-
2
-
-
76249119007
-
Opposing microRNA families regulate self-renewal in mouse embryonic stem cells
-
Melton C, Judson RL, Blelloch R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 2010;463:621-626
-
(2010)
Nature
, vol.463
, pp. 621-626
-
-
Melton, C.1
Judson, R.L.2
Blelloch, R.3
-
4
-
-
81355123438
-
Evolution of microRNA diversity and regulation in animals
-
Berezikov E. Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 2011;12:846-860
-
(2011)
Nat Rev Genet
, vol.12
, pp. 846-860
-
-
Berezikov, E.1
-
5
-
-
3042767202
-
MicroRNAs: Small RNAs with a big role in gene regulation
-
He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004;5:522-531
-
(2004)
Nat Rev Genet
, vol.5
, pp. 522-531
-
-
He, L.1
Hannon, G.J.2
-
6
-
-
55049137165
-
MicroRNA biogenesis: There's more than one way to skin a cat
-
Faller M, Guo F. MicroRNA biogenesis: there's more than one way to skin a cat. Biochim Biophys Acta 2008;1779:663-667
-
(2008)
Biochim Biophys Acta
, vol.1779
, pp. 663-667
-
-
Faller, M.1
Guo, F.2
-
7
-
-
12544258104
-
MicroRNA biogenesis: Drosha can't cut it without a partner
-
Tomari Y, Zamore PD. MicroRNA biogenesis: Drosha can't cut it without a partner. Curr Biol 2005;15:R61-R64
-
(2005)
Curr Biol
, vol.15
, pp. R61-R64
-
-
Tomari, Y.1
Zamore, P.D.2
-
8
-
-
0347361541
-
Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs
-
Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003;17:3011-3016
-
(2003)
Genes Dev
, vol.17
, pp. 3011-3016
-
-
Yi, R.1
Qin, Y.2
Macara, I.G.3
Cullen, B.R.4
-
9
-
-
0035800521
-
A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA
-
Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001;293:834-838
-
(2001)
Science
, vol.293
, pp. 834-838
-
-
Hutvágner, G.1
McLachlan, J.2
Pasquinelli, A.E.3
Bálint, E.4
Tuschl, T.5
Zamore, P.D.6
-
10
-
-
27744537851
-
Human RISC couples microRNA biogenesis and posttranscriptional gene silencing
-
Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 2005;123:631-640
-
(2005)
Cell
, vol.123
, pp. 631-640
-
-
Gregory, R.I.1
Chendrimada, T.P.2
Cooch, N.3
Shiekhattar, R.4
-
11
-
-
0027730383
-
Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. Elegans
-
Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993;75:855-862
-
(1993)
Cell
, vol.75
, pp. 855-862
-
-
Wightman, B.1
Ha, I.2
Ruvkun, G.3
-
12
-
-
11844278458
-
Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
-
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120:15-20
-
(2005)
Cell
, vol.120
, pp. 15-20
-
-
Lewis, B.P.1
Burge, C.B.2
Bartel, D.P.3
-
13
-
-
78751477191
-
Gene silencing by microRNAs: Contributions of translational repression and mRNA decay
-
Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011;12:99-110
-
(2011)
Nat Rev Genet
, vol.12
, pp. 99-110
-
-
Huntzinger, E.1
Izaurralde, E.2
-
14
-
-
34547441263
-
Target mRNAs are repressed as efficiently by microRNA-binding sites in the 59 UTR as in the 39 UTR
-
Lytle JR, Yario TA, Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 59 UTR as in the 39 UTR. Proc Natl Acad Sci U S A 2007;104:9667-9672
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 9667-9672
-
-
Lytle, J.R.1
Yario, T.A.2
Steitz, J.A.3
-
15
-
-
54549108798
-
MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation
-
Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 2008;455:1124-1128
-
(2008)
Nature
, vol.455
, pp. 1124-1128
-
-
Tay, Y.1
Zhang, J.2
Thomson, A.M.3
Lim, B.4
Rigoutsos, I.5
-
16
-
-
84887101163
-
MicroRNAs and other non-coding RNAs as targets for anticancer drug development
-
Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 2013;12:847-865
-
(2013)
Nat Rev Drug Discov
, vol.12
, pp. 847-865
-
-
Ling, H.1
Fabbri, M.2
Calin, G.A.3
-
17
-
-
84905389814
-
MicroRNA directly enhances mitochondrial translation during muscle differentiation
-
Zhang X, Zuo X, Yang B, et al. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 2014;158:607-619
-
(2014)
Cell
, vol.158
, pp. 607-619
-
-
Zhang, X.1
Zuo, X.2
Yang, B.3
-
18
-
-
0036153256
-
Minireview: Secondary beta-cell failure in type 2 diabetes- A convergence of glucotoxicity and lipotoxicity
-
Poitout V, Robertson RP. Minireview: Secondary beta-cell failure in type 2 diabetes- A convergence of glucotoxicity and lipotoxicity. Endocrinology 2002;143:339-342
-
(2002)
Endocrinology
, vol.143
, pp. 339-342
-
-
Poitout, V.1
Robertson, R.P.2
-
19
-
-
84891867862
-
Argonaute2 mediates compensatory expansion of the pancreatic β cell
-
Tattikota SG, Rathjen T, McAnulty SJ, et al. Argonaute2 mediates compensatory expansion of the pancreatic β cell. Cell Metab 2014;19:122-134
-
(2014)
Cell Metab
, vol.19
, pp. 122-134
-
-
Tattikota, S.G.1
Rathjen, T.2
McAnulty, S.J.3
-
20
-
-
84891818318
-
