메뉴 건너뛰기




Volumn 110, Issue 44, 2013, Pages 17892-17897

MicroRNA-26a targets ten eleven translocation enzymes and is regulated during pancreatic cell differentiation

Author keywords

[No Author keywords available]

Indexed keywords

5 HYDROXYMETHYLCYTOSINE; MICRORNA 26A;

EID: 84887046365     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1317397110     Document Type: Article
Times cited : (119)

References (51)
  • 1
    • 66149146320 scopus 로고    scopus 로고
    • Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
    • Tahiliani M, et al. (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929):930-935.
    • (2009) Science , vol.324 , Issue.5929 , pp. 930-935
    • Tahiliani, M.1
  • 2
    • 77956189495 scopus 로고    scopus 로고
    • Role of Tet proteins in 5mC to 5hmC conversion ES-cell self-renewal and inner cell mass specification
    • Ito S, et al. (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466(7310):1129-1133.
    • (2010) Nature , vol.466 , Issue.7310 , pp. 1129-1133
    • Ito, S.1
  • 3
    • 79959937861 scopus 로고    scopus 로고
    • Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair
    • Cortellino S, et al. (2011) Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146(1):67-79.
    • (2011) Cell , vol.146 , Issue.1 , pp. 67-79
    • Cortellino, S.1
  • 4
    • 80052461558 scopus 로고    scopus 로고
    • Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
    • Ito S, et al. (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333(6047):1300-1303.
    • (2011) Science , vol.333 , Issue.6047 , pp. 1300-1303
    • Ito, S.1
  • 5
    • 80052495940 scopus 로고    scopus 로고
    • Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
    • He YF, et al. (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333(6047):1303-1307.
    • (2011) Science , vol.333 , Issue.6047 , pp. 1303-1307
    • He, Y.F.1
  • 6
    • 80053917872 scopus 로고    scopus 로고
    • Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: Potential implications for active demethylation of CpG sites
    • Maiti A, Drohat AC (2011) Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: Potential implications for active demethylation of CpG sites. J Biol Chem 286(41):35334-35338.
    • (2011) J Biol Chem , vol.286 , Issue.41 , pp. 35334-35338
    • Maiti, A.1    Drohat, A.C.2
  • 7
    • 79551587102 scopus 로고    scopus 로고
    • Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells
    • Koh KP, et al. (2011) Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8(2):200-213.
    • (2011) Cell Stem Cell , vol.8 , Issue.2 , pp. 200-213
    • Koh, K.P.1
  • 8
    • 84872770694 scopus 로고    scopus 로고
    • Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine
    • Hackett JA, et al. (2013) Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339(6118):448-452.
    • (2013) Science , vol.339 , Issue.6118 , pp. 448-452
    • Hackett, J.A.1
  • 9
    • 84875949201 scopus 로고    scopus 로고
    • Stage-specific roles for tet1 and tet2 in DNA demethylation in primordial germ cells
    • Vincent JJ, et al. (2013) Stage-specific roles for tet1 and tet2 in DNA demethylation in primordial germ cells. Cell Stem Cell 12(4):470-478.
    • (2013) Cell Stem Cell , vol.12 , Issue.4 , pp. 470-478
    • Vincent, J.J.1
  • 10
    • 79956294973 scopus 로고    scopus 로고
    • DNA methylation and demethylation in mammals
    • Chen ZX, Riggs AD (2011) DNA methylation and demethylation in mammals. J Biol Chem 286(21):18347-18353.
    • (2011) J Biol Chem , vol.286 , Issue.21 , pp. 18347-18353
    • Chen, Z.X.1    Riggs, A.D.2
  • 11
    • 83855163995 scopus 로고    scopus 로고
    • Uncovering the role of 5-hydroxymethylcytosine in the epigenome
    • Branco MR, Ficz G, Reik W (2012) Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet 13(1):7-13.
    • (2012) Nat Rev Genet , vol.13 , Issue.1 , pp. 7-13
    • Branco, M.R.1    Ficz, G.2    Reik, W.3
  • 12
    • 80053348585 scopus 로고    scopus 로고
    • The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes
    • Gu TP, et al. (2011) The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477(7366):606-610.
    • (2011) Nature , vol.477 , Issue.7366 , pp. 606-610
    • Gu, T.P.1
  • 13
    • 80052303426 scopus 로고    scopus 로고
