-
1
-
-
79954598474
-
The Ndc80 complex employs a tripartite attachment point to couple microtubule depolymerization to chromosome movement
-
Tooley J.G., et al. The Ndc80 complex employs a tripartite attachment point to couple microtubule depolymerization to chromosome movement. Mol. Biol. Cell 2011, 22:1217-1226.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 1217-1226
-
-
Tooley, J.G.1
-
2
-
-
79952848721
-
The NDC80 complex proteins Nuf2 and Hec1 make distinct contributions to kinetochore-microtubule attachment in mitosis
-
Sundin L.J., et al. The NDC80 complex proteins Nuf2 and Hec1 make distinct contributions to kinetochore-microtubule attachment in mitosis. Mol. Biol. Cell 2011, 22:759-768.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 759-768
-
-
Sundin, L.J.1
-
3
-
-
43049146221
-
Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex
-
Ciferri C., et al. Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 2008, 133:427-439.
-
(2008)
Cell
, vol.133
, pp. 427-439
-
-
Ciferri, C.1
-
4
-
-
84872060314
-
Molecular requirements for the formation of a kinetochore-microtubule interface by Dam1 and Ndc80 complexes
-
Lampert F., et al. Molecular requirements for the formation of a kinetochore-microtubule interface by Dam1 and Ndc80 complexes. J. Cell Biol. 2013, 200:21-30.
-
(2013)
J. Cell Biol.
, vol.200
, pp. 21-30
-
-
Lampert, F.1
-
5
-
-
0019162013
-
Isolation of a yeast centromere and construction of functional small circular chromosomes
-
Clarke L., Carbon J. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 1980, 287:504-509.
-
(1980)
Nature
, vol.287
, pp. 504-509
-
-
Clarke, L.1
Carbon, J.2
-
6
-
-
0026013226
-
A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere
-
Lechner J., Carbon J. A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell 1991, 64:717-725.
-
(1991)
Cell
, vol.64
, pp. 717-725
-
-
Lechner, J.1
Carbon, J.2
-
7
-
-
1542330121
-
Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently co-localized with the centromeric region in interphase
-
Obuse C., et al. Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently co-localized with the centromeric region in interphase. Genes Cells 2004, 9:105-120.
-
(2004)
Genes Cells
, vol.9
, pp. 105-120
-
-
Obuse, C.1
-
8
-
-
33745004786
-
The human CENP-A centromeric nucleosome-associated complex
-
Foltz D.R., et al. The human CENP-A centromeric nucleosome-associated complex. Nat. Cell Biol. 2006, 8:458-469.
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 458-469
-
-
Foltz, D.R.1
-
9
-
-
33646740560
-
Comprehensive analysis of the ICEN (Interphase Centromere Complex) components enriched in the CENP-A chromatin of human cells
-
Izuta H., et al. Comprehensive analysis of the ICEN (Interphase Centromere Complex) components enriched in the CENP-A chromatin of human cells. Genes Cells 2006, 11:673-684.
-
(2006)
Genes Cells
, vol.11
, pp. 673-684
-
-
Izuta, H.1
-
10
-
-
33744970012
-
The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres
-
Okada M., et al. The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat. Cell Biol. 2006, 8:446-457.
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 446-457
-
-
Okada, M.1
-
11
-
-
0037131572
-
Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p
-
Cheeseman I.M., et al. Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 2002, 111:163-172.
-
(2002)
Cell
, vol.111
, pp. 163-172
-
-
Cheeseman, I.M.1
-
12
-
-
27844498429
-
Molecular analysis of kinetochore architecture in fission yeast
-
Liu X., et al. Molecular analysis of kinetochore architecture in fission yeast. EMBO J. 2005, 24:2919-2930.
-
(2005)
EMBO J.
, vol.24
, pp. 2919-2930
-
-
Liu, X.1
-
13
-
-
79952840074
-
Mis17 is a regulatory module of the Mis6-Mal2-Sim4 centromere complex that is required for the recruitment of CenH3/CENP-A in fission yeast
-
Shiroiwa Y., et al. Mis17 is a regulatory module of the Mis6-Mal2-Sim4 centromere complex that is required for the recruitment of CenH3/CENP-A in fission yeast. PLoS ONE 2011, 6:e17761.