Mirbase: Annotating high confidence microRNAs using deep sequencing data
-
Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014;42:D68-D73
-
(2014)
Nucleic Acids Res
, vol.42
, pp. D68-D73
-
-
Kozomara, A.1
Griffiths-Jones, S.2
-
21
-
-
80052099673
-
MicroRNAs in β-cell biology, insulin resistance, diabetes and its complications
-
Fernandez-Valverde SL, Taft RJ, Mattick JS. MicroRNAs in β-cell biology, insulin resistance, diabetes and its complications. Diabetes 2011;60:1825-1831
-
(2011)
Diabetes
, vol.60
, pp. 1825-1831
-
-
Fernandez-Valverde, S.L.1
Taft, R.J.2
Mattick, J.S.3
-
23
-
-
34250877841
-
A mammalian microRNA expression atlas based on small RNA library sequencing
-
Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007;129:1401-1414
-
(2007)
Cell
, vol.129
, pp. 1401-1414
-
-
Landgraf, P.1
Rusu, M.2
Sheridan, R.3
-
24
-
-
67849116900
-
MirZ: An integrated microRNA expression atlas and target prediction resource
-
Hausser J, Berninger P, Rodak C, Jantscher Y, Wirth S, Zavolan M. MirZ: an integrated microRNA expression atlas and target prediction resource. Nucleic Acids Res 2009;37:W266-W272
-
(2009)
Nucleic Acids Res
, vol.37
, pp. W266-W272
-
-
Hausser, J.1
Berninger, P.2
Rodak, C.3
Jantscher, Y.4
Wirth, S.5
Zavolan, M.6
-
25
-
-
79960322580
-
MIR-29a and MIR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1)
-
Pullen TJ, Da Silva Xavier G, Kelsey G, Rutter GA. MiR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol Cell Biol 2011;31:3182-3194
-
(2011)
Mol Cell Biol
, vol.31
, pp. 3182-3194
-
-
Pullen, T.J.1
Da Silva Xavier, G.2
Kelsey, G.3
Rutter, G.A.4
-
26
-
-
84883651731
-
Beta cell 59-shifted isomiRs are candidate regulatory hubs in type 2 diabetes
-
Baran-Gale J, Fannin EE, Kurtz CL, Sethupathy P. Beta cell 59-shifted isomiRs are candidate regulatory hubs in type 2 diabetes. PLoS One 2013;8:e73240
-
(2013)
PLoS One
, vol.8
, pp. e73240
-
-
Baran-Gale, J.1
Fannin, E.E.2
Kurtz, C.L.3
Sethupathy, P.4
-
27
-
-
84872833195
-
The miRNA profile of human pancreatic islets and beta-cells and relationship to type 2 diabetes pathogenesis
-
Van De Bunt M, Gaulton KJ, Parts L, et al. The miRNA profile of human pancreatic islets and beta-cells and relationship to type 2 diabetes pathogenesis. PLoS One 2013;8:e55272
-
(2013)
PLoS One
, vol.8
, pp. e55272
-
-
Van De Bunt, M.1
Gaulton, K.J.2
Parts, L.3
-
28
-
-
84873815396
-
MicroRNA expression in alpha and beta cells of human pancreatic islets
-
Klein D, Misawa R, Bravo-Egana V, et al. MicroRNA expression in alpha and beta cells of human pancreatic islets. PLoS One 2013;8:e55064
-
(2013)
PLoS One
, vol.8
, pp. e55064
-
-
Klein, D.1
Misawa, R.2
Bravo-Egana, V.3
-
29
-
-
9144270691
-
A pancreatic islet-specific microRNA regulates insulin secretion
-
Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004;432:226-230
-
(2004)
Nature
, vol.432
, pp. 226-230
-
-
Poy, M.N.1
Eliasson, L.2
Krutzfeldt, J.3
-
30
-
-
65249093130
-
MIR-375 maintains normal pancreatic alpha- and beta-cell mass
-
Poy MN, Hausser J, Trajkovski M, et al. MiR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci U S A 2009;106:5813-5818
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 5813-5818
-
-
Poy, M.N.1
Hausser, J.2
Trajkovski, M.3
-
31
-
-
84883793279
-
Thioredoxin-interacting protein regulates insulin transcription through microRNA-204
-
Xu G, Chen J, Jing G, Shalev A. Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat Med 2013;19:1141-1146
-
(2013)
Nat Med
, vol.19
, pp. 1141-1146
-
-
Xu, G.1
Chen, J.2
Jing, G.3
Shalev, A.4
-
32
-
-
84901942076
-
Altering β-cell number through stable alteration of MIR-21 and MIR-34a expression
-
Backe MB, Novotny GW, Christensen DP, Grunnet LG, Mandrup-Poulsen T. Altering β-cell number through stable alteration of MIR-21 and MIR-34a expression. Islets 2014;6:e27754
-
(2014)
Islets
, vol.6
, pp. e27754
-
-
Backe, M.B.1
Novotny, G.W.2
Christensen, D.P.3
Grunnet, L.G.4
Mandrup-Poulsen, T.5
-
33
-
-
84907546678
-
Maternal diet-induced microRNAs and mTOR underlie β cell dysfunction in offspring
-
Alejandro EU, Gregg B, Wallen T, et al. Maternal diet-induced microRNAs and mTOR underlie β cell dysfunction in offspring. J Clin Invest 2014;124:4395-4410
-
(2014)
J Clin Invest
, vol.124
, pp. 4395-4410
-
-
Alejandro, E.U.1
Gregg, B.2
Wallen, T.3
-
34
-
-
84888205573
-
Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by MIR-145
-
Kang MH, Zhang LH, Wijesekara N, et al. Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by MIR-145. Arterioscler Thromb Vasc Biol 2013;33:2724-2732
-
(2013)
Arterioscler Thromb Vasc Biol
, vol.33
, pp. 2724-2732
-
-
Kang, M.H.1
Zhang, L.H.2
Wijesekara, N.3
-
35
-
-
33748749597
-
MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells
