-
1
-
-
84872868657
-
Vascularized bone grafts for the management of skeletal defects in orthopaedic trauma and reconstructive surgery
-
Soucacos P.N., Kokkalis Z.T., Piagkou M., Johnson E.O. Vascularized bone grafts for the management of skeletal defects in orthopaedic trauma and reconstructive surgery. Injury 2013, 44(Suppl. 1):S70-S75.
-
(2013)
Injury
, vol.44
, pp. S70-S75
-
-
Soucacos, P.N.1
Kokkalis, Z.T.2
Piagkou, M.3
Johnson, E.O.4
-
2
-
-
81155160910
-
What bone graft substitutes should we use in post-traumatic spinal fusion?
-
Guerado E., Fuerstenberg C.H. What bone graft substitutes should we use in post-traumatic spinal fusion?. Injury 2011, 42(Suppl. 2):S64-S71.
-
(2011)
Injury
, vol.42
, pp. S64-S71
-
-
Guerado, E.1
Fuerstenberg, C.H.2
-
3
-
-
84899076559
-
Bone regenerative medicine: classic options, novel strategies, and future directions
-
799X-9-18
-
Oryan A., Alidadi S., Moshiri A., Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J. Orthop. Surg. Res. 2014, 9(1):18. -799X-9-18.
-
(2014)
J. Orthop. Surg. Res.
, vol.9
, Issue.1
, pp. 18
-
-
Oryan, A.1
Alidadi, S.2
Moshiri, A.3
Maffulli, N.4
-
4
-
-
0033961005
-
The use of allograft bone in lumbar spine surgery
-
Ehrler D.M., Vaccaro A.R. The use of allograft bone in lumbar spine surgery. Clin. Orthop. Relat. Res. 2000, (371):38-45.
-
(2000)
Clin. Orthop. Relat. Res.
, Issue.371
, pp. 38-45
-
-
Ehrler, D.M.1
Vaccaro, A.R.2
-
5
-
-
0030026859
-
Long-term results of allograft replacement in the management of bone tumors
-
Mankin H.J., Gebhardt M.C., Jennings L.C., Springfield D.S., Tomford W.W. Long-term results of allograft replacement in the management of bone tumors. Clin. Orthop. Relat. Res. 1996, (324):86-97.
-
(1996)
Clin. Orthop. Relat. Res.
, Issue.324
, pp. 86-97
-
-
Mankin, H.J.1
Gebhardt, M.C.2
Jennings, L.C.3
Springfield, D.S.4
Tomford, W.W.5
-
6
-
-
20444371864
-
Allograft bone decreases in strength in vivo over time
-
Wheeler D.L., Enneking W.F. Allograft bone decreases in strength in vivo over time. Clin. Orthop. Relat. Res. 2005, (435):36-42.
-
(2005)
Clin. Orthop. Relat. Res.
, Issue.435
, pp. 36-42
-
-
Wheeler, D.L.1
Enneking, W.F.2
-
7
-
-
84866840029
-
Vascularized bone tissue engineering: approaches for potential improvement
-
Nguyen L.H., Annabi N., Nikkhah M., et al. Vascularized bone tissue engineering: approaches for potential improvement. Tissue Eng. Part B Rev. 2012, 18(5):363-382.
-
(2012)
Tissue Eng. Part B Rev.
, vol.18
, Issue.5
, pp. 363-382
-
-
Nguyen, L.H.1
Annabi, N.2
Nikkhah, M.3
-
8
-
-
77649258698
-
Engineered vascularized bone grafts
-
Tsigkou O., Pomerantseva I., Spencer J.A., et al. Engineered vascularized bone grafts. Proc. Natl. Acad. Sci. U. S. A. 2010, 107(8):3311-3316.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, Issue.8
, pp. 3311-3316
-
-
Tsigkou, O.1
Pomerantseva, I.2
Spencer, J.A.3
-
9
-
-
0015804548
-
Self-regulation of growth in three dimensions
-
Folkman J., Hochberg M. Self-regulation of growth in three dimensions. J. Exp. Med. 1973, 138(4):745-753.
-
(1973)
J. Exp. Med.
, vol.138
, Issue.4
, pp. 745-753
-
-
Folkman, J.1
Hochberg, M.2
-
10
-
-
84874022424
-
Vascularized bone grafts for the treatment of carpal bone pathology
-
Derby B.M., Murray P.M., Shin A.Y., et al. Vascularized bone grafts for the treatment of carpal bone pathology. Hand (N Y). 2013, 8(1):27-40.
-
(2013)
Hand (N Y).
, vol.8
, Issue.1
, pp. 27-40
-
-
Derby, B.M.1
Murray, P.M.2
Shin, A.Y.3
-
11
-
-
37849186769
-
Avascular necrosis of the femoral head: role of vascularized bone grafts
-
v
-
Aldridge J.M., Urbaniak J.R. Avascular necrosis of the femoral head: role of vascularized bone grafts. Orthop. Clin. N. Am. 2007, 38(1):13-22. v.
-
(2007)
Orthop. Clin. N. Am.
, vol.38
, Issue.1
, pp. 13-22
-
-
Aldridge, J.M.1
Urbaniak, J.R.2
-
12
-
-
0034104295
-
VPF/VEGF and the angiogenic response
-
Dvorak H.F. VPF/VEGF and the angiogenic response. Semin. Perinatol. 2000, 24(1):75-78.
-
(2000)
Semin. Perinatol.
, vol.24
, Issue.1
, pp. 75-78
-
-
Dvorak, H.F.1
-
13
-
-
0034076189
-
Mechanisms of angiogenesis and arteriogenesis
-
Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 2000, 6(4):389-395.
-
(2000)
Nat. Med.
, vol.6
, Issue.4
, pp. 389-395
-
-
Carmeliet, P.1
-
14
-
-
0031039243
-
The biology of vascular endothelial growth factor
-
Ferrara N., Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr. Rev. 1997, 18(1):4-25.
-
(1997)
Endocr. Rev.
, vol.18
, Issue.1
, pp. 4-25
-
-
Ferrara, N.1
Davis-Smyth, T.2
-
15
-
-
0037699954
-
The biology of VEGF and its receptors
-
Ferrara N., Gerber H.P., LeCouter J. The biology of VEGF and its receptors. Nat. Med. 2003, 9(6):669-676.
-
(2003)
Nat. Med.
, vol.9
, Issue.6
, pp. 669-676
-
-
Ferrara, N.1
Gerber, H.P.2
LeCouter, J.3
-
16
-
-
0033059666
-
Cartilage to bone-angiogenesis leads the way
-
Harper J., Klagsbrun M. Cartilage to bone-angiogenesis leads the way. Nat. Med. 1999, 5(6):617-618.
-
(1999)
Nat. Med.
, vol.5
, Issue.6
, pp. 617-618
-
-
Harper, J.1
Klagsbrun, M.2
-
17
-
-
0033027858
-
VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation
-
Gerber H.P., Vu T.H., Ryan A.M., Kowalski J., Werb Z., Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med. 1999, 5(6):623-628.
-
(1999)
Nat. Med.
