메뉴 건너뛰기




Volumn 64, Issue 11, 2015, Pages 3631-3644

β-cell microRNAs: Small but powerful

Author keywords

[No Author keywords available]

Indexed keywords

INSULIN; MICRORNA; TRANSCRIPTION FACTOR; UNTRANSLATED RNA;

EID: 84962191103     PISSN: 00121797     EISSN: 1939327X     Source Type: Journal    
DOI: 10.2337/db15-0831     Document Type: Review
Times cited : (99)

References (121)
  • 2
    • 76249119007 scopus 로고    scopus 로고
    • Opposing microRNA families regulate self-renewal in mouse embryonic stem cells
    • Melton C, Judson RL, Blelloch R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 2010;463:621-626
    • (2010) Nature , vol.463 , pp. 621-626
    • Melton, C.1    Judson, R.L.2    Blelloch, R.3
  • 3
    • 6344281172 scopus 로고    scopus 로고
    • Identification of mammalian microRNA host genes and transcription units
    • Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res 2004;14:1902-1910
    • (2004) Genome Res , vol.14 , pp. 1902-1910
    • Rodriguez, A.1    Griffiths-Jones, S.2    Ashurst, J.L.3    Bradley, A.4
  • 4
    • 81355123438 scopus 로고    scopus 로고
    • Evolution of microRNA diversity and regulation in animals
    • Berezikov E. Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 2011;12:846-860
    • (2011) Nat Rev Genet , vol.12 , pp. 846-860
    • Berezikov, E.1
  • 5
    • 3042767202 scopus 로고    scopus 로고
    • MicroRNAs: Small RNAs with a big role in gene regulation
    • He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004;5:522-531
    • (2004) Nat Rev Genet , vol.5 , pp. 522-531
    • He, L.1    Hannon, G.J.2
  • 6
    • 55049137165 scopus 로고    scopus 로고
    • MicroRNA biogenesis: There's more than one way to skin a cat
    • Faller M, Guo F. MicroRNA biogenesis: there's more than one way to skin a cat. Biochim Biophys Acta 2008;1779:663-667
    • (2008) Biochim Biophys Acta , vol.1779 , pp. 663-667
    • Faller, M.1    Guo, F.2
  • 7
    • 12544258104 scopus 로고    scopus 로고
    • MicroRNA biogenesis: Drosha can't cut it without a partner
    • Tomari Y, Zamore PD. MicroRNA biogenesis: Drosha can't cut it without a partner. Curr Biol 2005;15:R61-R64
    • (2005) Curr Biol , vol.15 , pp. R61-R64
    • Tomari, Y.1    Zamore, P.D.2
  • 8
    • 0347361541 scopus 로고    scopus 로고
    • Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs
    • Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003;17:3011-3016
    • (2003) Genes Dev , vol.17 , pp. 3011-3016
    • Yi, R.1    Qin, Y.2    Macara, I.G.3    Cullen, B.R.4
  • 9
    • 0035800521 scopus 로고    scopus 로고
    • A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA
    • Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001;293:834-838
    • (2001) Science , vol.293 , pp. 834-838
    • Hutvágner, G.1    McLachlan, J.2    Pasquinelli, A.E.3    Bálint, E.4    Tuschl, T.5    Zamore, P.D.6
  • 10
    • 27744537851 scopus 로고    scopus 로고
    • Human RISC couples microRNA biogenesis and posttranscriptional gene silencing
    • Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 2005;123:631-640
    • (2005) Cell , vol.123 , pp. 631-640
    • Gregory, R.I.1    Chendrimada, T.P.2    Cooch, N.3    Shiekhattar, R.4
  • 11
    • 0027730383 scopus 로고
    • Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. Elegans
    • Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993;75:855-862
    • (1993) Cell , vol.75 , pp. 855-862
    • Wightman, B.1    Ha, I.2    Ruvkun, G.3
  • 12
    • 11844278458 scopus 로고    scopus 로고
    • Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
    • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120:15-20
    • (2005) Cell , vol.120 , pp. 15-20
    • Lewis, B.P.1    Burge, C.B.2    Bartel, D.P.3
  • 13
    • 78751477191 scopus 로고    scopus 로고
    • Gene silencing by microRNAs: Contributions of translational repression and mRNA decay
    • Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011;12:99-110
    • (2011) Nat Rev Genet , vol.12 , pp. 99-110
    • Huntzinger, E.1    Izaurralde, E.2
  • 14
    • 34547441263 scopus 로고    scopus 로고
    • Target mRNAs are repressed as efficiently by microRNA-binding sites in the 59 UTR as in the 39 UTR
    • Lytle JR, Yario TA, Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 59 UTR as in the 39 UTR. Proc Natl Acad Sci U S A 2007;104:9667-9672
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 9667-9672
    • Lytle, J.R.1    Yario, T.A.2    Steitz, J.A.3
  • 15
    • 54549108798 scopus 로고    scopus 로고
    • MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation
    • Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 2008;455:1124-1128
    • (2008) Nature , vol.455 , pp. 1124-1128
    • Tay, Y.1    Zhang, J.2    Thomson, A.M.3    Lim, B.4    Rigoutsos, I.5
  • 16
    • 84887101163 scopus 로고    scopus 로고
    • MicroRNAs and other non-coding RNAs as targets for anticancer drug development
    • Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 2013;12:847-865
    • (2013) Nat Rev Drug Discov , vol.12 , pp. 847-865
    • Ling, H.1    Fabbri, M.2    Calin, G.A.3
  • 17
    • 84905389814 scopus 로고    scopus 로고
    • MicroRNA directly enhances mitochondrial translation during muscle differentiation
    • Zhang X, Zuo X, Yang B, et al. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 2014;158:607-619