-
Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 2006;281:26932-26942
-
(2006)
J Biol Chem
, vol.281
, pp. 26932-26942
-
-
Plaisance, V.1
Abderrahmani, A.2
Perret-Menoud, V.3
Jacquemin, P.4
Lemaigre, F.5
Regazzi, R.6
-
36
-
-
84878618788
-
Syntaxin-1a is a direct target of MIR-29a in insulin-producing β-cells
-
Bagge A, Dahmcke CM, Dalgaard LT. Syntaxin-1a is a direct target of MIR-29a in insulin-producing β-cells. Horm Metab Res 2013;45:463-466
-
(2013)
Horm Metab Res
, vol.45
, pp. 463-466
-
-
Bagge, A.1
Dahmcke, C.M.2
Dalgaard, L.T.3
-
37
-
-
40149083894
-
Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs
-
Lovis P, Gattesco S, Regazzi R. Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 2008;389:305-312
-
(2008)
Biol Chem
, vol.389
, pp. 305-312
-
-
Lovis, P.1
Gattesco, S.2
Regazzi, R.3
-
38
-
-
84876484626
-
MIRNA-30a-5p-mediated silencing of Beta2/NeuroD expression is an important initial event of glucotoxicity-induced beta cell dysfunction in rodent models
-
Kim JW, You YH, Jung S, et al. MiRNA-30a-5p-mediated silencing of Beta2/NeuroD expression is an important initial event of glucotoxicity-induced beta cell dysfunction in rodent models. Diabetologia 2013;56:847-855
-
(2013)
Diabetologia
, vol.56
, pp. 847-855
-
-
Kim, J.W.1
You, Y.H.2
Jung, S.3
-
39
-
-
84930086094
-
MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion
-
Sebastiani G, Po A, Miele E, et al. MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion. Acta Diabetol 2015;52:523-530
-
(2015)
Acta Diabetol
, vol.52
, pp. 523-530
-
-
Sebastiani, G.1
Po, A.2
Miele, E.3
-
40
-
-
84900797916
-
MicroRNA-7a regulates pancreatic β cell function
-
Latreille M, Hausser J, Stützer I, et al. MicroRNA-7a regulates pancreatic β cell function. J Clin Invest 2014;124:2722-2735
-
(2014)
J Clin Invest
, vol.124
, pp. 2722-2735
-
-
Latreille, M.1
Hausser, J.2
Stützer, I.3
-
41
-
-
64549163250
-
The promoter of the pri-MIR-375 gene directs expression selectively to the endocrine pancreas
-
Avnit-Sagi T, Kantorovich L, Kredo-Russo S, Hornstein E, Walker MD. The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. PLoS One 2009;4:e5033
-
(2009)
PLoS One
, vol.4
, pp. e5033
-
-
Avnit-Sagi, T.1
Kantorovich, L.2
Kredo-Russo, S.3
Hornstein, E.4
Walker, M.D.5
-
42
-
-
84861203551
-
Regulation of microRNA-375 by cAMP in pancreatic β-cells
-
Keller DM, Clark EA, Goodman RH. Regulation of microRNA-375 by cAMP in pancreatic β-cells. Mol Endocrinol 2012;26:989-999
-
(2012)
Mol Endocrinol
, vol.26
, pp. 989-999
-
-
Keller, D.M.1
Clark, E.A.2
Goodman, R.H.3
-
43
-
-
84902548164
-
The emerging role of MIR-375 in cancer
-
Yan JW, Lin JS, He XX. The emerging role of MIR-375 in cancer. Int J Cancer 2014;135:1011-1018
-
(2014)
Int J Cancer
, vol.135
, pp. 1011-1018
-
-
Yan, J.W.1
Lin, J.S.2
He, X.X.3
-
44
-
-
0037163850
-
V-1, a catecholamine biosynthesis regulatory protein, positively controls catecholamine secretion in PC12D cells
-
Yamakuni T, Yamamoto T, Ishida Y, et al. V-1, a catecholamine biosynthesis regulatory protein, positively controls catecholamine secretion in PC12D cells. FEBS Lett 2002;530:94-98
-
(2002)
FEBS Lett
, vol.530
, pp. 94-98
-
-
Yamakuni, T.1
Yamamoto, T.2
Ishida, Y.3
-
45
-
-
58149350343
-
MIR-375 targets 39-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells
-
El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, Van Obberghen E. MiR-375 targets 39-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 2008;57:2708-2717
-
(2008)
Diabetes
, vol.57
, pp. 2708-2717
-
-
El Ouaamari, A.1
Baroukh, N.2
Martens, G.A.3
Lebrun, P.4
Pipeleers, D.5
Van Obberghen, E.6
-
46
-
-
36148986076
-
Characterization of pancreatic transcription factor Pdx-1 binding sites using promoter microarray and serial analysis of chromatin occupancy
-
Keller DM, McWeeney S, Arsenlis A, et al. Characterization of pancreatic transcription factor Pdx-1 binding sites using promoter microarray and serial analysis of chromatin occupancy. J Biol Chem 2007;282:32084-32092
-
(2007)
J Biol Chem
, vol.282
, pp. 32084-32092
-
-
Keller, D.M.1
McWeeney, S.2
Arsenlis, A.3
-
47
-
-
84863714425
-
Transcriptional mechanisms controlling MIR-375 gene expression in the pancreas
-
Avnit-Sagi T, Vana T, Walker MD. Transcriptional mechanisms controlling MIR-375 gene expression in the pancreas. Exp Diabetes Res 2012;2012:891216
-
(2012)
Exp Diabetes Res
, vol.2012
, pp. 891216
-
-
Avnit-Sagi, T.1
Vana, T.2
Walker, M.D.3
-
48
-
-
84862287728
-
Regulation of pancreatic microRNA-7 expression
-
Kredo-Russo S, Ness A, Mandelbaum AD, Walker MD, Hornstein E. Regulation of pancreatic microRNA-7 expression. Exp Diabetes Res 2012;2012:695214
-
(2012)
Exp Diabetes Res
, vol.2012
, pp. 695214
-
-
Kredo-Russo, S.1