, vol.5
, Issue.6
, pp. 623-628
-
-
Gerber, H.P.1
Vu, T.H.2
Ryan, A.M.3
Kowalski, J.4
Werb, Z.5
Ferrara, N.6
-
18
-
-
34548543843
-
VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute
-
Geiger F., Lorenz H., Xu W., et al. VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute. Bone 2007, 41(4):516-522.
-
(2007)
Bone
, vol.41
, Issue.4
, pp. 516-522
-
-
Geiger, F.1
Lorenz, H.2
Xu, W.3
-
19
-
-
58149271034
-
Effect of cell-based VEGF gene therapy on healing of a segmental bone defect
-
Li R., Stewart D.J., von Schroeder H.P., Mackinnon E.S., Schemitsch E.H. Effect of cell-based VEGF gene therapy on healing of a segmental bone defect. J. Orthop. Res. 2009, 27(1):8-14.
-
(2009)
J. Orthop. Res.
, vol.27
, Issue.1
, pp. 8-14
-
-
Li, R.1
Stewart, D.J.2
von Schroeder, H.P.3
Mackinnon, E.S.4
Schemitsch, E.H.5
-
20
-
-
0035208929
-
Prevention of fracture healing in rats by an inhibitor of angiogenesis
-
Hausman M.R., Schaffler M.B., Majeska R.J. Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone 2001, 29(6):560-564.
-
(2001)
Bone
, vol.29
, Issue.6
, pp. 560-564
-
-
Hausman, M.R.1
Schaffler, M.B.2
Majeska, R.J.3
-
21
-
-
76649119775
-
Vascular endothelial growth factor: an essential component of angiogenesis and fracture healing
-
Beamer B., Hettrich C., Lane J. Vascular endothelial growth factor: an essential component of angiogenesis and fracture healing. HSS J. 2010, 6(1):85-94.
-
(2010)
HSS J.
, vol.6
, Issue.1
, pp. 85-94
-
-
Beamer, B.1
Hettrich, C.2
Lane, J.3
-
22
-
-
51849093548
-
Fracture vascularity and bone healing: a systematic review of the role of VEGF
-
Keramaris N.C., Calori G.M., Nikolaou V.S., Schemitsch E.H., Giannoudis P.V. Fracture vascularity and bone healing: a systematic review of the role of VEGF. Injury 2008, 39(Suppl. 2):S45-S57.
-
(2008)
Injury
, vol.39
, pp. S45-S57
-
-
Keramaris, N.C.1
Calori, G.M.2
Nikolaou, V.S.3
Schemitsch, E.H.4
Giannoudis, P.V.5
-
23
-
-
84870252896
-
Comparison of platelet-rich plasma and VEGF-transfected mesenchymal stem cells on vascularization and bone formation in a critical-size bone defect
-
Kasten P., Beverungen M., Lorenz H., Wieland J., Fehr M., Geiger F. Comparison of platelet-rich plasma and VEGF-transfected mesenchymal stem cells on vascularization and bone formation in a critical-size bone defect. Cells Tissues Organs 2012, 196(6):523-533.
-
(2012)
Cells Tissues Organs
, vol.196
, Issue.6
, pp. 523-533
-
-
Kasten, P.1
Beverungen, M.2
Lorenz, H.3
Wieland, J.4
Fehr, M.5
Geiger, F.6
-
24
-
-
0036738338
-
Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4
-
Peng H., Wright V., Usas A., et al. Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J. Clin. Invest. 2002, 110(6):751-759.
-
(2002)
J. Clin. Invest.
, vol.110
, Issue.6
, pp. 751-759
-
-
Peng, H.1
Wright, V.2
Usas, A.3
-
25
-
-
84855544502
-
Temporal and spatial vascularization patterns of unions and nonunions: role of vascular endothelial growth factor and bone morphogenetic proteins
-
Garcia P., Pieruschka A., Klein M., et al. Temporal and spatial vascularization patterns of unions and nonunions: role of vascular endothelial growth factor and bone morphogenetic proteins. J. Bone Joint Surg. (Am. Vol.) 2012, 94(1):49-58.
-
(2012)
J. Bone Joint Surg. (Am. Vol.)
, vol.94
, Issue.1
, pp. 49-58
-
-
Garcia, P.1
Pieruschka, A.2
Klein, M.3
-
26
-
-
27444446737
-
VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis
-
Peng H., Usas A., Olshanski A., et al. VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. J. Bone Miner. Res. 2005, 20(11):2017-2027.
-
(2005)
J. Bone Miner. Res.
, vol.20
, Issue.11
, pp. 2017-2027
-
-
Peng, H.1
Usas, A.2
Olshanski, A.3
-
27
-
-
84961728945
-
The impact of high density receptor clusters on VEGF signaling
-
Chen Y., Short C., Halasz A.M., Edwards J.S. The impact of high density receptor clusters on VEGF signaling. Electron Proc Theor Comput Sci. 2013, 2013:37-52.
-
(2013)
Electron Proc Theor Comput Sci.
, vol.2013
, pp. 37-52
-
-
Chen, Y.1
Short, C.2
Halasz, A.M.3
Edwards, J.S.4
-
28
-
-
77249148863
-
Structural determinants of growth factor binding and specificity by VEGF receptor 2
-
Leppanen V.M., Prota A.E., Jeltsch M., et al. Structural determinants of growth factor binding and specificity by VEGF receptor 2. Proc. Natl. Acad. Sci. U. S. A. 2010, 107(6):2425-2430.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, Issue.6
, pp. 2425-2430
-
-
Leppanen, V.M.1
Prota, A.E.2
Jeltsch, M.3
-
29
-
-
33646268150
-
VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects
-
Kaigler D., Wang Z., Horger K., Mooney D.J., Krebsbach P.H. VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J. Bone Miner. Res. 2006, 21(5):735-744.
-
(2006)
J. Bone Miner. Res.
, vol.21
, Issue.5
, pp. 735-744
-
-
Kaigler, D.1
Wang, Z.2
Horger, K.3
Mooney, D.J.4
Krebsbach, P.H.5
-
30
-
-
2442549663
-
Basic fibroblast growth factor induces angiogenesis in vitro
-
Montesano R., Vassalli J.D., Baird A., Guillemin R., Orci L. Basic fibroblast growth factor induces angiogenesis in vitro. Proc. Natl. Acad. Sci. U. S. A. 1986, 83(19):7297-7301.
-
(1986)
Proc. Natl. Acad. Sci. U. S. A.
, vol.83
, Issue.19
, pp. 7297-7301
-
-
Montesano, R.1
Vassalli, J.D.2
Baird, A.3
Guillemin, R.4
Orci, L.5
-
31
-
-
0023772740
-
Regulation of bovine bone cell proliferation by fibroblast growth factor and transforming growth factor beta
-
Globus R.K., Patterson-Buckendahl P., Gospodarowicz D. Regulation of bovine bone cell proliferation by fibroblast growth factor and transforming growth factor beta. Endocrinology 1988, 123(1):98-105.
-
(1988)
Endocrinology
, vol.123
, Issue.1
, pp. 98-105
-
-
Globus, R.K.1
Patterson-Buckendahl, P.2
Gospodarowicz, D.3
-
32
-
-
79957859079
-
Angiogenesis in bone regeneration
-
Hankenson K.D., Dishowitz M., Gray C., Schenker M. Angiogenesis in bone regeneration. Injury 2011, 42(6):556-561.