    • (2014) Cell , vol.158 , pp. 607-619
    • Zhang, X.1    Zuo, X.2    Yang, B.3
  • 18
    • 0036153256 scopus 로고    scopus 로고
    • Minireview: Secondary beta-cell failure in type 2 diabetes- A convergence of glucotoxicity and lipotoxicity
    • Poitout V, Robertson RP. Minireview: Secondary beta-cell failure in type 2 diabetes- A convergence of glucotoxicity and lipotoxicity. Endocrinology 2002;143:339-342
    • (2002) Endocrinology , vol.143 , pp. 339-342
    • Poitout, V.1    Robertson, R.P.2
  • 19
    • 84891867862 scopus 로고    scopus 로고
    • Argonaute2 mediates compensatory expansion of the pancreatic β cell
    • Tattikota SG, Rathjen T, McAnulty SJ, et al. Argonaute2 mediates compensatory expansion of the pancreatic β cell. Cell Metab 2014;19:122-134
    • (2014) Cell Metab , vol.19 , pp. 122-134
    • Tattikota, S.G.1    Rathjen, T.2    McAnulty, S.J.3
  • 20
    • 84891818318 scopus 로고    scopus 로고
    • Mirbase: Annotating high confidence microRNAs using deep sequencing data
    • Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014;42:D68-D73
    • (2014) Nucleic Acids Res , vol.42 , pp. D68-D73
    • Kozomara, A.1    Griffiths-Jones, S.2
  • 21
    • 80052099673 scopus 로고    scopus 로고
    • MicroRNAs in β-cell biology, insulin resistance, diabetes and its complications
    • Fernandez-Valverde SL, Taft RJ, Mattick JS. MicroRNAs in β-cell biology, insulin resistance, diabetes and its complications. Diabetes 2011;60:1825-1831
    • (2011) Diabetes , vol.60 , pp. 1825-1831
    • Fernandez-Valverde, S.L.1    Taft, R.J.2    Mattick, J.S.3
  • 22
    • 80052102044 scopus 로고    scopus 로고
    • Diabetes complications: The microRNA perspective
    • Kantharidis P, Wang B, Carew RM, Lan HY. Diabetes complications: the microRNA perspective. Diabetes 2011;60:1832-1837
    • (2011) Diabetes , vol.60 , pp. 1832-1837
    • Kantharidis, P.1    Wang, B.2    Carew, R.M.3    Lan, H.Y.4
  • 23
    • 34250877841 scopus 로고    scopus 로고
    • A mammalian microRNA expression atlas based on small RNA library sequencing
    • Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007;129:1401-1414
    • (2007) Cell , vol.129 , pp. 1401-1414
    • Landgraf, P.1    Rusu, M.2    Sheridan, R.3
  • 25
    • 79960322580 scopus 로고    scopus 로고
    • MIR-29a and MIR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1)
    • Pullen TJ, Da Silva Xavier G, Kelsey G, Rutter GA. MiR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol Cell Biol 2011;31:3182-3194
    • (2011) Mol Cell Biol , vol.31 , pp. 3182-3194
    • Pullen, T.J.1    Da Silva Xavier, G.2    Kelsey, G.3    Rutter, G.A.4
  • 26
    • 84883651731 scopus 로고    scopus 로고
    • Beta cell 59-shifted isomiRs are candidate regulatory hubs in type 2 diabetes
    • Baran-Gale J, Fannin EE, Kurtz CL, Sethupathy P. Beta cell 59-shifted isomiRs are candidate regulatory hubs in type 2 diabetes. PLoS One 2013;8:e73240
    • (2013) PLoS One , vol.8 , pp. e73240
    • Baran-Gale, J.1    Fannin, E.E.2    Kurtz, C.L.3    Sethupathy, P.4
  • 27
    • 84872833195 scopus 로고    scopus 로고
    • The miRNA profile of human pancreatic islets and beta-cells and relationship to type 2 diabetes pathogenesis
    • Van De Bunt M, Gaulton KJ, Parts L, et al. The miRNA profile of human pancreatic islets and beta-cells and relationship to type 2 diabetes pathogenesis. PLoS One 2013;8:e55272
    • (2013) PLoS One , vol.8 , pp. e55272
    • Van De Bunt, M.1    Gaulton, K.J.2    Parts, L.3
  • 28
    • 84873815396 scopus 로고    scopus 로고
    • MicroRNA expression in alpha and beta cells of human pancreatic islets
    • Klein D, Misawa R, Bravo-Egana V, et al. MicroRNA expression in alpha and beta cells of human pancreatic islets. PLoS One 2013;8:e55064
    • (2013) PLoS One , vol.8 , pp. e55064
    • Klein, D.1    Misawa, R.2    Bravo-Egana, V.3
  • 29
    • 9144270691 scopus 로고    scopus 로고
    • A pancreatic islet-specific microRNA regulates insulin secretion
    • Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004;432:226-230
    • (2004) Nature , vol.432 , pp. 226-230
    • Poy, M.N.1    Eliasson, L.2    Krutzfeldt, J.3
  • 30
    • 65249093130 scopus 로고    scopus 로고
    • MIR-375 maintains normal pancreatic alpha- and beta-cell mass
    • Poy MN, Hausser J, Trajkovski M, et al. MiR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci U S A 2009;106:5813-5818
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 5813-5818
    • Poy, M.N.1    Hausser, J.2    Trajkovski, M.3
  • 31
    • 84883793279 scopus 로고    scopus 로고
    • Thioredoxin-interacting protein regulates insulin transcription through microRNA-204
    • Xu G, Chen J, Jing G, Shalev A. Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat Med 2013;19:1141-1146
    • (2013) Nat Med , vol.19 , pp. 1141-1146
    • Xu, G.1    Chen, J.2    Jing, G.3    Shalev, A.4
  • 33
    • 84907546678 scopus 로고    scopus 로고
    • Maternal diet-induced microRNAs and mTOR underlie β cell dysfunction in offspring
    • Alejandro EU, Gregg B, Wallen T, et al. Maternal diet-induced microRNAs and mTOR underlie β cell dysfunction in offspring. J Clin Invest 2014;124:4395-4410
    • (2014) J Clin Invest , vol.124 , pp. 4395-4410
    • Alejandro, E.U.1    Gregg, B.2    Wallen, T.3