-
(2011)
PLoS ONE
, vol.6
-
-
Shiroiwa, Y.1
-
14
-
-
0346753737
-
Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes
-
De Wulf P., et al. Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev. 2003, 17:2902-2921.
-
(2003)
Genes Dev.
, vol.17
, pp. 2902-2921
-
-
De Wulf, P.1
-
15
-
-
84860555258
-
A coordinated interdependent protein circuitry stabilizes the kinetochore ensemble to protect CENP-A in the human pathogenic yeast Candida albicans
-
Thakur J., Sanyal K. A coordinated interdependent protein circuitry stabilizes the kinetochore ensemble to protect CENP-A in the human pathogenic yeast Candida albicans. PLoS Genet. 2012, 8:e1002661.
-
(2012)
PLoS Genet.
, vol.8
-
-
Thakur, J.1
Sanyal, K.2
-
16
-
-
78649476255
-
Tension directly stabilizes reconstituted kinetochore-microtubule attachments
-
Akiyoshi B., et al. Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 2010, 468:576-579.
-
(2010)
Nature
, vol.468
, pp. 576-579
-
-
Akiyoshi, B.1
-
17
-
-
0028052205
-
Fission yeast minichromosome loss mutants mis cause lethal aneuploidy and replication abnormality
-
Takahashi K., et al. Fission yeast minichromosome loss mutants mis cause lethal aneuploidy and replication abnormality. Mol. Biol. Cell 1994, 5:1145-1158.
-
(1994)
Mol. Biol. Cell
, vol.5
, pp. 1145-1158
-
-
Takahashi, K.1
-
18
-
-
0033135911
-
A putative protein complex consisting of Ctf19, Mcm21, and Okp1 represents a missing link in the budding yeast kinetochore
-
Ortiz J., et al. A putative protein complex consisting of Ctf19, Mcm21, and Okp1 represents a missing link in the budding yeast kinetochore. Genes Dev. 1999, 13:1140-1155.
-
(1999)
Genes Dev.
, vol.13
, pp. 1140-1155
-
-
Ortiz, J.1
-
19
-
-
33744786043
-
Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins
-
Meraldi P., et al. Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol. 2006, 7:R23.
-
(2006)
Genome Biol.
, vol.7
-
-
Meraldi, P.1
-
20
-
-
84861637392
-
CENP-T proteins are conserved centromere receptors of the Ndc80 complex
-
Schleiffer A., et al. CENP-T proteins are conserved centromere receptors of the Ndc80 complex. Nat. Cell Biol. 2012, 14:604-613.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 604-613
-
-
Schleiffer, A.1
-
21
-
-
69949161719
-
CENP-C functions as a scaffold for effectors with essential kinetochore functions in mitosis and meiosis
-
Tanaka K., et al. CENP-C functions as a scaffold for effectors with essential kinetochore functions in mitosis and meiosis. Dev. Cell 2009, 17:334-343.
-
(2009)
Dev. Cell
, vol.17
, pp. 334-343
-
-
Tanaka, K.1
-
22
-
-
41649109022
-
CENP-O class proteins form a stable complex and are required for proper kinetochore function
-
Hori T., et al. CENP-O class proteins form a stable complex and are required for proper kinetochore function. Mol. Biol. Cell 2008, 19:843-854.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 843-854
-
-
Hori, T.1
-
23
-
-
78651399502
-
CENP-U cooperates with Hec1 to orchestrate kinetochore-microtubule attachment
-
Hua S., et al. CENP-U cooperates with Hec1 to orchestrate kinetochore-microtubule attachment. J. Biol. Chem. 2010, 286:1627-1638.
-
(2010)
J. Biol. Chem.
, vol.286
, pp. 1627-1638
-
-
Hua, S.1
-
24
-
-
84857791090
-
RWD domain: a recurring module in kinetochore architecture shown by a Ctf19-Mcm21 complex structure
-
Schmitzberger F., Harrison S.C. RWD domain: a recurring module in kinetochore architecture shown by a Ctf19-Mcm21 complex structure. EMBO Rep. 2012, 13:216-222.
-
(2012)
EMBO Rep.