-
(2011)
Injury
, vol.42
, Issue.6
, pp. 556-561
-
-
Hankenson, K.D.1
Dishowitz, M.2
Gray, C.3
Schenker, M.4
-
33
-
-
0032215597
-
Single local injection of recombinant fibroblast growth factor-2 stimulates healing of segmental bone defects in rabbits
-
Kato T., Kawaguchi H., Hanada K., et al. Single local injection of recombinant fibroblast growth factor-2 stimulates healing of segmental bone defects in rabbits. J. Orthop. Res. 1998, 16(6):654-659.
-
(1998)
J. Orthop. Res.
, vol.16
, Issue.6
, pp. 654-659
-
-
Kato, T.1
Kawaguchi, H.2
Hanada, K.3
-
34
-
-
0031773204
-
Local application of basic fibroblast growth factor minipellet induces the healing of segmental bony defects in rabbits
-
Inui K., Maeda M., Sano A., et al. Local application of basic fibroblast growth factor minipellet induces the healing of segmental bony defects in rabbits. Calcif. Tissue Int. 1998, 63(6):490-495.
-
(1998)
Calcif. Tissue Int.
, vol.63
, Issue.6
, pp. 490-495
-
-
Inui, K.1
Maeda, M.2
Sano, A.3
-
35
-
-
0036035005
-
BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells
-
Fiedler J., Roderer G., Gunther K.P., Brenner R.E. BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells. J. Cell. Biochem. 2002, 87(3):305-312.
-
(2002)
J. Cell. Biochem.
, vol.87
, Issue.3
, pp. 305-312
-
-
Fiedler, J.1
Roderer, G.2
Gunther, K.P.3
Brenner, R.E.4
-
36
-
-
0344837389
-
Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment
-
Guo P., Hu B., Gu W., et al. Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am. J. Pathol. 2003, 162(4):1083-1093.
-
(2003)
Am. J. Pathol.
, vol.162
, Issue.4
, pp. 1083-1093
-
-
Guo, P.1
Hu, B.2
Gu, W.3
-
37
-
-
0030024836
-
The effect of systemically administered PDGF-BB on the rodent skeleton
-
Mitlak B.H., Finkelman R.D., Hill E.L., et al. The effect of systemically administered PDGF-BB on the rodent skeleton. J. Bone Miner. Res. 1996, 11(2):238-247.
-
(1996)
J. Bone Miner. Res.
, vol.11
, Issue.2
, pp. 238-247
-
-
Mitlak, B.H.1
Finkelman, R.D.2
Hill, E.L.3
-
38
-
-
38049090640
-
Accelerated fracture healing in the geriatric, osteoporotic rat with recombinant human platelet-derived growth factor-BB and an injectable beta-tricalcium phosphate/collagen matrix
-
Hollinger J.O., Onikepe A.O., MacKrell J., et al. Accelerated fracture healing in the geriatric, osteoporotic rat with recombinant human platelet-derived growth factor-BB and an injectable beta-tricalcium phosphate/collagen matrix. J. Orthop. Res. 2008, 26(1):83-90.
-
(2008)
J. Orthop. Res.
, vol.26
, Issue.1
, pp. 83-90
-
-
Hollinger, J.O.1
Onikepe, A.O.2
MacKrell, J.3
-
39
-
-
0028329938
-
Effect of platelet-derived growth factor on tibial osteotomies in rabbits
-
Nash T.J., Howlett C.R., Martin C., Steele J., Johnson K.A., Hicklin D.J. Effect of platelet-derived growth factor on tibial osteotomies in rabbits. Bone 1994, 15(2):203-208.
-
(1994)
Bone
, vol.15
, Issue.2
, pp. 203-208
-
-
Nash, T.J.1
Howlett, C.R.2
Martin, C.3
Steele, J.4
Johnson, K.A.5
Hicklin, D.J.6
-
40
-
-
0029021469
-
Periodontal regeneration in class III furcation defects of beagle dogs using guided tissue regenerative therapy with platelet-derived growth factor
-
Park J.B., Matsuura M., Han K.Y., et al. Periodontal regeneration in class III furcation defects of beagle dogs using guided tissue regenerative therapy with platelet-derived growth factor. J. Periodontol. 1995, 66(6):462-477.
-
(1995)
J. Periodontol.
, vol.66
, Issue.6
, pp. 462-477
-
-
Park, J.B.1
Matsuura, M.2
Han, K.Y.3
-
41
-
-
0042512285
-
Periodontal regeneration in human class II furcations using purified recombinant human platelet-derived growth factor-BB (rhPDGF-BB) with bone allograft
-
Camelo M., Nevins M.L., Schenk R.K., Lynch S.E., Nevins M. Periodontal regeneration in human class II furcations using purified recombinant human platelet-derived growth factor-BB (rhPDGF-BB) with bone allograft. Int. J. Periodontics Restorative Dent. 2003, 23(3):213-225.
-
(2003)
Int. J. Periodontics Restorative Dent.
, vol.23
, Issue.3
, pp. 213-225
-
-
Camelo, M.1
Nevins, M.L.2
Schenk, R.K.3
Lynch, S.E.4
Nevins, M.5
-
42
-
-
0242320424
-
Periodontal regeneration in humans using recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and allogenic bone
-
Nevins M., Camelo M., Nevins M.L., Schenk R.K., Lynch S.E. Periodontal regeneration in humans using recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and allogenic bone. J. Periodontol. 2003, 74(9):1282-1292.
-
(2003)
J. Periodontol.
, vol.74
, Issue.9
, pp. 1282-1292
-
-
Nevins, M.1
Camelo, M.2
Nevins, M.L.3
Schenk, R.K.4
Lynch, S.E.5
-
43
-
-
30944432610
-
Platelet-derived growth factor stimulates bone fill and rate of attachment level gain: results of a large multicenter randomized controlled trial
-
Nevins M., Giannobile W.V., McGuire M.K., et al. Platelet-derived growth factor stimulates bone fill and rate of attachment level gain: results of a large multicenter randomized controlled trial. J. Periodontol. 2005, 76(12):2205-2215.
-
(2005)
J. Periodontol.
, vol.76
, Issue.12
, pp. 2205-2215
-
-
Nevins, M.1
Giannobile, W.V.2
McGuire, M.K.3
-
44
-
-
14844357211
-
The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease
-
Holmes D.I., Zachary I. The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol. 2005, 6(2):209.
-
(2005)
Genome Biol.
, vol.6
, Issue.2
, pp. 209
-
-
Holmes, D.I.1
Zachary, I.2
-
45
-
-
48749111875
-
The discovery of the placental growth factor and its role in angiogenesis: a historical review
-
Ribatti D. The discovery of the placental growth factor and its role in angiogenesis: a historical review. Angiogenesis 2008, 11(3):215-221.