  • 34
    • 84888205573 scopus 로고    scopus 로고
    • Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by MIR-145
    • Kang MH, Zhang LH, Wijesekara N, et al. Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by MIR-145. Arterioscler Thromb Vasc Biol 2013;33:2724-2732
    • (2013) Arterioscler Thromb Vasc Biol , vol.33 , pp. 2724-2732
    • Kang, M.H.1    Zhang, L.H.2    Wijesekara, N.3
  • 35
    • 33748749597 scopus 로고    scopus 로고
    • MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells
    • Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 2006;281:26932-26942
    • (2006) J Biol Chem , vol.281 , pp. 26932-26942
    • Plaisance, V.1    Abderrahmani, A.2    Perret-Menoud, V.3    Jacquemin, P.4    Lemaigre, F.5    Regazzi, R.6
  • 36
    • 84878618788 scopus 로고    scopus 로고
    • Syntaxin-1a is a direct target of MIR-29a in insulin-producing β-cells
    • Bagge A, Dahmcke CM, Dalgaard LT. Syntaxin-1a is a direct target of MIR-29a in insulin-producing β-cells. Horm Metab Res 2013;45:463-466
    • (2013) Horm Metab Res , vol.45 , pp. 463-466
    • Bagge, A.1    Dahmcke, C.M.2    Dalgaard, L.T.3
  • 37
    • 40149083894 scopus 로고    scopus 로고
    • Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs
    • Lovis P, Gattesco S, Regazzi R. Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 2008;389:305-312
    • (2008) Biol Chem , vol.389 , pp. 305-312
    • Lovis, P.1    Gattesco, S.2    Regazzi, R.3
  • 38
    • 84876484626 scopus 로고    scopus 로고
    • MIRNA-30a-5p-mediated silencing of Beta2/NeuroD expression is an important initial event of glucotoxicity-induced beta cell dysfunction in rodent models
    • Kim JW, You YH, Jung S, et al. MiRNA-30a-5p-mediated silencing of Beta2/NeuroD expression is an important initial event of glucotoxicity-induced beta cell dysfunction in rodent models. Diabetologia 2013;56:847-855
    • (2013) Diabetologia , vol.56 , pp. 847-855
    • Kim, J.W.1    You, Y.H.2    Jung, S.3
  • 39
    • 84930086094 scopus 로고    scopus 로고
    • MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion
    • Sebastiani G, Po A, Miele E, et al. MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion. Acta Diabetol 2015;52:523-530
    • (2015) Acta Diabetol , vol.52 , pp. 523-530
    • Sebastiani, G.1    Po, A.2    Miele, E.3
  • 40
    • 84900797916 scopus 로고    scopus 로고
    • MicroRNA-7a regulates pancreatic β cell function
    • Latreille M, Hausser J, Stützer I, et al. MicroRNA-7a regulates pancreatic β cell function. J Clin Invest 2014;124:2722-2735
    • (2014) J Clin Invest , vol.124 , pp. 2722-2735
    • Latreille, M.1    Hausser, J.2    Stützer, I.3
  • 41
    • 64549163250 scopus 로고    scopus 로고
    • The promoter of the pri-MIR-375 gene directs expression selectively to the endocrine pancreas
    • Avnit-Sagi T, Kantorovich L, Kredo-Russo S, Hornstein E, Walker MD. The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. PLoS One 2009;4:e5033
    • (2009) PLoS One , vol.4 , pp. e5033
    • Avnit-Sagi, T.1    Kantorovich, L.2    Kredo-Russo, S.3    Hornstein, E.4    Walker, M.D.5
  • 42
    • 84861203551 scopus 로고    scopus 로고
    • Regulation of microRNA-375 by cAMP in pancreatic β-cells
    • Keller DM, Clark EA, Goodman RH. Regulation of microRNA-375 by cAMP in pancreatic β-cells. Mol Endocrinol 2012;26:989-999
    • (2012) Mol Endocrinol , vol.26 , pp. 989-999
    • Keller, D.M.1    Clark, E.A.2    Goodman, R.H.3
  • 43
    • 84902548164 scopus 로고    scopus 로고
    • The emerging role of MIR-375 in cancer
    • Yan JW, Lin JS, He XX. The emerging role of MIR-375 in cancer. Int J Cancer 2014;135:1011-1018
    • (2014) Int J Cancer , vol.135 , pp. 1011-1018
    • Yan, J.W.1    Lin, J.S.2    He, X.X.3
  • 44
    • 0037163850 scopus 로고    scopus 로고
    • V-1, a catecholamine biosynthesis regulatory protein, positively controls catecholamine secretion in PC12D cells
    • Yamakuni T, Yamamoto T, Ishida Y, et al. V-1, a catecholamine biosynthesis regulatory protein, positively controls catecholamine secretion in PC12D cells. FEBS Lett 2002;530:94-98
    • (2002) FEBS Lett , vol.530 , pp. 94-98
    • Yamakuni, T.1    Yamamoto, T.2    Ishida, Y.3
  • 45
    • 58149350343 scopus 로고    scopus 로고
    • MIR-375 targets 39-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells
    • El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, Van Obberghen E. MiR-375 targets 39-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 2008;57:2708-2717
    • (2008) Diabetes , vol.57 , pp. 2708-2717
    • El Ouaamari, A.1    Baroukh, N.2    Martens, G.A.3    Lebrun, P.4    Pipeleers, D.5    Van Obberghen, E.6
  • 46
    • 36148986076 scopus 로고    scopus 로고
    • Characterization of pancreatic transcription factor Pdx-1 binding sites using promoter microarray and serial analysis of chromatin occupancy
    • Keller DM, McWeeney S, Arsenlis A, et al. Characterization of pancreatic transcription factor Pdx-1 binding sites using promoter microarray and serial analysis of chromatin occupancy. J Biol Chem 2007;282:32084-32092
    • (2007) J Biol Chem , vol.282 , pp. 32084-32092
    • Keller, D.M.1    McWeeney, S.2    Arsenlis, A.3
  • 47
    • 84863714425 scopus 로고    scopus 로고