, vol.13
, pp. 216-222
-
-
Schmitzberger, F.1
Harrison, S.C.2
-
25
-
-
77955636058
-
The monopolin complex crosslinks kinetochore components to regulate chromosome-microtubule attachments
-
Corbett K.D., et al. The monopolin complex crosslinks kinetochore components to regulate chromosome-microtubule attachments. Cell 2010, 142:556-567.
-
(2010)
Cell
, vol.142
, pp. 556-567
-
-
Corbett, K.D.1
-
26
-
-
33744798200
-
Structure of a central component of the yeast kinetochore: the Spc24p/Spc25p globular domain
-
Wei R.R., et al. Structure of a central component of the yeast kinetochore: the Spc24p/Spc25p globular domain. Structure 2006, 14:1003-1009.
-
(2006)
Structure
, vol.14
, pp. 1003-1009
-
-
Wei, R.R.1
-
27
-
-
84860178087
-
Structure of human Mad1 C-terminal domain reveals its involvement in kinetochore targeting
-
Kim S., et al. Structure of human Mad1 C-terminal domain reveals its involvement in kinetochore targeting. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:6549-6554.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 6549-6554
-
-
Kim, S.1
-
28
-
-
55349136473
-
Structural and functional dissection of Mif2p, a conserved DNA-binding kinetochore protein
-
Cohen R.L., et al. Structural and functional dissection of Mif2p, a conserved DNA-binding kinetochore protein. Mol. Biol. Cell 2008, 19:4480-4491.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 4480-4491
-
-
Cohen, R.L.1
-
29
-
-
0032190230
-
AT-hook motifs identified in a wide variety of DNA-binding proteins
-
Aravind L., Landsman D. AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res. 1998, 26:4413-4421.
-
(1998)
Nucleic Acids Res.
, vol.26
, pp. 4413-4421
-
-
Aravind, L.1
Landsman, D.2
-
30
-
-
0025196283
-
The A.T-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure
-
Reeves R., Nissen M.S. The A.T-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. J. Biol. Chem. 1990, 265:8573-8582.
-
(1990)
J. Biol. Chem.
, vol.265
, pp. 8573-8582
-
-
Reeves, R.1
Nissen, M.S.2
-
31
-
-
0028867087
-
The histone fold: a ubiquitous architectural motif utilized in DNA compaction and protein dimerization
-
Arents G., Moudrianakis E.N. The histone fold: a ubiquitous architectural motif utilized in DNA compaction and protein dimerization. Proc. Natl. Acad. Sci. U.S.A. 1995, 92:11170-11174.
-
(1995)
Proc. Natl. Acad. Sci. U.S.A.
, vol.92
, pp. 11170-11174
-
-
Arents, G.1
Moudrianakis, E.N.2
-
32
-
-
77949874234
-
Histone variants--ancient wrap artists of the epigenome
-
Talbert P.B., Henikoff S. Histone variants--ancient wrap artists of the epigenome. Nat. Rev. Mol. Cell Biol. 2010, 11:264-275.
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 264-275
-
-
Talbert, P.B.1
Henikoff, S.2
-
33
-
-
84872072332
-
CENP-A: the key player behind centromere identity, propagation, and kinetochore assembly
-
De Rop V., et al. CENP-A: the key player behind centromere identity, propagation, and kinetochore assembly. Chromosoma 2012, 121:527-538.
-
(2012)
Chromosoma
, vol.121
, pp. 527-538
-
-
De Rop, V.1
-
34
-
-
84861933825
-
Molecular underpinnings of centromere identity and maintenance
-
Sekulic N., Black B.E. Molecular underpinnings of centromere identity and maintenance. Trends Biochem. Sci. 2012, 37:220-229.
-
(2012)
Trends Biochem. Sci.
, vol.37
, pp. 220-229
-
-
Sekulic, N.1
Black, B.E.2
-
35
-
-
77957736466
-
Histone H3 Thr-3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis
-
Wang F., et al. Histone H3 Thr-3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis. Science 2010, 330:231-235.
-
(2010)
Science
, vol.330
, pp. 231-235
-
-
Wang, F.1
-
36
-
-
77957725753
-
Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B
-
Kelly A.E., et al. Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science 2010, 330:235-239.