-
(2008)
Angiogenesis
, vol.11
, Issue.3
, pp. 215-221
-
-
Ribatti, D.1
-
46
-
-
33646411269
-
Placental growth factor mediates mesenchymal cell development, cartilage turnover, and bone remodeling during fracture repair
-
Maes C., Coenegrachts L., Stockmans I., et al. Placental growth factor mediates mesenchymal cell development, cartilage turnover, and bone remodeling during fracture repair. J. Clin. Invest. 2006, 116(5):1230-1242.
-
(2006)
J. Clin. Invest.
, vol.116
, Issue.5
, pp. 1230-1242
-
-
Maes, C.1
Coenegrachts, L.2
Stockmans, I.3
-
47
-
-
84923263916
-
Endothelial cells and the IGF system
-
Bach L.A. Endothelial cells and the IGF system. J. Mol. Endocrinol. 2015, 54(1):R1-R13.
-
(2015)
J. Mol. Endocrinol.
, vol.54
, Issue.1
, pp. R1-R13
-
-
Bach, L.A.1
-
48
-
-
0032983590
-
IGF-1 regulates migration and angiogenesis of human endothelial cells
-
Shigematsu S., Yamauchi K., Nakajima K., Iijima S., Aizawa T., Hashizume K. IGF-1 regulates migration and angiogenesis of human endothelial cells. Endocr. J. 1999, 46(Suppl):S59-S62.
-
(1999)
Endocr. J.
, vol.46
, pp. S59-S62
-
-
Shigematsu, S.1
Yamauchi, K.2
Nakajima, K.3
Iijima, S.4
Aizawa, T.5
Hashizume, K.6
-
49
-
-
0036309479
-
Improvement of fracture healing by systemic administration of growth hormone and local application of insulin-like growth factor-1 and transforming growth factor-beta1
-
Schmidmaier G., Wildemann B., Heeger J., et al. Improvement of fracture healing by systemic administration of growth hormone and local application of insulin-like growth factor-1 and transforming growth factor-beta1. Bone 2002, 31(1):165-172.
-
(2002)
Bone
, vol.31
, Issue.1
, pp. 165-172
-
-
Schmidmaier, G.1
Wildemann, B.2
Heeger, J.3
-
50
-
-
12444321550
-
Localized insulin-like growth factor I delivery to enhance new bone formation
-
Meinel L., Zoidis E., Zapf J., et al. Localized insulin-like growth factor I delivery to enhance new bone formation. Bone 2003, 33(4):660-672.
-
(2003)
Bone
, vol.33
, Issue.4
, pp. 660-672
-
-
Meinel, L.1
Zoidis, E.2
Zapf, J.3
-
51
-
-
79955578020
-
PTH receptor signaling in osteocytes governs periosteal bone formation and intracortical remodeling
-
Rhee Y., Allen M.R., Condon K., et al. PTH receptor signaling in osteocytes governs periosteal bone formation and intracortical remodeling. J. Bone Miner. Res. 2011, 26(5):1035-1046.
-
(2011)
J. Bone Miner. Res.
, vol.26
, Issue.5
, pp. 1035-1046
-
-
Rhee, Y.1
Allen, M.R.2
Condon, K.3
-
52
-
-
0036828498
-
Mechanisms for the enhancement of fracture healing in rats treated with intermittent low-dose human parathyroid hormone (1-34)
-
Nakajima A., Shimoji N., Shiomi K., et al. Mechanisms for the enhancement of fracture healing in rats treated with intermittent low-dose human parathyroid hormone (1-34). J. Bone Miner. Res. 2002, 17(11):2038-2047.
-
(2002)
J. Bone Miner. Res.
, vol.17
, Issue.11
, pp. 2038-2047
-
-
Nakajima, A.1
Shimoji, N.2
Shiomi, K.3
-
53
-
-
84884526437
-
The effect of PTH (1-34) on fracture healing during different loading conditions
-
Ellegaard M., Kringelbach T., Syberg S., et al. The effect of PTH (1-34) on fracture healing during different loading conditions. J. Bone Miner. Res. 2013, 28(10):2145-2155.
-
(2013)
J. Bone Miner. Res.
, vol.28
, Issue.10
, pp. 2145-2155
-
-
Ellegaard, M.1
Kringelbach, T.2
Syberg, S.3
-
54
-
-
84867477893
-
Disruption of the insulin-like growth factor-1 gene in osteocytes impairs developmental bone growth in mice
-
Sheng M.H., Zhou X.D., Bonewald L.F., Baylink D.J., Lau K.H. Disruption of the insulin-like growth factor-1 gene in osteocytes impairs developmental bone growth in mice. Bone 2013, 52(1):133-144.
-
(2013)
Bone
, vol.52
, Issue.1
, pp. 133-144
-
-
Sheng, M.H.1
Zhou, X.D.2
Bonewald, L.F.3
Baylink, D.J.4
Lau, K.H.5
-
55
-
-
84903960656
-
Role of osteocyte-derived insulin-like growth factor I in developmental growth, modeling, remodeling, and regeneration of the bone
-
Sheng M.H., Lau K.H., Baylink D.J. Role of osteocyte-derived insulin-like growth factor I in developmental growth, modeling, remodeling, and regeneration of the bone. J Bone Metab 2014, 21(1):41-54.
-
(2014)
J Bone Metab
, vol.21
, Issue.1
, pp. 41-54
-
-
Sheng, M.H.1
Lau, K.H.2
Baylink, D.J.3
-
56
-
-
84875365663
-
Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions
-
Cooper K.L., Oh S., Sung Y., Dasari R.R., Kirschner M.W., Tabin C.J. Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature 2013, 495(7441):375-378.
-
(2013)
Nature
, vol.495
, Issue.7441
, pp. 375-378
-
-
Cooper, K.L.1
Oh, S.2
Sung, Y.3
Dasari, R.R.4
Kirschner, M.W.5
Tabin, C.J.6
-
57
-
-
84905583145
-
Canonical and non-canonical hedgehog signalling and the control of metabolism
-
Teperino R., Aberger F., Esterbauer H., Riobo N., Pospisilik J.A. Canonical and non-canonical hedgehog signalling and the control of metabolism. Semin. Cell Dev. Biol. 2014, 33:81-92.
-
(2014)
Semin. Cell Dev. Biol.
, vol.33
, pp. 81-92
-
-
Teperino, R.1
Aberger, F.2
Esterbauer, H.3
Riobo, N.4
Pospisilik, J.A.5
-
58
-
-
0034960583
-
The morphogen sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors
-
Pola R., Ling L.E., Silver M., et al. The morphogen sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat. Med. 2001, 7(6):706-711.
-
(2001)
Nat. Med.
, vol.7
, Issue.6
, pp. 706-711
-
-
Pola, R.1
Ling, L.E.2
Silver, M.3
-
59
-
-
79960695112
-
Comparative study assessing effects of sonic hedgehog and VEGF in a human co-culture model for bone vascularisation strategies
-
Dohle E., Fuchs S., Kolbe M., Hofmann A., Schmidt H., Kirkpatrick C.J. Comparative study assessing effects of sonic hedgehog and VEGF in a human co-culture model for bone vascularisation strategies. Eur. Cell. Mater. 2011, 21:144-156.
-
(2011)
Eur. Cell. Mater.