    • TET family proteins and their role in stem cell differentiation and transformation
    • Cimmino L, Abdel-Wahab O, Levine RL, Aifantis I (2011) TET family proteins and their role in stem cell differentiation and transformation. Cell Stem Cell 9(3):193-204.
    • (2011) Cell Stem Cell , vol.9 , Issue.3 , pp. 193-204
    • Cimmino, L.1    Abdel-Wahab, O.2    Levine, R.L.3    Aifantis, I.4
  • 14
    • 84860749868 scopus 로고    scopus 로고
    • Tet family proteins and 5-hydroxymethylcytosine in development and disease
    • Tan L, Shi YG (2012) Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development 139(11):1895-1902.
    • (2012) Development , vol.139 , pp. 11
    • Tan, L.1    Shi, Y.G.2
  • 15
    • 82955207588 scopus 로고    scopus 로고
    • Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation
    • Wu H, Zhang Y (2011) Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev 25(23):2436-2452.
    • (2011) Genes Dev , vol.25 , Issue.23 , pp. 2436-2452
    • Wu, H.1    Zhang, Y.2
  • 16
    • 84881178902 scopus 로고    scopus 로고
    • Tet1 regulates adult hippocampal neurogenesis and cognition
    • Zhang RR, et al. (2013) Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell 13(2):237-245.
    • (2013) Cell Stem Cell , vol.13 , Issue.2 , pp. 237-245
    • Zhang, R.R.1
  • 17
    • 77957664647 scopus 로고    scopus 로고
    • MicroRNAs as regulators of differentiation and cell fate decisions
    • Ivey KN, Srivastava D (2010) MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell 7(1):36-41.
    • (2010) Cell Stem Cell , vol.7 , Issue.1 , pp. 36-41
    • Ivey, K.N.1    Srivastava, D.2
  • 18
    • 79951648873 scopus 로고    scopus 로고
    • Pancreas organogenesis: From bud to plexus to gland
    • Pan FC, Wright C (2011) Pancreas organogenesis: From bud to plexus to gland. Dev Dyn 240(3):530-565.
    • (2011) Dev Dyn , vol.240 , Issue.3 , pp. 530-565
    • Pan, F.C.1    Wright, C.2
  • 19
    • 0028149890 scopus 로고
    • Insulin-promoter-factor 1 is required for pancreas development in mice
    • Jonsson J, Carlsson L, Edlund T, Edlund H (1994) Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371(6498):606-609.
    • (1994) Nature , vol.371 , Issue.6498 , pp. 606-609
    • Jonsson, J.1    Carlsson, L.2    Edlund, T.3    Edlund, H.4
  • 20
    • 0029868156 scopus 로고    scopus 로고
    • PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum
    • Offield MF, et al. (1996) PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122(3):983-995.
    • (1996) Development , vol.122 , Issue.3 , pp. 983-995
    • Offield, M.F.1
  • 21
    • 0036340074 scopus 로고    scopus 로고
    • Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors
    • Gu G, Dubauskaite J, Melton DA (2002) Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129(10):2447-2457.
    • (2002) Development , vol.129 , Issue.10 , pp. 2447-2457
    • Gu, G.1    Dubauskaite, J.2    Melton, D.A.3
  • 22
    • 34250893048 scopus 로고    scopus 로고
    • A multipotent progenitor domain guides pancreatic organogenesis
    • Zhou Q, et al. (2007) A multipotent progenitor domain guides pancreatic organogenesis. Dev Cell 13(1):103-114.
    • (2007) Dev Cell , vol.13 , Issue.1 , pp. 103-114
    • Zhou, Q.1
  • 23
    • 0034652287 scopus 로고    scopus 로고
    • Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas
    • Gradwohl G, Dierich A, LeMeur M, Guillemot F (2000) neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA 97(4):1607-1611.
    • (2000) Proc Natl Acad Sci USA , vol.97 , Issue.4 , pp. 1607-1611
    • Gradwohl, G.1    Dierich, A.2    Lemeur, M.3    Guillemot, F.4
  • 25
    • 0029027780 scopus 로고
    • Developmental biology of the pancreas
    • Slack JM (1995) Developmental biology of the pancreas. Development 121(6): 1569-1580.
    • (1995) Development , vol.121 , Issue.6 , pp. 1569-1580
    • Slack, J.M.1
  • 26
    • 58149378342 scopus 로고    scopus 로고
    • Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth
    • Inada A, et al. (2008) Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci USA 105(50): 19915-19919.
    • (2008) Proc Natl Acad Sci USA , vol.105 , Issue.50 , pp. 19915-19919
    • Inada, A.1
  • 27
    • 38749108893 scopus 로고    scopus 로고
    • Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas
    • Xu X, et al. (2008) Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132(2):197-207.
    • (2008) Cell , vol.132 , Issue.2 , pp. 197-207
    • Xu, X.1
  • 28
    • 2342510386 scopus 로고    scopus 로고
    • Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation
    • Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429(6987):41-46.
    • (2004) Nature , vol.429 , Issue.6987 , pp. 41-46
    • Dor, Y.1    Brown, J.2    Martinez, O.I.3    Melton, D.A.4
  • 29
    • 71649092364 scopus 로고    scopus 로고
    • Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth
    • Solar M, et al. (2009) Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev Cell 17(6):849-860.
    • (2009) Dev Cell , vol.17 , Issue.6 , pp. 849-860
    • Solar, M.1
  • 30
    • 84874613949 scopus 로고    scopus 로고
    • Colony-forming cells in the adult mouse pancreas are expandable in Matrigel and form endocrine/acinar colonies in laminin hydrogel
    • Jin L, et al. (2013) Colony-forming cells in the adult mouse pancreas are expandable in Matrigel and form endocrine/acinar colonies in laminin hydrogel. Proc Natl Acad Sci USA 110(10):3907-3912.
    • (2013) Proc Natl Acad Sci USA , vol.110 , Issue.10 , pp. 3907-3912
    • Jin, L.1
  • 31
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: Target recognition and regulatory functions
    • Bartel DP (2009) MicroRNAs: Target recognition and regulatory functions. Cell 136(2): 215-233.
    • (2009) Cell , vol.136 , Issue.2 , pp. 215-233
    • Bartel, D.P.1
  • 32
    • 11844278458 scopus 로고    scopus 로고
    • Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
    • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1): 15-20.
    • (2005) Cell , vol.120 , Issue.1 , pp. 15-20
    • Lewis, B.P.1    Burge, C.B.2    Bartel, D.P.3
  • 33
    • 34250805982 scopus 로고    scopus 로고
    • MicroRNA targeting specificity in mammals: Determinants beyond seed pairing
    • Grimson A, et al. (2007) MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol Cell 27(1):91-105.
    • (2007) Mol Cell , vol.27 , Issue.1 , pp. 91-105
    • Grimson, A.1
  • 34
    • 34249856066 scopus 로고    scopus 로고
    • Distance constraints between microRNA target sites dictate efficacy and cooperativity
    • Saetrom P, et al. (2007) Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res 35(7):2333-2342.
    • (2007) Nucleic Acids Res , vol.35 , Issue.7 , pp. 2333-2342
    • Saetrom, P.1
  • 35
    • 84857975722 scopus 로고    scopus 로고
    • Functional beta-cell maturation is marked by an increased glucose threshold and by expression of urocortin 3
    • Blum B, et al. (2012) Functional beta-cell maturation is marked by an increased glucose threshold and by expression of urocortin 3. Nat Biotechnol 30(3):261-264.
    • (2012) Nat Biotechnol , vol.30 , Issue.3 , pp. 261-264
    • Blum, B.1
  • 36
    • 34247644369 scopus 로고    scopus 로고
    • Growth and regeneration of adult beta cells does not involve specialized progenitors
    • Teta M, Rankin MM, Long SY, Stein GM, Kushner JA (2007) Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell 12(5):817-826.
    • (2007) Dev Cell , vol.12 , Issue.5 , pp. 817-826
    • Teta, M.1    Rankin, M.M.2    Long, S.Y.3    Stein, G.M.4    Kushner, J.A.5
  • 37
    • 84859602728 scopus 로고    scopus 로고
    • Microfluidic single-cell real-Time PCR for comparative analysis of gene expression patterns
    • Sanchez-Freire V, Ebert AD, Kalisky T, Quake SR, Wu JC (2012) Microfluidic single-cell real-Time PCR for comparative analysis of gene expression patterns. Nat Protoc 7(5): 829-838.
    • (2012) Nat Protoc , vol.7 , Issue.5 , pp. 829-838
    • Sanchez-Freire, V.1    Ebert, A.D.2    Kalisky, T.3    Quake, S.R.4    Wu, J.C.5
  • 38
    • 77956095231 scopus 로고    scopus 로고
    • Active DNA demethylation: Many roads lead to Rome
    • Wu SC, Zhang Y (2010) Active DNA demethylation: Many roads lead to Rome. Nat Rev Mol Cell Biol 11(9):607-620.
    • (2010) Nat Rev Mol Cell Biol , vol.11 , Issue.9 , pp. 607-620
    • Wu, S.C.1    Zhang, Y.2
  • 39
    • 84876946045 scopus 로고    scopus 로고
    • Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics
    • Shen L, et al. (2013) Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153(3):692-706.