-
(2010)
Science
, vol.330
, pp. 235-239
-
-
Kelly, A.E.1
-
37
-
-
62149111407
-
Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates
-
Liu D., et al. Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates. Science 2009, 323:1350-1353.
-
(2009)
Science
, vol.323
, pp. 1350-1353
-
-
Liu, D.1
-
38
-
-
0035854374
-
Crystal structure of negative cofactor 2 recognizing the TBP-DNA transcription complex
-
Kamada K., et al. Crystal structure of negative cofactor 2 recognizing the TBP-DNA transcription complex. Cell 2001, 106:71-81.
-
(2001)
Cell
, vol.106
, pp. 71-81
-
-
Kamada, K.1
-
39
-
-
27644596379
-
The histone fold subunits of Drosophila CHRAC facilitate nucleosome sliding through dynamic DNA interactions
-
Hartlepp K.F., et al. The histone fold subunits of Drosophila CHRAC facilitate nucleosome sliding through dynamic DNA interactions. Mol. Cell. Biol. 2005, 25:9886-9896.
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 9886-9896
-
-
Hartlepp, K.F.1
-
41
-
-
84856719568
-
CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold
-
Nishino T., et al. CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold. Cell 2012, 148:487-501.
-
(2012)
Cell
, vol.148
, pp. 487-501
-
-
Nishino, T.1
-
42
-
-
84860263013
-
The structure of the FANCM-MHF complex reveals physical features for functional assembly
-
Tao Y., et al. The structure of the FANCM-MHF complex reveals physical features for functional assembly. Nat. Commun. 2012, 3:782.
-
(2012)
Nat. Commun.
, vol.3
, pp. 782
-
-
Tao, Y.1
-
43
-
-
77949701960
-
A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability
-
Yan Z., et al. A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability. Mol. Cell 2010, 37:865-878.
-
(2010)
Mol. Cell
, vol.37
, pp. 865-878
-
-
Yan, Z.1
-
44
-
-
67749147135
-
The CENP-S complex is essential for the stable assembly of outer kinetochore structure
-
Amano M., et al. The CENP-S complex is essential for the stable assembly of outer kinetochore structure. J. Cell Biol. 2009, 186:173-182.
-
(2009)
J. Cell Biol.
, vol.186
, pp. 173-182
-
-
Amano, M.1
-
45
-
-
84866069395
-
The structure of purified kinetochores reveals multiple microtubule-attachment sites
-
Gonen S. The structure of purified kinetochores reveals multiple microtubule-attachment sites. Nat. Struct. Mol. Biol. 2012, 19:925-929.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 925-929
-
-
Gonen, S.1
-
46
-
-
79955539577
-
Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes
-
Gascoigne K.E., et al. Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 2011, 145:410-422.
-
(2011)
Cell
, vol.145
, pp. 410-422
-
-
Gascoigne, K.E.1
-
47
-
-
84873566629
-
A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors
-
Malvezzi F., et al. A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors. EMBO J. 2013, 32:409-423.
-
(2013)
EMBO J.
, vol.32
, pp. 409-423
-
-
Malvezzi, F.1
-
48
-
-
84872063204
-
The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly
-
Hori T., et al. The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. J. Cell Biol. 2013, 200:45-60.
-
(2013)
J. Cell Biol.
, vol.200
, pp. 45-60
-
-
Hori, T.1
-
49
-
-
65549149069
-
Protein architecture of the human kinetochore microtubule attachment site
-
Wan X., et al. Protein architecture of the human kinetochore microtubule attachment site. Cell 2009, 137:672-684.
-
(2009)
Cell
, vol.137
, pp. 672-684
-
-
Wan, X.1
-
50
-
-
65049088564
-
In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy
-
Joglekar A.P., et al. In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy. Curr. Biol. 2009, 19:694-699.
-
(2009)
Curr. Biol.
, vol.19
, pp. 694-699
-
-
Joglekar, A.P.1
-
51
-
-
79955497376
-
Spindle microtubules generate tension-dependent changes in the distribution of inner kinetochore proteins
-
Suzuki A., et al. Spindle microtubules generate tension-dependent changes in the distribution of inner kinetochore proteins. J. Cell Biol. 2011, 193:125-140.