, vol.21
, pp. 144-156
-
-
Dohle, E.1
Fuchs, S.2
Kolbe, M.3
Hofmann, A.4
Schmidt, H.5
Kirkpatrick, C.J.6
-
60
-
-
77950842105
-
Sonic hedgehog promotes angiogenesis and osteogenesis in a coculture system consisting of primary osteoblasts and outgrowth endothelial cells
-
Dohle E., Fuchs S., Kolbe M., Hofmann A., Schmidt H., Kirkpatrick C.J. Sonic hedgehog promotes angiogenesis and osteogenesis in a coculture system consisting of primary osteoblasts and outgrowth endothelial cells. Tissue Eng. A 2010, 16(4):1235-1237.
-
(2010)
Tissue Eng. A
, vol.16
, Issue.4
, pp. 1235-1237
-
-
Dohle, E.1
Fuchs, S.2
Kolbe, M.3
Hofmann, A.4
Schmidt, H.5
Kirkpatrick, C.J.6
-
61
-
-
36849024465
-
Immobilized sonic hedgehog N-terminal signaling domain enhances differentiation of bone marrow-derived mesenchymal stem cells
-
Ho J.E., Chung E.H., Wall S., Schaffer D.V., Healy K.E. Immobilized sonic hedgehog N-terminal signaling domain enhances differentiation of bone marrow-derived mesenchymal stem cells. J. Biomed. Mater. Res. A 2007, 83(4):1200-1208.
-
(2007)
J. Biomed. Mater. Res. A
, vol.83
, Issue.4
, pp. 1200-1208
-
-
Ho, J.E.1
Chung, E.H.2
Wall, S.3
Schaffer, D.V.4
Healy, K.E.5
-
62
-
-
84868486023
-
Angiopoietins in angiogenesis
-
Fagiani E., Christofori G. Angiopoietins in angiogenesis. Cancer Lett. 2013, 328(1):18-26.
-
(2013)
Cancer Lett.
, vol.328
, Issue.1
, pp. 18-26
-
-
Fagiani, E.1
Christofori, G.2
-
63
-
-
84877109717
-
Angiopoietin signaling in the vasculature
-
Eklund L., Saharinen P. Angiopoietin signaling in the vasculature. Exp. Cell Res. 2013, 319(9):1271-1280.
-
(2013)
Exp. Cell Res.
, vol.319
, Issue.9
, pp. 1271-1280
-
-
Eklund, L.1
Saharinen, P.2
-
65
-
-
0033601357
-
Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1
-
Thurston G., Suri C., Smith K., et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 1999, 286(5449):2511-2514.
-
(1999)
Science
, vol.286
, Issue.5449
, pp. 2511-2514
-
-
Thurston, G.1
Suri, C.2
Smith, K.3
-
66
-
-
0030480322
-
Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis
-
Suri C., Jones P.F., Patan S., et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996, 87(7):1171-1180.
-
(1996)
Cell
, vol.87
, Issue.7
, pp. 1171-1180
-
-
Suri, C.1
Jones, P.F.2
Patan, S.3
-
67
-
-
33646780950
-
Signaling and functions of angiopoietin-1 in vascular protection
-
Brindle N.P., Saharinen P., Alitalo K. Signaling and functions of angiopoietin-1 in vascular protection. Circ. Res. 2006, 98(8):1014-1023.
-
(2006)
Circ. Res.
, vol.98
, Issue.8
, pp. 1014-1023
-
-
Brindle, N.P.1
Saharinen, P.2
Alitalo, K.3
-
68
-
-
0033580889
-
Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF
-
Holash J., Maisonpierre P.C., Compton D., et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999, 284(5422):1994-1998.
-
(1999)
Science
, vol.284
, Issue.5422
, pp. 1994-1998
-
-
Holash, J.1
Maisonpierre, P.C.2
Compton, D.3
-
69
-
-
0037062491
-
Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF)
-
Visconti R.P., Richardson C.D., Sato T.N. Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proc. Natl. Acad. Sci. U. S. A. 2002, 99(12):8219-8224.
-
(2002)
Proc. Natl. Acad. Sci. U. S. A.
, vol.99
, Issue.12
, pp. 8219-8224
-
-
Visconti, R.P.1
Richardson, C.D.2
Sato, T.N.3
-
70
-
-
77955662371
-
Regulation of the expression balance of angiopoietin-1 and angiopoietin-2 by shh and FGF-2
-
Fujii T., Kuwano H. Regulation of the expression balance of angiopoietin-1 and angiopoietin-2 by shh and FGF-2. In Vitro Cell. Dev. Biol. Anim. 2010, 46(6):487-491.
-
(2010)
In Vitro Cell. Dev. Biol. Anim.
, vol.46
, Issue.6
, pp. 487-491
-
-
Fujii, T.1
Kuwano, H.2
-
71
-
-
0031471950
-
Vascular endothelial growth factor/vascular permeability factor produces nitric oxide-dependent hypotension. Evidence for a maintenance role in quiescent adult endothelium
-
Horowitz J.R., Rivard A., van der Zee R., et al. Vascular endothelial growth factor/vascular permeability factor produces nitric oxide-dependent hypotension. Evidence for a maintenance role in quiescent adult endothelium. Arterioscler. Thromb. Vasc. Biol. 1997, 17(11):2793-2800.
-
(1997)
Arterioscler. Thromb. Vasc. Biol.
, vol.17
, Issue.11
, pp. 2793-2800
-
-
Horowitz, J.R.1
Rivard, A.2
van der Zee, R.3
-
72
-
-
0032215354
-
VEGF gene delivery to muscle: potential role for vasculogenesis in adults
-
Springer M.L., Chen A.S., Kraft P.E., Bednarski M., Blau H.M. VEGF gene delivery to muscle: potential role for vasculogenesis in adults. Mol. Cell 1998, 2(5):549-558.
-
(1998)
Mol. Cell
, vol.2
, Issue.5
, pp. 549-558
-
-
Springer, M.L.1
Chen, A.S.2
Kraft, P.E.3
Bednarski, M.4
Blau, H.M.5
-
73
-
-
79961187336
-
Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels
-
(discussion 55)
-
Bahney C.S., Lujan T.J., Hsu C.W., Bottlang M., West J.L., Johnstone B. Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels. Eur. Cell. Mater. 2011, 22:43-55. (discussion 55).
-
(2011)
Eur. Cell. Mater.
, vol.22
, pp. 43-55
-
-
Bahney, C.S.1
Lujan, T.J.2
Hsu, C.W.3
Bottlang, M.4
West, J.L.5
Johnstone, B.6
-
74
-
-
84906946132
-
Modulating hydrogel crosslink density and degradation to control bone morphogenetic protein delivery and in vivo bone formation
-
Holloway J.L., Ma H., Rai R., Burdick J.A. Modulating hydrogel crosslink density and degradation to control bone morphogenetic protein delivery and in vivo bone formation. J. Control. Release 2014, 191:63-70.
-
(2014)
J. Control. Release
, vol.191
, pp. 63-70
-
-
Holloway, J.L.1
Ma, H.2
Rai, R.3
Burdick, J.A.4
-
75
-
-
0037547104
-
Repair of bone defects using synthetic mimetics of collagenous extracellular matrices
-
Lutolf M.P., Weber F.E., Schmoekel H.G., et al. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat. Biotechnol. 2003, 21(5):513-518.