    • (2013) Cell , vol.153 , Issue.3 , pp. 692-706
    • Shen, L.1
  • 40
    • 44349086037 scopus 로고    scopus 로고
    • MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis
    • Wong CF, Tellam RL (2008) MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. J Biol Chem 283(15):9836-9843.
    • (2008) J Biol Chem , vol.283 , Issue.15 , pp. 9836-9843
    • Wong, C.F.1    Tellam, R.L.2
  • 41
    • 84867170366 scopus 로고    scopus 로고
    • MiR-26a is required for skeletal muscle differentiation and regeneration in mice
    • Dey BK, Gagan J, Yan Z, Dutta A (2012) miR-26a is required for skeletal muscle differentiation and regeneration in mice. Genes Dev 26(19):2180-2191.
    • (2012) Genes Dev , vol.26 , Issue.19 , pp. 2180-2191
    • Dey, B.K.1    Gagan, J.2    Yan, Z.3    Dutta, A.4
  • 42
    • 84855323194 scopus 로고    scopus 로고
    • Intronic miR-26b controls neuronal differentiation by repressing its host transcript, ctdsp2
    • Dill H, Linder B, Fehr A, Fischer U (2012) Intronic miR-26b controls neuronal differentiation by repressing its host transcript, ctdsp2. Genes Dev 26(1):25-30.
    • (2012) Genes Dev , vol.26 , Issue.1 , pp. 25-30
    • Dill, H.1    Linder, B.2    Fehr, A.3    Fischer, U.4
  • 43
    • 84875923762 scopus 로고    scopus 로고
    • Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming
    • Gao Y, et al. (2013) Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell 12(4):453-469.
    • (2013) Cell Stem Cell , vol.12 , Issue.4 , pp. 453-469
    • Gao, Y.1
  • 44
    • 76649130555 scopus 로고    scopus 로고
    • Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship
    • Kim H, et al. (2010) Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc Natl Acad Sci USA 107(5):2183-2188.
    • (2010) Proc Natl Acad Sci USA , vol.107 , Issue.5 , pp. 2183-2188
    • Kim, H.1
  • 45
    • 80052285127 scopus 로고    scopus 로고
    • Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies
    • Li Z, et al. (2011) Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 118(17):4509-4518.
    • (2011) Blood , vol.118 , Issue.17 , pp. 4509-4518
    • Li, Z.1
  • 46
    • 79961139741 scopus 로고    scopus 로고
    • Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development
    • DawlatyMM, et al. (2011) Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell 9(2): 166-175.
    • (2011) Cell Stem Cell , vol.9 , Issue.2 , pp. 166-175
    • Dawlaty, M.M.1
  • 47
    • 84873707539 scopus 로고    scopus 로고
    • Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development
    • Dawlaty MM, et al. (2013) Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev Cell 24(3):310-323.
    • (2013) Dev Cell , vol.24 , Issue.3 , pp. 310-323
    • Dawlaty, M.M.1
  • 48
    • 79954563768 scopus 로고    scopus 로고
    • Pancreatic cell identity is maintained by DNA methylation-mediated repression of Arx
    • Dhawan S, Georgia S, Tschen SI, Fan G, Bhushan A (2011) Pancreatic cell identity is maintained by DNA methylation-mediated repression of Arx. Dev Cell 20(4):419-429.
    • (2011) Dev Cell , vol.20 , Issue.4 , pp. 419-429
    • Dhawan, S.1    Georgia, S.2    Tschen, S.I.3    Fan, G.4    Bhushan, A.5
  • 49
    • 34247594818 scopus 로고    scopus 로고
    • Regulation of the germinal center response by microRNA-155
    • Thai TH, et al. (2007) Regulation of the germinal center response by microRNA-155. Science 316(5824):604-608.
    • (2007) Science , vol.316 , Issue.5824 , pp. 604-608
    • Thai, T.H.1
  • 50
    • 0036202934 scopus 로고    scopus 로고
    • A Cre/loxP-deleter transgenic line in mouse strain 129S1/SvImJ
    • Tang SH, Silva FJ, Tsark WM, Mann JR (2002) A Cre/loxP-deleter transgenic line in mouse strain 129S1/SvImJ. Genesis 32(3):199-202.
    • (2002) Genesis , vol.32 , Issue.3 , pp. 199-202
    • Tang, S.H.1    Silva, F.J.2    Tsark, W.M.3    Mann, J.R.4
  • 51
    • 0242401835 scopus 로고    scopus 로고
    • A gene expression atlas of the central nervous system based on bacterial artificial chromosomes
    • Gong S, et al. (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425(6961):917-925.
    • (2003) Nature , vol.425 , Issue.6961 , pp. 917-925
    • Gong, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.