    • Transcriptional mechanisms controlling MIR-375 gene expression in the pancreas
    • Avnit-Sagi T, Vana T, Walker MD. Transcriptional mechanisms controlling MIR-375 gene expression in the pancreas. Exp Diabetes Res 2012;2012:891216
    • (2012) Exp Diabetes Res , vol.2012 , pp. 891216
    • Avnit-Sagi, T.1    Vana, T.2    Walker, M.D.3
  • 49
    • 14944342698 scopus 로고    scopus 로고
    • Rab27a: A new face in beta cell metabolismsecretion coupling
    • Aizawa T, Komatsu M. Rab27a: a new face in beta cell metabolismsecretion coupling. J Clin Invest 2005;115:227-230
    • (2005) J Clin Invest , vol.115 , pp. 227-230
    • Aizawa, T.1    Komatsu, M.2
  • 50
    • 34547126004 scopus 로고    scopus 로고
    • MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines
    • Baroukh N, Ravier MA, Loder MK, et al. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem 2007;282:19575-19588
    • (2007) J Biol Chem , vol.282 , pp. 19575-19588
    • Baroukh, N.1    Ravier, M.A.2    Loder, M.K.3
  • 51
    • 58249107416 scopus 로고    scopus 로고
    • Identification of glucose-regulated miRNAs from pancreatic beta cells reveals a role for MIR-30d in insulin transcription
    • Tang X, Muniappan L, Tang G, Ozcan S. Identification of glucose-regulated miRNAs from pancreatic beta cells reveals a role for MIR-30d in insulin transcription. RNA 2009;15:287-293
    • (2009) RNA , vol.15 , pp. 287-293
    • Tang, X.1    Muniappan, L.2    Tang, G.3    Ozcan, S.4
  • 52
    • 79954555856 scopus 로고    scopus 로고
    • Differential glucoseregulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat
    • Esguerra JL, Bolmeson C, Cilio CM, Eliasson L. Differential glucoseregulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat. PLoS One 2011;6:e18613
    • (2011) PLoS One , vol.6 , pp. e18613
    • Esguerra, J.L.1    Bolmeson, C.2    Cilio, C.M.3    Eliasson, L.4
  • 53
    • 84899418141 scopus 로고    scopus 로고
    • Thioredoxininteracting protein promotes islet amyloid polypeptide expression through MIR-124a and FoxA2
    • Jing G, Westwell-Roper C, Chen J, Xu G, Verchere CB, Shalev A. Thioredoxininteracting protein promotes islet amyloid polypeptide expression through MIR-124a and FoxA2. J Biol Chem 2014;289:11807-11815
    • (2014) J Biol Chem , vol.289 , pp. 11807-11815
    • Jing, G.1    Westwell-Roper, C.2    Chen, J.3    Xu, G.4    Verchere, C.B.5    Shalev, A.6
  • 54
    • 84866115684 scopus 로고    scopus 로고
    • MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic β-cells
    • Zhao X, Mohan R, Özcan S, Tang X. MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic β-cells. J Biol Chem 2012;287:31155-31164
    • (2012) J Biol Chem , vol.287 , pp. 31155-31164
    • Zhao, X.1    Mohan, R.2    Özcan, S.3    Tang, X.4
  • 55
    • 26444479437 scopus 로고    scopus 로고
    • Granuphilin molecularly docks insulin granules to the fusion machinery
    • Gomi H, Mizutani S, Kasai K, Itohara S, Izumi T. Granuphilin molecularly docks insulin granules to the fusion machinery. J Cell Biol 2005;171:99-109
    • (2005) J Cell Biol , vol.171 , pp. 99-109
    • Gomi, H.1    Mizutani, S.2    Kasai, K.3    Itohara, S.4    Izumi, T.5
  • 56
    • 0347916882 scopus 로고    scopus 로고
    • The Rabbinding protein Noc2 is associated with insulin-containing secretory granules and is essential for pancreatic beta-cell exocytosis
    • Cheviet S, Coppola T, Haynes LP, Burgoyne RD, Regazzi R. The Rabbinding protein Noc2 is associated with insulin-containing secretory granules and is essential for pancreatic beta-cell exocytosis. Mol Endocrinol 2004;18:117-126
    • (2004) Mol Endocrinol , vol.18 , pp. 117-126
    • Cheviet, S.1    Coppola, T.2    Haynes, L.P.3    Burgoyne, R.D.4    Regazzi, R.5
  • 57
    • 84866373881 scopus 로고    scopus 로고
    • MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion
    • Bagge A, Clausen TR, Larsen S, et al. MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion. Biochem Biophys Res Commun 2012;426:266-272
    • (2012) Biochem Biophys Res Commun , vol.426 , pp. 266-272
    • Bagge, A.1    Clausen, T.R.2    Larsen, S.3
  • 58
    • 84863228519 scopus 로고    scopus 로고
    • Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice
    • Roggli E, Gattesco S, Caille D, et al. Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice. Diabetes 2012;61:1742-1751
    • (2012) Diabetes , vol.61 , pp. 1742-1751
    • Roggli, E.1    Gattesco, S.2    Caille, D.3
  • 59
    • 25144454432 scopus 로고    scopus 로고
    • Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice
    • Moynihan KA, Grimm AA, Plueger MM, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2005;2:105-117
    • (2005) Cell Metab , vol.2 , pp. 105-117
    • Moynihan, K.A.1    Grimm, A.A.2    Plueger, M.M.3
  • 60
    • 79952846843 scopus 로고    scopus 로고
    • Sirt1 and MIR-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets
    • Ramachandran D, Roy U, Garg S, Ghosh S, Pathak S, Kolthur-Seetharam U. Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets. FEBS J 2011;278:1167-1174
    • (2011) FEBS J , vol.278 , pp. 1167-1174
    • Ramachandran, D.1    Roy, U.2    Garg, S.3    Ghosh, S.4    Pathak, S.5    Kolthur-Seetharam, U.6
  • 62
    • 33847722655 scopus 로고    scopus 로고
    • Beta-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment
    • Brunham LR, Kruit JK, Pape TD, et al. Beta-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nat Med 2007;13:340-347
    • (2007) Nat Med , vol.13 , pp. 340-347
    • Brunham, L.R.1    Kruit, J.K.2    Pape, T.D.3
  • 63
    • 84863150557 scopus 로고    scopus 로고
    • MIR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets
    • Wijesekara N, Zhang LH, Kang MH, et al. MiR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes 2012;61:653-658
    • (2012) Diabetes , vol.61 , pp. 653-658
    • Wijesekara, N.1    Zhang, L.H.2    Kang, M.H.3
  • 64
    • 78650554763 scopus 로고    scopus 로고
    • MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression
    • Sun LL, Jiang BG, Li WT, Zou JJ, Shi YQ, Liu ZM. MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res Clin Pract 2011;91:94-100
    • (2011) Diabetes Res Clin Pract , vol.91 , pp. 94-100
    • Sun, L.L.1    Jiang, B.G.2    Li, W.T.3    Zou, J.J.4    Shi, Y.Q.5    Liu, Z.M.6
  • 65
    • 79952259862 scopus 로고    scopus 로고
    • MIRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors
    • Melkman-Zehavi T, Oren R, Kredo-Russo S, et al. MiRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors. EMBO J 2011;30:835-845
    • (2011) EMBO J , vol.30 , pp. 835-845
    • Melkman-Zehavi, T.1    Oren, R.2    Kredo-Russo, S.3
  • 66
    • 84887363120 scopus 로고    scopus 로고
    • MicroRNA-24/MODY gene regulatory pathway mediates pancreatic β-cell dysfunction
    • Zhu Y, You W, Wang H, et al. MicroRNA-24/MODY gene regulatory pathway mediates pancreatic β-cell dysfunction. Diabetes 2013;62:3194-3206
    • (2013) Diabetes , vol.62 , pp. 3194-3206
    • Zhu, Y.1    You, W.2    Wang, H.3
  • 67
    • 80051800915 scopus 로고    scopus 로고
    • MicroRNA-19b downregulates insulin 1 through targeting transcription factor NeuroD1
    • Zhang ZW, Zhang LQ, Ding L, et al. MicroRNA-19b downregulates insulin 1 through targeting transcription factor NeuroD1. FEBS Lett 2011;585:2592-2598
    • (2011) FEBS Lett , vol.585 , pp. 2592-2598
    • Zhang, Z.W.1    Zhang, L.Q.2    Ding, L.3
  • 68
    • 84876664330 scopus 로고    scopus 로고
    • Developmental and environmental epigenetic programming of the endocrine pancreas: Consequences for type 2 diabetes
    • Sandovici I, Hammerle CM, Ozanne SE, Constância M. Developmental and environmental epigenetic programming of the endocrine pancreas: consequences for type 2 diabetes. Cell Mol Life Sci 2013;70:1575-1595
    • (2013) Cell Mol Life Sci , vol.70 , pp. 1575-1595
    • Sandovici, I.1    Hammerle, C.M.2    Ozanne, S.E.3    Constância, M.4
  • 69
    • 84907483803 scopus 로고    scopus 로고
    • Maternal protein restriction leads to pancreatic failure in offspring: Role of misexpressed microRNA-375
    • Dumortier O, Hinault C, Gautier N, Patouraux S, Casamento V, Van Obberghen E. Maternal protein restriction leads to pancreatic failure in offspring: role of misexpressed microRNA-375. Diabetes 2014;63:3416-3427
    • (2014) Diabetes , vol.63 , pp. 3416-3427
    • Dumortier, O.1    Hinault, C.2    Gautier, N.3    Patouraux, S.4    Casamento, V.5    Van Obberghen, E.6
  • 70
    • 84874432277 scopus 로고    scopus 로고
    • MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic β-cells
    • Wang Y, Liu J, Liu C, Naji A, Stoffers DA. MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic β-cells. Diabetes 2013;62:887-895
    • (2013) Diabetes , vol.62 , pp. 887-895
    • Wang, Y.1    Liu, J.2    Liu, C.3    Naji, A.4    Stoffers, D.A.5
  • 72
    • 84898063109 scopus 로고    scopus 로고
    • Menin is required for optimal processing of the microRNA let-7a
    • Gurung B, Muhammad AB, Hua X. Menin is required for optimal processing of the microRNA let-7a. J Biol Chem 2014;289:9902-9908
    • (2014) J Biol Chem , vol.289 , pp. 9902-9908
    • Gurung, B.1    Muhammad, A.B.2    Hua, X.3
  • 73
    • 84887046365 scopus 로고    scopus 로고
    • MicroRNA-26a targets ten eleven translocation enzymes and is regulated during pancreatic cell differentiation
    • Fu X, Jin L, Wang X, et al. MicroRNA-26a targets ten eleven translocation enzymes and is regulated during pancreatic cell differentiation. Proc Natl Acad Sci U S A 2013;110:17892-17897
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 17892-17897
    • Fu, X.1    Jin, L.2    Wang, X.3
  • 74
    • 35848945091 scopus 로고    scopus 로고
    • MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3
    • Joglekar MV, Parekh VS, Mehta S, Bhonde RR, Hardikar AA. MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3. Dev Biol 2007;311:603-612
    • (2007) Dev Biol , vol.311 , pp. 603-612
    • Joglekar, M.V.1    Parekh, V.S.2    Mehta, S.3    Bhonde, R.R.4    Hardikar, A.A.5
  • 75
    • 84866389264 scopus 로고    scopus 로고
    • Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure
    • Talchai C, Xuan S, Lin HV, Sussel L, Accili D. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell 2012;150:1223-1234
    • (2012) Cell , vol.150 , pp. 1223-1234
    • Talchai, C.1    Xuan, S.2    Lin, H.V.3    Sussel, L.4    Accili, D.5
  • 76
    • 84928901831 scopus 로고    scopus 로고
    • MIR-375 promotes redifferentiation of adult human β cells expanded in vitro
