 2002; 9:359-364.
-
(2002)
Nat Struct Mol Biol
, vol.9
, pp. 359-364
-
-
Shiau, A.K.1
Barstad, D.2
Radek, J.T.3
-
132
-
-
18944381947
-
Structural basis for an unexpected mode of SERM-mediated ER antagonism
-
Wu YL, Yang X, Ren Z, et al. Structural basis for an unexpected mode of SERM-mediated ER antagonism. Mol Cell 2005; 18:413-424.
-
(2005)
Mol Cell
, vol.18
, pp. 413-424
-
-
Wu, Y.L.1
Yang, X.2
Ren, Z.3
-
133
-
-
84873085753
-
A strategy for modulation of enzymes in the ubiquitin system
-
Ernst A, Avvakumov G, Tong J, et al. A strategy for modulation of enzymes in the ubiquitin system. Science 2013; 339:590-595.
-
(2013)
Science
, vol.339
, pp. 590-595
-
-
Ernst, A.1
Avvakumov, G.2
Tong, J.3
|