-
(2003)
Nat. Biotechnol.
, vol.21
, Issue.5
, pp. 513-518
-
-
Lutolf, M.P.1
Weber, F.E.2
Schmoekel, H.G.3
-
76
-
-
42949146918
-
Multivalency of sonic hedgehog conjugated to linear polymer chains modulates protein potency
-
Wall S.T., Saha K., Ashton R.S., Kam K.R., Schaffer D.V., Healy K.E. Multivalency of sonic hedgehog conjugated to linear polymer chains modulates protein potency. Bioconjug. Chem. 2008, 19(4):806-812.
-
(2008)
Bioconjug. Chem.
, vol.19
, Issue.4
, pp. 806-812
-
-
Wall, S.T.1
Saha, K.2
Ashton, R.S.3
Kam, K.R.4
Schaffer, D.V.5
Healy, K.E.6
-
77
-
-
0036272313
-
Internalization-dependent and -independent requirements for transforming growth factor beta receptor signaling via the smad pathway
-
Penheiter S.G., Mitchell H., Garamszegi N., Edens M., Dore J.J., Leof E.B. Internalization-dependent and -independent requirements for transforming growth factor beta receptor signaling via the smad pathway. Mol. Cell. Biol. 2002, 22(13):4750-4759.
-
(2002)
Mol. Cell. Biol.
, vol.22
, Issue.13
, pp. 4750-4759
-
-
Penheiter, S.G.1
Mitchell, H.2
Garamszegi, N.3
Edens, M.4
Dore, J.J.5
Leof, E.B.6
-
78
-
-
0030044984
-
Vascular endothelial growth factor, a potent and selective angiogenic agent
-
Thomas K.A. Vascular endothelial growth factor, a potent and selective angiogenic agent. J. Biol. Chem. 1996, 271(2):603-606.
-
(1996)
J. Biol. Chem.
, vol.271
, Issue.2
, pp. 603-606
-
-
Thomas, K.A.1
-
79
-
-
1542345480
-
Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties
-
Almqvist N., Bhatia R., Primbs G., Desai N., Banerjee S., Lal R. Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties. Biophys. J. 2004, 86(3):1753-1762.
-
(2004)
Biophys. J.
, vol.86
, Issue.3
, pp. 1753-1762
-
-
Almqvist, N.1
Bhatia, R.2
Primbs, G.3
Desai, N.4
Banerjee, S.5
Lal, R.6
-
80
-
-
64249113913
-
Photodegradable hydrogels for dynamic tuning of physical and chemical properties
-
Kloxin A.M., Kasko A.M., Salinas C.N., Anseth K.S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 2009, 324(5923):59-63.
-
(2009)
Science
, vol.324
, Issue.5923
, pp. 59-63
-
-
Kloxin, A.M.1
Kasko, A.M.2
Salinas, C.N.3
Anseth, K.S.4
-
81
-
-
0642272484
-
Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth
-
Zisch A.H., Lutolf M.P., Ehrbar M., et al. Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J. 2003, 17(15):2260-2262.
-
(2003)
FASEB J.
, vol.17
, Issue.15
, pp. 2260-2262
-
-
Zisch, A.H.1
Lutolf, M.P.2
Ehrbar, M.3
-
82
-
-
34247502714
-
Controlling cartilaginous matrix evolution in hydrogels with degradation triggered by exogenous addition of an enzyme
-
Rice M.A., Anseth K.S. Controlling cartilaginous matrix evolution in hydrogels with degradation triggered by exogenous addition of an enzyme. Tissue Eng. 2007, 13(4):683-691.
-
(2007)
Tissue Eng.
, vol.13
, Issue.4
, pp. 683-691
-
-
Rice, M.A.1
Anseth, K.S.2
-
83
-
-
2342623399
-
Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth
-
Ehrbar M., Djonov V.G., Schnell C., et al. Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ. Res. 2004, 94(8):1124-1132.
-
(2004)
Circ. Res.
, vol.94
, Issue.8
, pp. 1124-1132
-
-
Ehrbar, M.1
Djonov, V.G.2
Schnell, C.3
-
84
-
-
0035858291
-
Covalently conjugated VEGF-fibrin matrices for endothelialization
-
Zisch A.H., Schenk U., Schense J.C., Sakiyama-Elbert S.E., Hubbell J.A. Covalently conjugated VEGF-fibrin matrices for endothelialization. J. Control. Release 2001, 72(1-3):101-113.
-
(2001)
J. Control. Release
, vol.72
, Issue.1-3
, pp. 101-113
-
-
Zisch, A.H.1
Schenk, U.2
Schense, J.C.3
Sakiyama-Elbert, S.E.4
Hubbell, J.A.5
-
85
-
-
10044253411
-
Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity
-
Ehrbar M., Metters A., Zammaretti P., Hubbell J.A., Zisch A.H. Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity. J. Control. Release 2005, 101(1-3):93-109.
-
(2005)
J. Control. Release
, vol.101
, Issue.1-3
, pp. 93-109
-
-
Ehrbar, M.1
Metters, A.2
Zammaretti, P.3
Hubbell, J.A.4
Zisch, A.H.5
-
86
-
-
84896394738
-
Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications
-
Liang Y., Kiick K.L. Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications. Acta Biomater. 2014, 10(4):1588-1600.
-
(2014)
Acta Biomater.
, vol.10
, Issue.4
, pp. 1588-1600
-
-
Liang, Y.1
Kiick, K.L.2
-
87
-
-
33845476866
-
Heparin-immobilized biodegradable scaffolds for local and sustained release of angiogenic growth factor
-
Yoon J.J., Chung H.J., Lee H.J., Park T.G. Heparin-immobilized biodegradable scaffolds for local and sustained release of angiogenic growth factor. J. Biomed. Mater. Res. A 2006, 79(4):934-942.
-
(2006)
J. Biomed. Mater. Res. A
, vol.79
, Issue.4
, pp. 934-942
-
-
Yoon, J.J.1
Chung, H.J.2
Lee, H.J.3
Park, T.G.4
-
88
-
-
84922803124
-
Enhanced survival and engraftment of transplanted stem cells using growth factor sequestering hydrogels
-
Jha A.K., Tharp K.M., Ye J., et al. Enhanced survival and engraftment of transplanted stem cells using growth factor sequestering hydrogels. Biomaterials 2015, 47:1-12.
-
(2015)
Biomaterials
, vol.47
, pp. 1-12
-
-
Jha, A.K.1
Tharp, K.M.2
Ye, J.3
-
89
-
-
84897499979
-
Incorporation of sulfated hyaluronic acid macromers into degradable hydrogel scaffolds for sustained molecule delivery
-
Purcell B.P., Kim I.L., Chuo V., Guinen T., Dorsey S.M., Burdick J.A. Incorporation of sulfated hyaluronic acid macromers into degradable hydrogel scaffolds for sustained molecule delivery. Biomater. Sci. 2014, 2:693-702.
-
(2014)
Biomater. Sci.