    • Nathan G, Kredo-Russo S, Geiger T, et al. MiR-375 promotes redifferentiation of adult human β cells expanded in vitro. PLoS One 2015;10:e0122108
    • (2015) PLoS One , vol.10 , pp. e0122108
    • Nathan, G.1    Kredo-Russo, S.2    Geiger, T.3
  • 77
    • 58149473947 scopus 로고    scopus 로고
    • Expression of islet-specific microRNAs during human pancreatic development
    • Joglekar MV, Joglekar VM, Hardikar AA. Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 2009;9:109-113
    • (2009) Gene Expr Patterns , vol.9 , pp. 109-113
    • Joglekar, M.V.1    Joglekar, V.M.2    Hardikar, A.A.3
  • 78
    • 84875376297 scopus 로고    scopus 로고
    • Dynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulin-producing cells
    • Wei R, Yang J, Liu GQ, et al. Dynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulin-producing cells. Gene 2013;518:246-255
    • (2013) Gene , vol.518 , pp. 246-255
    • Wei, R.1    Yang, J.2    Liu, G.Q.3
  • 79
    • 84907656936 scopus 로고    scopus 로고
    • MIR-375 induces human decidua basalis-derived stromal cells to become insulin-producing cells
    • Shaer A, Azarpira N, Vahdati A, Karimi MH, Shariati M. MiR-375 induces human decidua basalis-derived stromal cells to become insulin-producing cells. Cell Mol Biol Lett 2014;19:483-499
    • (2014) Cell Mol Biol Lett , vol.19 , pp. 483-499
    • Shaer, A.1    Azarpira, N.2    Vahdati, A.3    Karimi, M.H.4    Shariati, M.5
  • 80
    • 85027936868 scopus 로고    scopus 로고
    • Differentiation of human induced pluripotent stem cells into insulin-like cell clusters with MIR-186 and MIR-375 by using chemical transfection
    • Shaer A, Azarpira N, Karimi MH. Differentiation of human induced pluripotent stem cells into insulin-like cell clusters with MIR-186 and MIR-375 by using chemical transfection. Appl Biochem Biotechnol 2014;174:242-258
    • (2014) Appl Biochem Biotechnol , vol.174 , pp. 242-258
    • Shaer, A.1    Azarpira, N.2    Karimi, M.H.3
  • 81
    • 65549130128 scopus 로고    scopus 로고
    • Mtorc1 activation regulates beta-cell mass and proliferation by modulation of cyclin D2 synthesis and stability
    • Balcazar N, Sathyamurthy A, Elghazi L, et al. mTORC1 activation regulates beta-cell mass and proliferation by modulation of cyclin D2 synthesis and stability. J Biol Chem 2009;284:7832-7842
    • (2009) J Biol Chem , vol.284 , pp. 7832-7842
    • Balcazar, N.1    Sathyamurthy, A.2    Elghazi, L.3
  • 82
    • 66449112884 scopus 로고    scopus 로고
    • Pax6 haploinsufficiency causes abnormal metabolic homeostasis by down-regulating glucagon-like peptide 1 in mice
    • Ding J, Gao Y, Zhao J, et al. Pax6 haploinsufficiency causes abnormal metabolic homeostasis by down-regulating glucagon-like peptide 1 in mice. Endocrinology 2009;150:2136-2144
    • (2009) Endocrinology , vol.150 , pp. 2136-2144
    • Ding, J.1    Gao, Y.2    Zhao, J.3
  • 83
    • 84864305807 scopus 로고    scopus 로고
    • Pancreas-enriched miRNA refines endocrine cell differentiation
    • Kredo-Russo S, Mandelbaum AD, Ness A, et al. Pancreas-enriched miRNA refines endocrine cell differentiation. Development 2012;139:3021-3031
    • (2012) Development , vol.139 , pp. 3021-3031
    • Kredo-Russo, S.1    Mandelbaum, A.D.2    Ness, A.3
  • 84
    • 84868132259 scopus 로고    scopus 로고
    • Antisense MIR-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds
    • Nieto M, Hevia P, Garcia E, et al. Antisense MIR-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds. Cell Transplant 2012;21:1761-1774
    • (2012) Cell Transplant , vol.21 , pp. 1761-1774
    • Nieto, M.1    Hevia, P.2    Garcia, E.3
  • 85
    • 61349122608 scopus 로고    scopus 로고
    • MicroRNA MIR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas
    • Correa-Medina M, Bravo-Egana V, Rosero S, et al. MicroRNA MIR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr Patterns 2009;9:193-199
    • (2009) Gene Expr Patterns , vol.9 , pp. 193-199
    • Correa-Medina, M.1    Bravo-Egana, V.2    Rosero, S.3
  • 86
    • 37549021902 scopus 로고    scopus 로고
    • Quantitative differential expression analysis reveals MIR-7 as major islet microRNA
    • Bravo-Egana V, Rosero S, Molano RD, et al. Quantitative differential expression analysis reveals MIR-7 as major islet microRNA. Biochem Biophys Res Commun 2008;366:922-926
    • (2008) Biochem Biophys Res Commun , vol.366 , pp. 922-926
    • Bravo-Egana, V.1    Rosero, S.2    Molano, R.D.3
  • 89
    • 0033534510 scopus 로고    scopus 로고
    • Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription
    • Agarwal SK, Guru SC, Heppner C, et al. Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription. Cell 1999;96:143-152
    • (1999) Cell , vol.96 , pp. 143-152
    • Agarwal, S.K.1    Guru, S.C.2    Heppner, C.3
  • 90
    • 38449099624 scopus 로고    scopus 로고
    • Menin controls growth of pancreatic beta-cells in pregnant mice and promotes gestational diabetes mellitus
    • Karnik SK, Chen H, McLean GW, et al. Menin controls growth of pancreatic beta-cells in pregnant mice and promotes gestational diabetes mellitus. Science 2007;318:806-809
    • (2007) Science , vol.318 , pp. 806-809
    • Karnik, S.K.1    Chen, H.2    McLean, G.W.3
  • 91
    • 0035970092 scopus 로고    scopus 로고
    • A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors
    • Crabtree JS, Scacheri PC, Ward JM, et al. A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc Natl Acad Sci U S A 2001;98:1118-1123
    • (2001) Proc Natl Acad Sci U S A , vol.98 , pp. 1118-1123
    • Crabtree, J.S.1    Scacheri, P.C.2    Ward, J.M.3
  • 92
    • 0033755408 scopus 로고    scopus 로고
    • Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia
    • Kubota N, Tobe K, Terauchi Y, et al. Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes 2000;49:1880-1889
    • (2000) Diabetes , vol.49 , pp. 1880-1889
    • Kubota, N.1    Tobe, K.2    Terauchi, Y.3
  • 93
    • 80052495940 scopus 로고    scopus 로고
    • Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
    • He YF, Li BZ, Li Z, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011;333:1303-1307
    • (2011) Science , vol.333 , pp. 1303-1307
    • He, Y.F.1    Li, B.Z.2    Li, Z.3
  • 94
    • 80052461558 scopus 로고    scopus 로고
    • Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
    • Ito S, Shen L, Dai Q, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011;333:1300-1303
    • (2011) Science , vol.333 , pp. 1300-1303
    • Ito, S.1    Shen, L.2    Dai, Q.3
  • 96
    • 84890124194 scopus 로고    scopus 로고
    • Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes
    • Nesca V, Guay C, Jacovetti C, et al. Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia 2013;56:2203-2212
    • (2013) Diabetologia , vol.56 , pp. 2203-2212
    • Nesca, V.1    Guay, C.2    Jacovetti, C.3
  • 97
    • 84867146719 scopus 로고    scopus 로고
    • MicroRNAs contribute to compensatory β cell expansion during pregnancy and obesity
    • Jacovetti C, Abderrahmani A, Parnaud G, et al. MicroRNAs contribute to compensatory β cell expansion during pregnancy and obesity. J Clin Invest 2012;122:3541-3551
    • (2012) J Clin Invest , vol.122 , pp. 3541-3551
    • Jacovetti, C.1    Abderrahmani, A.2    Parnaud, G.3
  • 98
    • 0034652287 scopus 로고    scopus 로고
    • Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas
    • Gradwohl G, Dierich A, LeMeur M, Guillemot F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A 2000;97:1607-1611
    • (2000) Proc Natl Acad Sci U S A , vol.97 , pp. 1607-1611
    • Gradwohl, G.1    Dierich, A.2    Le Meur, M.3    Guillemot, F.4
  • 99
    • 58149350340 scopus 로고    scopus 로고
    • Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction
    • Lovis P, Roggli E, Laybutt DR, et al. Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 2008;57:2728-2736
    • (2008) Diabetes , vol.57 , pp. 2728-2736
    • Lovis, P.1    Roggli, E.2    Laybutt, D.R.3
  • 100
    • 84919820315 scopus 로고    scopus 로고
    • MicroRNA-200 is induced by thioredoxin-interacting protein and regulates Zeb1 protein signaling and beta cell apoptosis
    • Filios SR, Xu G, Chen J, Hong K, Jing G, Shalev A. MicroRNA-200 is induced by thioredoxin-interacting protein and regulates Zeb1 protein signaling and beta cell apoptosis. J Biol Chem 2014;289:36275-36283
    • (2014) J Biol Chem , vol.289 , pp. 36275-36283
    • Filios, S.R.1    Xu, G.2    Chen, J.3    Hong, K.4    Jing, G.5    Shalev, A.6
  • 101
    • 77951158889 scopus 로고    scopus 로고
    • Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells
    • Roggli E, Britan A, Gattesco S, et al. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 2010;59:978-986
    • (2010) Diabetes , vol.59 , pp. 978-986
    • Roggli, E.1    Britan, A.2    Gattesco, S.3
  • 102
    • 84857624291 scopus 로고    scopus 로고
    • Effect of microRNA-34a in cell cycle, differentiation, and apoptosis: A review
    • Chen F, Hu SJ. Effect of microRNA-34a in cell cycle, differentiation, and apoptosis: a review. J Biochem Mol Toxicol 2012;26:79-86
    • (2012) J Biochem Mol Toxicol , vol.26 , pp. 79-86
    • Chen, F.1    Hu, S.J.2
  • 103
    • 34250868124 scopus 로고    scopus 로고
    • Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: MIR-34a is a p53 target that induces apoptosis and G1-arrest
    • Tarasov V, Jung P, Verdoodt B, et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: MIR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 2007;6:1586-1593
    • (2007) Cell Cycle , vol.6 , pp. 1586-1593
    • Tarasov, V.1    Jung, P.2    Verdoodt, B.3
  • 104
    • 84869219338 scopus 로고    scopus 로고
    • MIR-34- A microRNA replacement therapy is headed to the clinic
    • Bader AG. MiR-34- A microRNA replacement therapy is headed to the clinic. Front Genet 2012;3:120
    • (2012) Front Genet , vol.3 , pp. 120
    • Bader, A.G.1
  • 105
    • 84900037375 scopus 로고    scopus 로고
    • Downregulation of Bcl-2 expression by MIR-34a mediates palmitate-induced Min6 cells apoptosis
    • Lin X, Guan H, Huang Z, et al. Downregulation of Bcl-2 expression by MIR-34a mediates palmitate-induced Min6 cells apoptosis. J Diabetes Res 2014;2014:258695
    • (2014) J Diabetes Res , vol.2014 , pp. 258695
    • Lin, X.1    Guan, H.2    Huang, Z.3
  • 106
    • 84930751975 scopus 로고    scopus 로고
    • The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes
    • Belgardt B-F, Ahmed K, Spranger M, et al. The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes. Nat Med 2015;21:619-627
    • (2015) Nat Med , vol.21 , pp. 619-627
    • Belgardt, B.-F.1    Ahmed, K.2    Spranger, M.3