-
(2011)
J. Cell Biol.
, vol.193
, pp. 125-140
-
-
Suzuki, A.1
-
52
-
-
84873570232
-
CENP-T provides a structural platform for outer kinetochore assembly
-
Nishino T., et al. CENP-T provides a structural platform for outer kinetochore assembly. EMBO J. 2013, 32:424-436.
-
(2013)
EMBO J.
, vol.32
, pp. 424-436
-
-
Nishino, T.1
-
53
-
-
79952364478
-
Direct binding of cenp-C to the mis12 complex joins the inner and outer kinetochore
-
Screpanti E., et al. Direct binding of cenp-C to the mis12 complex joins the inner and outer kinetochore. Curr. Biol. 2011, 21:391-398.
-
(2011)
Curr. Biol.
, vol.21
, pp. 391-398
-
-
Screpanti, E.1
-
54
-
-
79952360863
-
CENP-C is a structural platform for kinetochore assembly
-
Przewloka M.R., et al. CENP-C is a structural platform for kinetochore assembly. Curr. Biol. 2011, 21:399-405.
-
(2011)
Curr. Biol.
, vol.21
, pp. 399-405
-
-
Przewloka, M.R.1
-
55
-
-
33744804567
-
Molecular architecture of a kinetochore-microtubule attachment site
-
Joglekar A.P., et al. Molecular architecture of a kinetochore-microtubule attachment site. Nat. Cell Biol. 2006, 8:581-585.
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 581-585
-
-
Joglekar, A.P.1
-
56
-
-
84864020836
-
Deformations within moving kinetochores reveal different sites of active and passive force generation
-
Dumont S., et al. Deformations within moving kinetochores reveal different sites of active and passive force generation. Science 2012, 337:355-358.
-
(2012)
Science
, vol.337
, pp. 355-358
-
-
Dumont, S.1
-
57
-
-
33947274529
-
Propagation of centromeric chromatin requires exit from mitosis
-
Jansen L.E., et al. Propagation of centromeric chromatin requires exit from mitosis. J. Cell Biol. 2007, 176:795-805.
-
(2007)
J. Cell Biol.
, vol.176
, pp. 795-805
-
-
Jansen, L.E.1
-
58
-
-
65249115338
-
Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP
-
Foltz D.R., et al. Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell 2009, 137:472-484.
-
(2009)
Cell
, vol.137
, pp. 472-484
-
-
Foltz, D.R.1
-
59
-
-
84861589937
-
Cnn1 inhibits the interactions between the KMN complexes of the yeast kinetochore
-
Bock L.J., et al. Cnn1 inhibits the interactions between the KMN complexes of the yeast kinetochore. Nat. Cell Biol. 2012, 14:614-624.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 614-624
-
-
Bock, L.J.1
-
60
-
-
79959783950
-
Premitotic assembly of human CENPs -T and -W switches centromeric chromatin to a mitotic state
-
Prendergast L., et al. Premitotic assembly of human CENPs -T and -W switches centromeric chromatin to a mitotic state. PLoS Biol. 2011, 9:e1001082.
-
(2011)
PLoS Biol.
, vol.9
-
-
Prendergast, L.1
-
61
-
-
84863393544
-
Dynamics of CENP-N kinetochore binding during the cell cycle
-
Hellwig D., et al. Dynamics of CENP-N kinetochore binding during the cell cycle. J. Cell Sci. 2011, 124:3871-3883.
-
(2011)
J. Cell Sci.
, vol.124
, pp. 3871-3883
-
-
Hellwig, D.1
-
62
-
-
77950521043
-
Molecular control of kinetochore-microtubule dynamics and chromosome oscillations
-
Amaro A.C., et al. Molecular control of kinetochore-microtubule dynamics and chromosome oscillations. Nat. Cell Biol. 2010, 12:319-329.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 319-329
-
-
Amaro, A.C.1
-
63
-
-
1842854468
-
EB1 targets to kinetochores with attached, polymerizing microtubules
-
Tirnauer J.S., et al. EB1 targets to kinetochores with attached, polymerizing microtubules. Mol. Biol. Cell 2002, 13:4308-4316.