, vol.2
, pp. 693-702
-
-
Purcell, B.P.1
Kim, I.L.2
Chuo, V.3
Guinen, T.4
Dorsey, S.M.5
Burdick, J.A.6
-
90
-
-
84875248854
-
Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix
-
Martino M.M., Briquez P.S., Ranga A., Lutolf M.P., Hubbell J.A. Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc. Natl. Acad. Sci. U. S. A. 2013, 110(12):4563-4568.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, Issue.12
, pp. 4563-4568
-
-
Martino, M.M.1
Briquez, P.S.2
Ranga, A.3
Lutolf, M.P.4
Hubbell, J.A.5
-
91
-
-
84930209012
-
Molecular weight and concentration of heparin in hyaluronic acid-based matrices modulates growth factor retention kinetics and stem cell fate
-
Jha A.K., Mathur A., Svedlund F.L., Ye J., Yeghiazarians Y., Healy K.E. Molecular weight and concentration of heparin in hyaluronic acid-based matrices modulates growth factor retention kinetics and stem cell fate. J. Control. Release 2015, 209:308-316.
-
(2015)
J. Control. Release
, vol.209
, pp. 308-316
-
-
Jha, A.K.1
Mathur, A.2
Svedlund, F.L.3
Ye, J.4
Yeghiazarians, Y.5
Healy, K.E.6
-
92
-
-
79959831619
-
Heparin-decorated, hyaluronic acid-based hydrogel particles for the controlled release of bone morphogenetic protein 2
-
Xu X., Jha A.K., Duncan R.L., Jia X. Heparin-decorated, hyaluronic acid-based hydrogel particles for the controlled release of bone morphogenetic protein 2. Acta Biomater. 2011, 7(8):3050-3059.
-
(2011)
Acta Biomater.
, vol.7
, Issue.8
, pp. 3050-3059
-
-
Xu, X.1
Jha, A.K.2
Duncan, R.L.3
Jia, X.4
-
93
-
-
70350188311
-
Perlecan domain I-conjugated, hyaluronic acid-based hydrogel particles for enhanced chondrogenic differentiation via BMP-2 release
-
Jha A.K., Yang W., Kirn-Safran C.B., Farach-Carson M.C., Jia X. Perlecan domain I-conjugated, hyaluronic acid-based hydrogel particles for enhanced chondrogenic differentiation via BMP-2 release. Biomaterials 2009, 30(36):6964-6975.
-
(2009)
Biomaterials
, vol.30
, Issue.36
, pp. 6964-6975
-
-
Jha, A.K.1
Yang, W.2
Kirn-Safran, C.B.3
Farach-Carson, M.C.4
Jia, X.5
-
94
-
-
77957733284
-
Nanoparticles based on PLGA:poloxamer blends for the delivery of proangiogenic growth factors
-
d'Angelo I., Garcia-Fuentes M., Parajo Y., et al. Nanoparticles based on PLGA:poloxamer blends for the delivery of proangiogenic growth factors. Mol. Pharm. 2010, 7(5):1724-1733.
-
(2010)
Mol. Pharm.
, vol.7
, Issue.5
, pp. 1724-1733
-
-
d'Angelo, I.1
Garcia-Fuentes, M.2
Parajo, Y.3
-
95
-
-
84902118252
-
Heparin microparticle effects on presentation and bioactivity of bone morphogenetic protein-2
-
Hettiaratchi M.H., Miller T., Temenoff J.S., Guldberg R.E., McDevitt T.C. Heparin microparticle effects on presentation and bioactivity of bone morphogenetic protein-2. Biomaterials 2014, 35(25):7228-7238.
-
(2014)
Biomaterials
, vol.35
, Issue.25
, pp. 7228-7238
-
-
Hettiaratchi, M.H.1
Miller, T.2
Temenoff, J.S.3
Guldberg, R.E.4
McDevitt, T.C.5
-
96
-
-
0034760458
-
Polymeric system for dual growth factor delivery
-
Richardson T.P., Peters M.C., Ennett A.B., Mooney D.J. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 2001, 19(11):1029-1034.
-
(2001)
Nat. Biotechnol.
, vol.19
, Issue.11
, pp. 1029-1034
-
-
Richardson, T.P.1
Peters, M.C.2
Ennett, A.B.3
Mooney, D.J.4
-
98
-
-
81755188465
-
Evaluation of angiogenesis and osteogenesis
-
Das A., Botchwey E. Evaluation of angiogenesis and osteogenesis. Tissue Eng. B Rev. 2011, 17(6):403-414.
-
(2011)
Tissue Eng. B Rev.
, vol.17
, Issue.6
, pp. 403-414
-
-
Das, A.1
Botchwey, E.2
-
99
-
-
0033529618
-
Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization
-
Asahara T., Masuda H., Takahashi T., et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 1999, 85(3):221-228.
-
(1999)
Circ. Res.
, vol.85
, Issue.3
, pp. 221-228
-
-
Asahara, T.1
Masuda, H.2
Takahashi, T.3
-
100
-
-
33847348148
-
Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals
-
Yoder M.C., Mead L.E., Prater D., et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007, 109(5):1801-1809.
-
(2007)
Blood
, vol.109
, Issue.5
, pp. 1801-1809
-
-
Yoder, M.C.1
Mead, L.E.2
Prater, D.3
-
101
-
-
84893051099
-
Early endothelial progenitor cells as a source of myeloid cells to improve the pre-vascularisation of bone constructs
-
(discussion 79-80)
-
Shi Y., Kramer G., Schroder A., et al. Early endothelial progenitor cells as a source of myeloid cells to improve the pre-vascularisation of bone constructs. Eur. Cell. Mater. 2014, 27:64-79. (discussion 79-80).
-
(2014)
Eur. Cell. Mater.
, vol.27
, pp. 64-79
-
-
Shi, Y.1
Kramer, G.2
Schroder, A.3
-
102
-
-
79955795428
-
Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC
-
(12-811X-9-12)
-
Hass R., Kasper C., Bohm S., Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 2011, 9. (12-811X-9-12).
-
(2011)
Cell Commun Signal
, vol.9
-
-
Hass, R.1
Kasper, C.2
Bohm, S.3
Jacobs, R.4
-
103
-
-
84906234415
-
Expansion of murine periosteal progenitor cells with fibroblast growth factor 2 reveals an intrinsic endochondral ossification program mediated by bone morphogenetic protein 2
-
van Gastel N., Stegen S., Stockmans I., et al. Expansion of murine periosteal progenitor cells with fibroblast growth factor 2 reveals an intrinsic endochondral ossification program mediated by bone morphogenetic protein 2. Stem Cells 2014, 32(9):2407-2418.
-
(2014)
Stem Cells
, vol.32
, Issue.9
, pp. 2407-2418
-
-
van Gastel, N.1
Stegen, S.2
Stockmans, I.3
-
104
-
-
84877577935
-
Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the international federation for adipose therapeutics and science (IFATS) and the international society for cellular therapy (ISCT)
-
Bourin P., Bunnell B.A., Casteilla L., et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the international federation for adipose therapeutics and science (IFATS) and the international society for cellular therapy (ISCT). Cytotherapy 2013, 15(6):641-648.