Ness, A.2
Mandelbaum, A.D.3
Walker, M.D.4
Hornstein, E.5
-
49
-
-
14944342698
-
Rab27a: A new face in beta cell metabolismsecretion coupling
-
Aizawa T, Komatsu M. Rab27a: a new face in beta cell metabolismsecretion coupling. J Clin Invest 2005;115:227-230
-
(2005)
J Clin Invest
, vol.115
, pp. 227-230
-
-
Aizawa, T.1
Komatsu, M.2
-
50
-
-
34547126004
-
MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines
-
Baroukh N, Ravier MA, Loder MK, et al. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem 2007;282:19575-19588
-
(2007)
J Biol Chem
, vol.282
, pp. 19575-19588
-
-
Baroukh, N.1
Ravier, M.A.2
Loder, M.K.3
-
51
-
-
58249107416
-
Identification of glucose-regulated miRNAs from pancreatic beta cells reveals a role for MIR-30d in insulin transcription
-
Tang X, Muniappan L, Tang G, Ozcan S. Identification of glucose-regulated miRNAs from pancreatic beta cells reveals a role for MIR-30d in insulin transcription. RNA 2009;15:287-293
-
(2009)
RNA
, vol.15
, pp. 287-293
-
-
Tang, X.1
Muniappan, L.2
Tang, G.3
Ozcan, S.4
-
52
-
-
79954555856
-
Differential glucoseregulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat
-
Esguerra JL, Bolmeson C, Cilio CM, Eliasson L. Differential glucoseregulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat. PLoS One 2011;6:e18613
-
(2011)
PLoS One
, vol.6
, pp. e18613
-
-
Esguerra, J.L.1
Bolmeson, C.2
Cilio, C.M.3
Eliasson, L.4
-
53
-
-
84899418141
-
Thioredoxininteracting protein promotes islet amyloid polypeptide expression through MIR-124a and FoxA2
-
Jing G, Westwell-Roper C, Chen J, Xu G, Verchere CB, Shalev A. Thioredoxininteracting protein promotes islet amyloid polypeptide expression through MIR-124a and FoxA2. J Biol Chem 2014;289:11807-11815
-
(2014)
J Biol Chem
, vol.289
, pp. 11807-11815
-
-
Jing, G.1
Westwell-Roper, C.2
Chen, J.3
Xu, G.4
Verchere, C.B.5
Shalev, A.6
-
54
-
-
84866115684
-
MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic β-cells
-
Zhao X, Mohan R, Özcan S, Tang X. MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic β-cells. J Biol Chem 2012;287:31155-31164
-
(2012)
J Biol Chem
, vol.287
, pp. 31155-31164
-
-
Zhao, X.1
Mohan, R.2
Özcan, S.3
Tang, X.4
-
55
-
-
26444479437
-
Granuphilin molecularly docks insulin granules to the fusion machinery
-
Gomi H, Mizutani S, Kasai K, Itohara S, Izumi T. Granuphilin molecularly docks insulin granules to the fusion machinery. J Cell Biol 2005;171:99-109
-
(2005)
J Cell Biol
, vol.171
, pp. 99-109
-
-
Gomi, H.1
Mizutani, S.2
Kasai, K.3
Itohara, S.4
Izumi, T.5
-
56
-
-
0347916882
-
The Rabbinding protein Noc2 is associated with insulin-containing secretory granules and is essential for pancreatic beta-cell exocytosis
-
Cheviet S, Coppola T, Haynes LP, Burgoyne RD, Regazzi R. The Rabbinding protein Noc2 is associated with insulin-containing secretory granules and is essential for pancreatic beta-cell exocytosis. Mol Endocrinol 2004;18:117-126
-
(2004)
Mol Endocrinol
, vol.18
, pp. 117-126
-
-
Cheviet, S.1
Coppola, T.2
Haynes, L.P.3
Burgoyne, R.D.4
Regazzi, R.5
-
57
-
-
84866373881
-
MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion
-
Bagge A, Clausen TR, Larsen S, et al. MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion. Biochem Biophys Res Commun 2012;426:266-272
-
(2012)
Biochem Biophys Res Commun
, vol.426
, pp. 266-272
-
-
Bagge, A.1
Clausen, T.R.2
Larsen, S.3
-
58
-
-
84863228519
-
Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice
-
Roggli E, Gattesco S, Caille D, et al. Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice. Diabetes 2012;61:1742-1751
-
(2012)
Diabetes
, vol.61
, pp. 1742-1751
-
-
Roggli, E.1
Gattesco, S.2
Caille, D.3
-
59
-
-
25144454432
-
Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice
-
Moynihan KA, Grimm AA, Plueger MM, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2005;2:105-117
-
(2005)
Cell Metab
, vol.2
, pp. 105-117
-
-
Moynihan, K.A.1
Grimm, A.A.2
Plueger, M.M.3
-
60
-
-
79952846843
-
Sirt1 and MIR-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets
-
Ramachandran D, Roy U, Garg S, Ghosh S, Pathak S, Kolthur-Seetharam U. Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets. FEBS J 2011;278:1167-1174
-
(2011)
FEBS J
, vol.278
, pp. 1167-1174
-
-
Ramachandran, D.1
Roy, U.2
Garg, S.3
Ghosh, S.4
Pathak, S.5
Kolthur-Seetharam, U.6
-
62
-
-
33847722655
-
Beta-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment
-
Brunham LR, Kruit JK, Pape TD, et al. Beta-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nat Med 2007;13:340-347
-
(2007)
Nat Med
, vol.13
, pp. 340-347
-
-
Brunham, L.R.1
Kruit, J.K.2
Pape, T.D.3
-
63
-
-
84863150557
-
MIR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets
-