-
(2002)
Mol. Biol. Cell
, vol.13
, pp. 4308-4316
-
-
Tirnauer, J.S.1
-
64
-
-
34250316190
-
Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore
-
Camahort R., et al. Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore. Mol. Cell 2007, 26:853-865.
-
(2007)
Mol. Cell
, vol.26
, pp. 853-865
-
-
Camahort, R.1
-
65
-
-
4544275776
-
Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres
-
Hayashi T., et al. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 2004, 118:715-729.
-
(2004)
Cell
, vol.118
, pp. 715-729
-
-
Hayashi, T.1
-
66
-
-
78649835035
-
A small GTPase molecular switch regulates epigenetic centromere maintenance by stabilizing newly incorporated CENP-A
-
Lagana A., et al. A small GTPase molecular switch regulates epigenetic centromere maintenance by stabilizing newly incorporated CENP-A. Nat. Cell Biol. 2010, 12:1186-1193.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 1186-1193
-
-
Lagana, A.1
-
67
-
-
80051685994
-
Crystal structure of the human centromeric nucleosome containing CENP-A
-
Tachiwana H., et al. Crystal structure of the human centromeric nucleosome containing CENP-A. Nature 2011, 476:232-235.
-
(2011)
Nature
, vol.476
, pp. 232-235
-
-
Tachiwana, H.1
-
68
-
-
79959331606
-
Recognition of the centromere-specific histone Cse4 by the chaperone Scm3
-
Cho U.S., Harrison S.C. Recognition of the centromere-specific histone Cse4 by the chaperone Scm3. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:9367-9371.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 9367-9371
-
-
Cho, U.S.1
Harrison, S.C.2
-
69
-
-
67650065426
-
Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N
-
Carroll C.W., et al. Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. Nat. Cell Biol. 2009, 11:896-902.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 896-902
-
-
Carroll, C.W.1
-
70
-
-
77954396194
-
Dual recognition of CENP-A nucleosomes is required for centromere assembly
-
Carroll C.W., et al. Dual recognition of CENP-A nucleosomes is required for centromere assembly. J. Cell Biol. 2010, 189:1143-1155.
-
(2010)
J. Cell Biol.
, vol.189
, pp. 1143-1155
-
-
Carroll, C.W.1
-
71
-
-
80052849224
-
In vitro centromere and kinetochore assembly on defined chromatin templates
-
Guse A., et al. In vitro centromere and kinetochore assembly on defined chromatin templates. Nature 2011, 477:354-358.
-
(2011)
Nature
, vol.477
, pp. 354-358
-
-
Guse, A.1
-
72
-
-
84856008074
-
Tripartite organization of centromeric chromatin in budding yeast
-
Krassovsky K., et al. Tripartite organization of centromeric chromatin in budding yeast. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:243-248.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 243-248
-
-
Krassovsky, K.1
-
73
-
-
84864193502
-
Cell-cycle-dependent structural transitions in the human CENP-A nucleosome in vivo
-
Bui M., et al. Cell-cycle-dependent structural transitions in the human CENP-A nucleosome in vivo. Cell 2012, 150:317-326.
-
(2012)
Cell
, vol.150
, pp. 317-326
-
-
Bui, M.1
-
74
-
-
84864262744
-
Cell-cycle-coupled structural oscillation of centromeric nucleosomes in yeast
-
Shivaraju M., et al. Cell-cycle-coupled structural oscillation of centromeric nucleosomes in yeast. Cell 2012, 150:304-316.
-
(2012)
Cell
, vol.150
, pp. 304-316
-
-
Shivaraju, M.1
-
75
-
-
65249129208
-
HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres
-
Dunleavy E.M., et al. HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 2009, 137:485-497.
-
(2009)
Cell
, vol.137
, pp. 485-497
-
-
Dunleavy, E.M.1
-
76
-
-
80555125093
-
Drosophila CENH3 is sufficient for centromere formation
-
Mendiburo M.J., et al. Drosophila CENH3 is sufficient for centromere formation. Science 2011, 334:686-690.
-
(2011)
Science
, vol.334
, pp. 686-690
-
-
Mendiburo, M.J.1
-
77
-
-
0242266928
-
Architecture of the budding yeast kinetochore reveals a conserved molecular core
-
Westermann S., et al. Architecture of the budding yeast kinetochore reveals a conserved molecular core. J. Cell Biol. 2003, 163:215-222.