  • 107
    • 17744367054 scopus 로고    scopus 로고
    • Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis
    • Minn AH, Hafele C, Shalev A. Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis. Endocrinology 2005;146:2397-2405
    • (2005) Endocrinology , vol.146 , pp. 2397-2405
    • Minn, A.H.1    Hafele, C.2    Shalev, A.3
  • 108
    • 43049103824 scopus 로고    scopus 로고
    • The MIR-200 family and MIR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1
    • Gregory PA, Bert AG, Paterson EL, et al. The MIR-200 family and MIR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008;10:593-601
    • (2008) Nat Cell Biol , vol.10 , pp. 593-601
    • Gregory, P.A.1    Bert, A.G.2    Paterson, E.L.3
  • 109
    • 53649097239 scopus 로고    scopus 로고
    • Pancreatic transcription factors and their role in the birth, life and survival of the pancreatic beta cell
    • Bernardo AS, Hay CW, Docherty K. Pancreatic transcription factors and their role in the birth, life and survival of the pancreatic beta cell. Mol Cell Endocrinol 2008;294:1-9
    • (2008) Mol Cell Endocrinol , vol.294 , pp. 1-9
    • Bernardo, A.S.1    Hay, C.W.2    Docherty, K.3
  • 110
    • 79251485649 scopus 로고    scopus 로고
    • Modifications of small RNAs and their associated proteins
    • Kim YK, Heo I, Kim VN. Modifications of small RNAs and their associated proteins. Cell 2010;143:703-709
    • (2010) Cell , vol.143 , pp. 703-709
    • Kim, Y.K.1    Heo, I.2    Kim, V.N.3
  • 111
    • 84891856209 scopus 로고    scopus 로고
    • Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets
    • Kameswaran V, Bramswig NC, McKenna LB, et al. Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab 2014;19:135-145
    • (2014) Cell Metab , vol.19 , pp. 135-145
    • Kameswaran, V.1    Bramswig, N.C.2    McKenna, L.B.3
  • 112
    • 84875372911 scopus 로고    scopus 로고
    • Natural RNA circles function as efficient microRNA sponges
    • Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013;495:384-388
    • (2013) Nature , vol.495 , pp. 384-388
    • Hansen, T.B.1    Jensen, T.I.2    Clausen, B.H.3
  • 113
    • 84876367541 scopus 로고    scopus 로고
    • Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal
    • Wang Y, Xu Z, Jiang J, et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell 2013;25:69-80
    • (2013) Dev Cell , vol.25 , pp. 69-80
    • Wang, Y.1    Xu, Z.2    Jiang, J.3
  • 114
    • 77953957633 scopus 로고    scopus 로고
    • A coding-independent function of gene and pseudogene mRNAs regulates tumour biology
    • Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010;465:1033-1038
    • (2010) Nature , vol.465 , pp. 1033-1038
    • Poliseno, L.1    Salmena, L.2    Zhang, J.3    Carver, B.4    Haveman, W.J.5    Pandolfi, P.P.6
  • 115
    • 84901838697 scopus 로고    scopus 로고
    • Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance
    • Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell 2014;54:766-776
    • (2014) Mol Cell , vol.54 , pp. 766-776
    • Denzler, R.1    Agarwal, V.2    Stefano, J.3    Bartel, D.P.4    Stoffel, M.5
  • 116
    • 84867070330 scopus 로고    scopus 로고
    • Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes
    • Morán I, Akerman I, Van De Bunt M, et al. Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metab 2012;16:435-448
    • (2012) Cell Metab , vol.16 , pp. 435-448
    • Morán, I.1    Akerman, I.2    Van De Bunt, M.3
  • 117
    • 84937512955 scopus 로고    scopus 로고
    • Involvement of long non-coding RNAs in beta cell failure at the onset of type 1 diabetes in NOD mice
    • Motterle A, Gattesco S, Caille D, Meda P, Regazzi R. Involvement of long non-coding RNAs in beta cell failure at the onset of type 1 diabetes in NOD mice. Diabetologia 2015;58:1827-1835
    • (2015) Diabetologia , vol.58 , pp. 1827-1835
    • Motterle, A.1    Gattesco, S.2    Caille, D.3    Meda, P.4    Regazzi, R.5
  • 118
    • 84906226995 scopus 로고    scopus 로고
    • Functional implications of long non-coding RNAs in the pancreatic islets of Langerhans
    • Esguerra JL, Eliasson L. Functional implications of long non-coding RNAs in the pancreatic islets of Langerhans. Front Genet 2014;5:209
    • (2014) Front Genet , vol.5 , pp. 209
    • Esguerra, J.L.1    Eliasson, L.2
  • 119
    • 84906248499 scopus 로고    scopus 로고
    • The Missing lnc (RNA) between the pancreatic β-cell and diabetes
    • Kameswaran V, Kaestner KH. The Missing lnc (RNA) between the pancreatic β-cell and diabetes. Front Genet 2014;5:200
    • (2014) Front Genet , vol.5 , pp. 200
    • Kameswaran, V.1    Kaestner, K.H.2
  • 120
    • 84984765621 scopus 로고    scopus 로고
    • Canalization of development by microRNAs
    • Hornstein E, Shomron N. Canalization of development by microRNAs. Nat Genet 2006;38(Suppl.):S20-S24
    • (2006) Nat Genet , vol.38 , pp. S20-S24
    • Hornstein, E.1    Shomron, N.2
  • 121
    • 77954517267 scopus 로고    scopus 로고
    • MicroRNAs and gene regulatory networks: Managing the impact of noise in biological systems
    • Herranz H, Cohen SM. MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. Genes Dev 2010;24:1339-1344
    • (2010) Genes Dev , vol.24 , pp. 1339-1344
    • Herranz, H.1    Cohen, S.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.