Wijesekara N, Zhang LH, Kang MH, et al. MiR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes 2012;61:653-658
-
(2012)
Diabetes
, vol.61
, pp. 653-658
-
-
Wijesekara, N.1
Zhang, L.H.2
Kang, M.H.3
-
64
-
-
78650554763
-
MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression
-
Sun LL, Jiang BG, Li WT, Zou JJ, Shi YQ, Liu ZM. MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res Clin Pract 2011;91:94-100
-
(2011)
Diabetes Res Clin Pract
, vol.91
, pp. 94-100
-
-
Sun, L.L.1
Jiang, B.G.2
Li, W.T.3
Zou, J.J.4
Shi, Y.Q.5
Liu, Z.M.6
-
65
-
-
79952259862
-
MIRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors
-
Melkman-Zehavi T, Oren R, Kredo-Russo S, et al. MiRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors. EMBO J 2011;30:835-845
-
(2011)
EMBO J
, vol.30
, pp. 835-845
-
-
Melkman-Zehavi, T.1
Oren, R.2
Kredo-Russo, S.3
-
66
-
-
84887363120
-
MicroRNA-24/MODY gene regulatory pathway mediates pancreatic β-cell dysfunction
-
Zhu Y, You W, Wang H, et al. MicroRNA-24/MODY gene regulatory pathway mediates pancreatic β-cell dysfunction. Diabetes 2013;62:3194-3206
-
(2013)
Diabetes
, vol.62
, pp. 3194-3206
-
-
Zhu, Y.1
You, W.2
Wang, H.3
-
67
-
-
80051800915
-
MicroRNA-19b downregulates insulin 1 through targeting transcription factor NeuroD1
-
Zhang ZW, Zhang LQ, Ding L, et al. MicroRNA-19b downregulates insulin 1 through targeting transcription factor NeuroD1. FEBS Lett 2011;585:2592-2598
-
(2011)
FEBS Lett
, vol.585
, pp. 2592-2598
-
-
Zhang, Z.W.1
Zhang, L.Q.2
Ding, L.3
-
68
-
-
84876664330
-
Developmental and environmental epigenetic programming of the endocrine pancreas: Consequences for type 2 diabetes
-
Sandovici I, Hammerle CM, Ozanne SE, Constância M. Developmental and environmental epigenetic programming of the endocrine pancreas: consequences for type 2 diabetes. Cell Mol Life Sci 2013;70:1575-1595
-
(2013)
Cell Mol Life Sci
, vol.70
, pp. 1575-1595
-
-
Sandovici, I.1
Hammerle, C.M.2
Ozanne, S.E.3
Constância, M.4
-
69
-
-
84907483803
-
Maternal protein restriction leads to pancreatic failure in offspring: Role of misexpressed microRNA-375
-
Dumortier O, Hinault C, Gautier N, Patouraux S, Casamento V, Van Obberghen E. Maternal protein restriction leads to pancreatic failure in offspring: role of misexpressed microRNA-375. Diabetes 2014;63:3416-3427
-
(2014)
Diabetes
, vol.63
, pp. 3416-3427
-
-
Dumortier, O.1
Hinault, C.2
Gautier, N.3
Patouraux, S.4
Casamento, V.5
Van Obberghen, E.6
-
70
-
-
84874432277
-
MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic β-cells
-
Wang Y, Liu J, Liu C, Naji A, Stoffers DA. MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic β-cells. Diabetes 2013;62:887-895
-
(2013)
Diabetes
, vol.62
, pp. 887-895
-
-
Wang, Y.1
Liu, J.2
Liu, C.3
Naji, A.4
Stoffers, D.A.5
-
72
-
-
84898063109
-
Menin is required for optimal processing of the microRNA let-7a
-
Gurung B, Muhammad AB, Hua X. Menin is required for optimal processing of the microRNA let-7a. J Biol Chem 2014;289:9902-9908
-
(2014)
J Biol Chem
, vol.289
, pp. 9902-9908
-
-
Gurung, B.1
Muhammad, A.B.2
Hua, X.3
-
73
-
-
84887046365
-
MicroRNA-26a targets ten eleven translocation enzymes and is regulated during pancreatic cell differentiation
-
Fu X, Jin L, Wang X, et al. MicroRNA-26a targets ten eleven translocation enzymes and is regulated during pancreatic cell differentiation. Proc Natl Acad Sci U S A 2013;110:17892-17897
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 17892-17897
-
-
Fu, X.1
Jin, L.2
Wang, X.3
-
74
-
-
35848945091
-
MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3
-
Joglekar MV, Parekh VS, Mehta S, Bhonde RR, Hardikar AA. MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3. Dev Biol 2007;311:603-612
-
(2007)
Dev Biol
, vol.311
, pp. 603-612
-
-
Joglekar, M.V.1
Parekh, V.S.2
Mehta, S.3
Bhonde, R.R.4
Hardikar, A.A.5
-
75
-
-
84866389264
-
Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure
-
Talchai C, Xuan S, Lin HV, Sussel L, Accili D. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell 2012;150:1223-1234
-
(2012)
Cell
, vol.150
, pp. 1223-1234
-
-
Talchai, C.1
Xuan, S.2
Lin, H.V.3
Sussel, L.4
Accili, D.5
-
76
-
-
84928901831
-
MIR-375 promotes redifferentiation of adult human β cells expanded in vitro
-
Nathan G, Kredo-Russo S, Geiger T, et al. MiR-375 promotes redifferentiation of adult human β cells expanded in vitro. PLoS One 2015;10:e0122108
-
(2015)
PLoS One
, vol.10
, pp. e0122108
-
-
Nathan, G.1
Kredo-Russo, S.2
Geiger, T.3
-
77
-
-
58149473947
-
Expression of islet-specific microRNAs during human pancreatic development
-
Joglekar MV, Joglekar VM, Hardikar AA. Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 2009;9:109-113
-
(2009)
Gene Expr Patterns
, vol.9
, pp. 109-113
-
-
Joglekar, M.V.1