-
(2003)
J. Cell Biol.
, vol.163
, pp. 215-222
-
-
Westermann, S.1
-
78
-
-
34250346905
-
CENP-C is involved in chromosome segregation, mitotic checkpoint function, and kinetochore assembly
-
Kwon M.S., et al. CENP-C is involved in chromosome segregation, mitotic checkpoint function, and kinetochore assembly. Mol. Biol. Cell 2007, 18:2155-2168.
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 2155-2168
-
-
Kwon, M.S.1
-
79
-
-
57149129148
-
CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore
-
Hori T., et al. CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 2008, 135:1039-1052.
-
(2008)
Cell
, vol.135
, pp. 1039-1052
-
-
Hori, T.1
-
80
-
-
84863060036
-
Saccharomyces cerevisiae MHF complex structurally resembles the histones (H3-H4)(2) heterotetramer and functions as a heterotetramer
-
Yang H., et al. Saccharomyces cerevisiae MHF complex structurally resembles the histones (H3-H4)(2) heterotetramer and functions as a heterotetramer. Structure 2012, 20:364-370.
-
(2012)
Structure
, vol.20
, pp. 364-370
-
-
Yang, H.1
-
81
-
-
0037451175
-
Differential kinetochore protein requirements for establishment versus propagation of centromere activity in Saccharomyces cerevisiae
-
Mythreye K., Bloom K.S. Differential kinetochore protein requirements for establishment versus propagation of centromere activity in Saccharomyces cerevisiae. J. Cell Biol. 2003, 160:833-843.
-
(2003)
J. Cell Biol.
, vol.160
, pp. 833-843
-
-
Mythreye, K.1
Bloom, K.S.2
-
82
-
-
39449096363
-
KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates
-
Cheeseman I.M., et al. KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates. Mol. Biol. Cell 2008, 19:587-594.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 587-594
-
-
Cheeseman, I.M.1
-
83
-
-
34548481620
-
Structures and functions of yeast kinetochore complexes
-
Westermann S., et al. Structures and functions of yeast kinetochore complexes. Annu. Rev. Biochem. 2007, 76:563-591.
-
(2007)
Annu. Rev. Biochem.
, vol.76
, pp. 563-591
-
-
Westermann, S.1
-
84
-
-
37849049322
-
Insights into kinetochore-DNA interactions from the structure of Cep3Delta
-
Purvis A., Singleton M.R. Insights into kinetochore-DNA interactions from the structure of Cep3Delta. EMBO Rep. 2008, 9:56-62.
-
(2008)
EMBO Rep.
, vol.9
, pp. 56-62
-
-
Purvis, A.1
Singleton, M.R.2
-
85
-
-
35748972335
-
Crystal structure of the yeast inner kinetochore subunit Cep3p
-
Bellizzi J.J., et al. Crystal structure of the yeast inner kinetochore subunit Cep3p. Structure 2007, 15:1422-1430.
-
(2007)
Structure
, vol.15
, pp. 1422-1430
-
-
Bellizzi, J.J.1
-
86
-
-
84856894978
-
Structure of yeast kinetochore Ndc10 DNA-binding domain reveals unexpected evolutionary relationship to tyrosine recombinases
-
Perriches T., Singleton M.R. Structure of yeast kinetochore Ndc10 DNA-binding domain reveals unexpected evolutionary relationship to tyrosine recombinases. J. Biol. Chem. 2012, 287:5173-5179.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 5173-5179
-
-
Perriches, T.1
Singleton, M.R.2
-
87
-
-
84855448003
-
Ndc10 is a platform for inner kinetochore assembly in budding yeast
-
Cho U.S., Harrison S.C. Ndc10 is a platform for inner kinetochore assembly in budding yeast. Nat. Struct. Mol. Biol. 2012, 19:48-55.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 48-55
-
-
Cho, U.S.1
Harrison, S.C.2
-
88
-
-
0036307707
-
Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution
-
Davey C.A., et al. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J. Mol. Biol. 2002, 319:1097-1113.
-
(2002)
J. Mol. Biol.
, vol.319
, pp. 1097-1113
-
-
Davey, C.A.1
|