Joglekar, V.M.2
Hardikar, A.A.3
-
78
-
-
84875376297
-
Dynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulin-producing cells
-
Wei R, Yang J, Liu GQ, et al. Dynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulin-producing cells. Gene 2013;518:246-255
-
(2013)
Gene
, vol.518
, pp. 246-255
-
-
Wei, R.1
Yang, J.2
Liu, G.Q.3
-
79
-
-
84907656936
-
MIR-375 induces human decidua basalis-derived stromal cells to become insulin-producing cells
-
Shaer A, Azarpira N, Vahdati A, Karimi MH, Shariati M. MiR-375 induces human decidua basalis-derived stromal cells to become insulin-producing cells. Cell Mol Biol Lett 2014;19:483-499
-
(2014)
Cell Mol Biol Lett
, vol.19
, pp. 483-499
-
-
Shaer, A.1
Azarpira, N.2
Vahdati, A.3
Karimi, M.H.4
Shariati, M.5
-
80
-
-
85027936868
-
Differentiation of human induced pluripotent stem cells into insulin-like cell clusters with MIR-186 and MIR-375 by using chemical transfection
-
Shaer A, Azarpira N, Karimi MH. Differentiation of human induced pluripotent stem cells into insulin-like cell clusters with MIR-186 and MIR-375 by using chemical transfection. Appl Biochem Biotechnol 2014;174:242-258
-
(2014)
Appl Biochem Biotechnol
, vol.174
, pp. 242-258
-
-
Shaer, A.1
Azarpira, N.2
Karimi, M.H.3
-
81
-
-
65549130128
-
Mtorc1 activation regulates beta-cell mass and proliferation by modulation of cyclin D2 synthesis and stability
-
Balcazar N, Sathyamurthy A, Elghazi L, et al. mTORC1 activation regulates beta-cell mass and proliferation by modulation of cyclin D2 synthesis and stability. J Biol Chem 2009;284:7832-7842
-
(2009)
J Biol Chem
, vol.284
, pp. 7832-7842
-
-
Balcazar, N.1
Sathyamurthy, A.2
Elghazi, L.3
-
82
-
-
66449112884
-
Pax6 haploinsufficiency causes abnormal metabolic homeostasis by down-regulating glucagon-like peptide 1 in mice
-
Ding J, Gao Y, Zhao J, et al. Pax6 haploinsufficiency causes abnormal metabolic homeostasis by down-regulating glucagon-like peptide 1 in mice. Endocrinology 2009;150:2136-2144
-
(2009)
Endocrinology
, vol.150
, pp. 2136-2144
-
-
Ding, J.1
Gao, Y.2
Zhao, J.3
-
83
-
-
84864305807
-
Pancreas-enriched miRNA refines endocrine cell differentiation
-
Kredo-Russo S, Mandelbaum AD, Ness A, et al. Pancreas-enriched miRNA refines endocrine cell differentiation. Development 2012;139:3021-3031
-
(2012)
Development
, vol.139
, pp. 3021-3031
-
-
Kredo-Russo, S.1
Mandelbaum, A.D.2
Ness, A.3
-
84
-
-
84868132259
-
Antisense MIR-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds
-
Nieto M, Hevia P, Garcia E, et al. Antisense MIR-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds. Cell Transplant 2012;21:1761-1774
-
(2012)
Cell Transplant
, vol.21
, pp. 1761-1774
-
-
Nieto, M.1
Hevia, P.2
Garcia, E.3
-
85
-
-
61349122608
-
MicroRNA MIR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas
-
Correa-Medina M, Bravo-Egana V, Rosero S, et al. MicroRNA MIR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr Patterns 2009;9:193-199
-
(2009)
Gene Expr Patterns
, vol.9
, pp. 193-199
-
-
Correa-Medina, M.1
Bravo-Egana, V.2
Rosero, S.3
-
86
-
-
37549021902
-
Quantitative differential expression analysis reveals MIR-7 as major islet microRNA
-
Bravo-Egana V, Rosero S, Molano RD, et al. Quantitative differential expression analysis reveals MIR-7 as major islet microRNA. Biochem Biophys Res Commun 2008;366:922-926
-
(2008)
Biochem Biophys Res Commun
, vol.366
, pp. 922-926
-
-
Bravo-Egana, V.1
Rosero, S.2
Molano, R.D.3
-
87
-
-
0036323652
-
Foxa2 controls Pdx1 gene expression in pancreatic beta-cells in vivo
-
Lee CS, Sund NJ, Vatamaniuk MZ, Matschinsky FM, Stoffers DA, Kaestner KH. Foxa2 controls Pdx1 gene expression in pancreatic beta-cells in vivo. Diabetes 2002;51:2546-2551
-
(2002)
Diabetes
, vol.51
, pp. 2546-2551
-
-
Lee, C.S.1
Sund, N.J.2
Vatamaniuk, M.Z.3
Matschinsky, F.M.4
Stoffers, D.A.5
Kaestner, K.H.6
-
89
-
-
0033534510
-
Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription
-
Agarwal SK, Guru SC, Heppner C, et al. Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription. Cell 1999;96:143-152
-
(1999)
Cell
, vol.96
, pp. 143-152
-
-
Agarwal, S.K.1
Guru, S.C.2
Heppner, C.3
-
90
-
-
38449099624
-
Menin controls growth of pancreatic beta-cells in pregnant mice and promotes gestational diabetes mellitus
-
Karnik SK, Chen H, McLean GW, et al. Menin controls growth of pancreatic beta-cells in pregnant mice and promotes gestational diabetes mellitus. Science 2007;318:806-809
-
(2007)
Science
, vol.318
, pp. 806-809
-
-
Karnik, S.K.1
Chen, H.2
McLean, G.W.3
-
91
-
-
0035970092
-
A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors
-
Crabtree JS, Scacheri PC, Ward JM, et al. A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc Natl Acad Sci U S A 2001;98:1118-1123
-
(2001)
Proc Natl Acad Sci U S A
, vol.98
, pp. 1118-1123
-
-
Crabtree, J.S.1
Scacheri, P.C.2
Ward, J.M.3
-
92
-
-
0033755408
-
Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia
-
Kubota N, Tobe K, Terauchi Y, et al. Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes 2000;49:1880-1889
-
(2000)
Diabetes
, vol.49
, pp. 1880-1889
-
-
Kubota, N.1
Tobe, K.2
Terauchi, Y.3
-
93
-
-
80052495940
-
Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
-
He YF, Li BZ, Li Z, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011;333:1303-1307
-
(2011)
Science
, vol.333
, pp. 1303-1307
-
-
He, Y.F.1
Li, B.Z.2
Li, Z.3
-
94
-
-
80052461558
-
Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
-
Ito S, Shen L, Dai Q, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011;333:1300-1303
-
(2011)
Science
, vol.333
, pp. 1300-1303
-
-
Ito, S.1
Shen, L.2
Dai, Q.3
-
95
-
-
78650902669
-
Differences in islet-enriched miRNAs in healthy and glucose intolerant human subjects
-
Bolmeson C, Esguerra JL, Salehi A, Speidel D, Eliasson L, Cilio CM. Differences in islet-enriched miRNAs in healthy and glucose intolerant human subjects. Biochem Biophys Res Commun 2011;404:16-22
-
(2011)
Biochem Biophys Res Commun
, vol.404
, pp. 16-22
-
-
Bolmeson, C.1
Esguerra, J.L.2
Salehi, A.3
Speidel, D.4
Eliasson, L.5
Cilio, C.M.6
-
96
-
-
84890124194
-
Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes
-
Nesca V, Guay C, Jacovetti C, et al. Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia 2013;56:2203-2212
-
(2013)
Diabetologia
, vol.56
, pp. 2203-2212
-
-
Nesca, V.1
Guay, C.2
Jacovetti, C.3
-
97
-
-
84867146719
-
MicroRNAs contribute to compensatory β cell expansion during pregnancy and obesity
-
Jacovetti C, Abderrahmani A, Parnaud G, et al. MicroRNAs contribute to compensatory β cell expansion during pregnancy and obesity. J Clin Invest 2012;122:3541-3551
-
(2012)
J Clin Invest
, vol.122
, pp. 3541-3551
-
-
Jacovetti, C.1
Abderrahmani, A.2
Parnaud, G.3
-
98
-
-
0034652287
-
Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas
-
Gradwohl G, Dierich A, LeMeur M, Guillemot F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A 2000;97:1607-1611
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, pp. 1607-1611
-
-
Gradwohl, G.1
Dierich, A.2
Le Meur, M.3
Guillemot, F.4
-
99
-
-
58149350340
-
Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction
-
Lovis P, Roggli E, Laybutt DR, et al. Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 2008;57:2728-2736
-
(2008)
Diabetes
, vol.57
, pp. 2728-2736
-
-
Lovis, P.1
Roggli, E.2
Laybutt, D.R.3
-
100
-
-
84919820315
-
MicroRNA-200 is induced by thioredoxin-interacting protein and regulates Zeb1 protein signaling and beta cell apoptosis
-
Filios SR, Xu G, Chen J, Hong K, Jing G, Shalev A. MicroRNA-200 is induced by thioredoxin-interacting protein and regulates Zeb1 protein signaling and beta cell apoptosis. J Biol Chem 2014;289:36275-36283
-
(2014)
J Biol Chem
, vol.289
, pp. 36275-36283
-
-
Filios, S.R.1
Xu, G.2
Chen, J.3
Hong, K.4
Jing, G.5
Shalev, A.6
-
101
-
-
77951158889
-
Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells
-
Roggli E, Britan A, Gattesco S, et al. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 2010;59:978-986
-
(2010)
Diabetes
, vol.59
, pp. 978-986
-
-
Roggli, E.1
Britan, A.2
Gattesco, S.3
-
102
-
-
84857624291
-
Effect of microRNA-34a in cell cycle, differentiation, and apoptosis: A review
-
Chen F, Hu SJ. Effect of microRNA-34a in cell cycle, differentiation, and apoptosis: a review. J Biochem Mol Toxicol 2012;26:79-86
-
(2012)
J Biochem Mol Toxicol
, vol.26
, pp. 79-86
-
-
Chen, F.1
Hu, S.J.2
-
103
-
-
34250868124
-
Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: MIR-34a is a p53 target that induces apoptosis and G1-arrest
-
Tarasov V, Jung P, Verdoodt B, et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: MIR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 2007;6:1586-1593
-
(2007)
Cell Cycle
, vol.6
, pp. 1586-1593
-
-
Tarasov, V.1
Jung, P.2
Verdoodt, B.3
-
104
-
-
84869219338
-
MIR-34- A microRNA replacement therapy is headed to the clinic
-
Bader AG. MiR-34- A microRNA replacement therapy is headed to the clinic. Front Genet 2012;3:120
-
(2012)
Front Genet
, vol.3
, pp. 120
-
-
Bader, A.G.1
-
105
-
-
84900037375
-
Downregulation of Bcl-2 expression by MIR-34a mediates palmitate-induced Min6 cells apoptosis
-
Lin X, Guan H, Huang Z, et al. Downregulation of Bcl-2 expression by MIR-34a mediates palmitate-induced Min6 cells apoptosis. J Diabetes Res 2014;2014:258695
-
(2014)
J Diabetes Res
, vol.2014
, pp. 258695
-
-
Lin, X.1
Guan, H.2
Huang, Z.3
-
106
-
-
84930751975
-
The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes
-
Belgardt B-F, Ahmed K, Spranger M, et al. The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes. Nat Med 2015;21:619-627
-
(2015)
Nat Med
, vol.21
, pp. 619-627
-
-
Belgardt, B.-F.1
Ahmed, K.2
Spranger, M.3
-
107
-
-
17744367054
-
Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis
-
Minn AH, Hafele C, Shalev A. Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis. Endocrinology 2005;146:2397-2405
-
(2005)
Endocrinology
, vol.146
, pp. 2397-2405
-
-
Minn, A.H.1
Hafele, C.2
Shalev, A.3
-
108
-
-
43049103824
-
The MIR-200 family and MIR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1
-
Gregory PA, Bert AG, Paterson EL, et al. The MIR-200 family and MIR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008;10:593-601
-
(2008)
Nat Cell Biol
, vol.10
, pp. 593-601
-
-
Gregory, P.A.1
Bert, A.G.2
Paterson, E.L.3
-
109
-
-
53649097239
-
Pancreatic transcription factors and their role in the birth, life and survival of the pancreatic beta cell
-
Bernardo AS, Hay CW, Docherty K. Pancreatic transcription factors and their role in the birth, life and survival of the pancreatic beta cell. Mol Cell Endocrinol 2008;294:1-9
-
(2008)
Mol Cell Endocrinol
, vol.294
, pp. 1-9
-
-
Bernardo, A.S.1
Hay, C.W.2
Docherty, K.3
-
110
-
-
79251485649
-
Modifications of small RNAs and their associated proteins
-
Kim YK, Heo I, Kim VN. Modifications of small RNAs and their associated proteins. Cell 2010;143:703-709
-
(2010)
Cell
, vol.143
, pp. 703-709
-
-
Kim, Y.K.1
Heo, I.2
Kim, V.N.3
-
111
-
-
84891856209
-
Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets
-
Kameswaran V, Bramswig NC, McKenna LB, et al. Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab 2014;19:135-145
-
(2014)
Cell Metab
, vol.19
, pp. 135-145
-
-
Kameswaran, V.1
Bramswig, N.C.2
McKenna, L.B.3
-
112
-
-
84875372911
-
Natural RNA circles function as efficient microRNA sponges
-
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013;495:384-388
-
(2013)
Nature
, vol.495
, pp. 384-388
-
-
Hansen, T.B.1
Jensen, T.I.2
Clausen, B.H.3
-
113
-
-
84876367541
-
Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal
-
Wang Y, Xu Z, Jiang J, et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell 2013;25:69-80
-
(2013)
Dev Cell
, vol.25
, pp. 69-80
-
-
Wang, Y.1
Xu, Z.2
Jiang, J.3
-
114
-
-
77953957633
-
A coding-independent function of gene and pseudogene mRNAs regulates tumour biology
-
Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010;465:1033-1038
-
(2010)
Nature
, vol.465
, pp. 1033-1038
-
-
Poliseno, L.1
Salmena, L.2
Zhang, J.3
Carver, B.4
Haveman, W.J.5
Pandolfi, P.P.6
-
115
-
-
84901838697
-
Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance
-
Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell 2014;54:766-776
-
(2014)
Mol Cell
, vol.54
, pp. 766-776
-
-
Denzler, R.1
Agarwal, V.2
Stefano, J.3
Bartel, D.P.4
Stoffel, M.5
-
116
-
-
84867070330
-
Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes
-
Morán I, Akerman I, Van De Bunt M, et al. Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metab 2012;16:435-448
-
(2012)
Cell Metab
, vol.16
, pp. 435-448
-
-
Morán, I.1
Akerman, I.2
Van De Bunt, M.3
-
117
-
-
84937512955
-
Involvement of long non-coding RNAs in beta cell failure at the onset of type 1 diabetes in NOD mice
-
Motterle A, Gattesco S, Caille D, Meda P, Regazzi R. Involvement of long non-coding RNAs in beta cell failure at the onset of type 1 diabetes in NOD mice. Diabetologia 2015;58:1827-1835
-
(2015)
Diabetologia
, vol.58
, pp. 1827-1835
-
-
Motterle, A.1
Gattesco, S.2
Caille, D.3
Meda, P.4
Regazzi, R.5
-
118
-
-
84906226995
-
Functional implications of long non-coding RNAs in the pancreatic islets of Langerhans
-
Esguerra JL, Eliasson L. Functional implications of long non-coding RNAs in the pancreatic islets of Langerhans. Front Genet 2014;5:209
-
(2014)
Front Genet
, vol.5
, pp. 209
-
-
Esguerra, J.L.1
Eliasson, L.2
-
119
-
-
84906248499
-
The Missing lnc (RNA) between the pancreatic β-cell and diabetes
-
Kameswaran V, Kaestner KH. The Missing lnc (RNA) between the pancreatic β-cell and diabetes. Front Genet 2014;5:200
-
(2014)
Front Genet
, vol.5
, pp. 200
-
-
Kameswaran, V.1
Kaestner, K.H.2
-
120
-
-
84984765621
-
Canalization of development by microRNAs
-
Hornstein E, Shomron N. Canalization of development by microRNAs. Nat Genet 2006;38(Suppl.):S20-S24
-
(2006)
Nat Genet
, vol.38
, pp. S20-S24
-
-
Hornstein, E.1
Shomron, N.2
-
121
-
-
77954517267
-
MicroRNAs and gene regulatory networks: Managing the impact of noise in biological systems
-
Herranz H, Cohen SM. MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. Genes Dev 2010;24:1339-1344
-
(2010)
Genes Dev
, vol.24
, pp. 1339-1344
-
-
Herranz, H.1
Cohen, S.M.2
|