-
(2013)
Cytotherapy
, vol.15
, Issue.6
, pp. 641-648
-
-
Bourin, P.1
Bunnell, B.A.2
Casteilla, L.3
-
105
-
-
33847665632
-
Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells
-
Varma M.J., Breuls R.G., Schouten T.E., et al. Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells Dev. 2007, 16(1):91-104.
-
(2007)
Stem Cells Dev.
, vol.16
, Issue.1
, pp. 91-104
-
-
Varma, M.J.1
Breuls, R.G.2
Schouten, T.E.3
-
106
-
-
33747713246
-
Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy Position Statement
-
Dominici M., Le Blanc K., Mueller I., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 2006, 8(4):315-317.
-
(2006)
Cytotherapy
, vol.8
, Issue.4
, pp. 315-317
-
-
Dominici, M.1
Le Blanc, K.2
Mueller, I.3
-
107
-
-
58649117944
-
Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration
-
Colnot C. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J. Bone Miner. Res. 2009, 24(2):274-282.
-
(2009)
J. Bone Miner. Res.
, vol.24
, Issue.2
, pp. 274-282
-
-
Colnot, C.1
-
108
-
-
0002345348
-
Endochondral bone formation: the lineage cascade
-
HallB (Ed.). CRC Press: Boca Raton, FL
-
Caplan A.I.B.B. Endochondral bone formation: the lineage cascade. Bone 1994, 8(HallB (Ed.). CRC Press: Boca Raton, FL):1-46.
-
(1994)
Bone
, vol.8
, pp. 1-46
-
-
Caplan, A.I.B.B.1
-
109
-
-
84925507776
-
Characterization of adipose tissue-derived stromal vascular fraction for clinical application to cartilage regeneration
-
Jang Y., Koh Y.G., Choi Y.J., et al. Characterization of adipose tissue-derived stromal vascular fraction for clinical application to cartilage regeneration. In Vitro Cell. Dev. Biol. Anim. 2014.
-
(2014)
In Vitro Cell. Dev. Biol. Anim.
-
-
Jang, Y.1
Koh, Y.G.2
Choi, Y.J.3
-
110
-
-
0030678549
-
Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation
-
Ducy P., Zhang R., Geoffroy V., Ridall A.L., Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997, 89(5):747-754.
-
(1997)
Cell
, vol.89
, Issue.5
, pp. 747-754
-
-
Ducy, P.1
Zhang, R.2
Geoffroy, V.3
Ridall, A.L.4
Karsenty, G.5
-
111
-
-
0030684749
-
Targeted disruption of Cbfa1results in a complete lack of bone formation owing to maturational arrest of osteoblasts
-
Komori T., Yagi H., Nomura S., et al. Targeted disruption of Cbfa1results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 1997, 89(5):755-764.
-
(1997)
Cell
, vol.89
, Issue.5
, pp. 755-764
-
-
Komori, T.1
Yagi, H.2
Nomura, S.3
-
112
-
-
0030666372
-
Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development
-
Otto F., Thornell A.P., Crompton T., et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 1997, 89(5):765-771.
-
(1997)
Cell
, vol.89
, Issue.5
, pp. 765-771
-
-
Otto, F.1
Thornell, A.P.2
Crompton, T.3
-
113
-
-
33746808398
-
Wnt/β-catenin signaling in development and disease
-
Clevers H. Wnt/β-catenin signaling in development and disease. Cell 2006, 127(3):469-480.
-
(2006)
Cell
, vol.127
, Issue.3
, pp. 469-480
-
-
Clevers, H.1
-
114
-
-
25844509347
-
Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression
-
Gaur T., Lengner C.J., Hovhannisyan H., et al. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J. Biol. Chem. 2005, 280(39):33132-33140.
-
(2005)
J. Biol. Chem.
, vol.280
, Issue.39
, pp. 33132-33140
-
-
Gaur, T.1
Lengner, C.J.2
Hovhannisyan, H.3
-
115
-
-
0037059614
-
The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation
-
Nakashima K., Zhou X., Kunkel G., et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002, 108(1):17-29.
-
(2002)
Cell
, vol.108
, Issue.1
, pp. 17-29
-
-
Nakashima, K.1
Zhou, X.2
Kunkel, G.3
-
116
-
-
17844372752
-
Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis
-
Day T.F., Guo X., Garrett-Beal L., Yang Y. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell 2005, 8(5):739-750.
-
(2005)
Dev. Cell
, vol.8
, Issue.5
, pp. 739-750
-
-
Day, T.F.1
Guo, X.2
Garrett-Beal, L.3
Yang, Y.4
-
117
-
-
17844363974
-
Canonical wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes
-
Hill T.P., Später D., Taketo M.M., Birchmeier W., Hartmann C. Canonical wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev. Cell 2005, 8(5):727-738.
-
(2005)
Dev. Cell
, vol.8
, Issue.5
, pp. 727-738
-
-
Hill, T.P.1
Später, D.2
Taketo, M.M.3
Birchmeier, W.4
Hartmann, C.5
-
118
-
-
33747152561
-
Matrix elasticity directs stem cell lineage specification
-
Engler A.J., Sen S., Sweeney H.L., Discher D.E. Matrix elasticity directs stem cell lineage specification. Cell 2006, 126(4):677-689.
-
(2006)
Cell
, vol.126
, Issue.4
, pp. 677-689
-
-
Engler, A.J.1
Sen, S.2
Sweeney, H.L.3
Discher, D.E.4
-
119
-
-
0036376885
-
A model for intramembranous ossification during fracture healing
-
Thompson Z., Miclau T., Hu D., Helms J.A. A model for intramembranous ossification during fracture healing. J. Orthop. Res. 2002, 20(5):1091-1098.
-
(2002)
J. Orthop. Res.
, vol.20
, Issue.5
, pp. 1091-1098
-
-
Thompson, Z.1
Miclau, T.2
Hu, D.3
Helms, J.A.4
-
120
-
-
4444269045
-
Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue
-
Lee R.H., Kim B., Choi I., et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell. Physiol. Biochem. 2004, 14(4-6):311-324.
-
(2004)
Cell. Physiol. Biochem.
, vol.14
, Issue.4-6
, pp. 311-324
-
-
Lee, R.H.1
Kim, B.2
Choi, I.3
-
121
-
-
33745437684
-
Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue
-
Kern S., Eichler H., Stoeve J., Klüter H., Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006, 24(5):1294-1301.
-
(2006)
Stem Cells
, vol.24
, Issue.5
, pp. 1294-1301
-
-
Kern, S.1
Eichler, H.2
Stoeve, J.3
Klüter, H.4
Bieback, K.5
-
122
-
-
26444553353
-
Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?
-
Im G., Shin Y., Lee K. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?. Osteoarthr. Cartil. 2005, 13(10):845-853.
-
(2005)
Osteoarthr. Cartil.
, vol.13
, Issue.10
, pp. 845-853
-
-
Im, G.1
Shin, Y.2
Lee, K.3
-
123
-
-
27644565830
-
Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison
-
Huang J.I., Kazmi N., Durbhakula M.M., Hering T.M., Yoo J.U., Johnstone B. Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison. J. Orthop. Res. 2005, 23(6):1383-1389.
-
(2005)
J. Orthop. Res.
, vol.23
, Issue.6
, pp. 1383-1389
-
-
Huang, J.I.1
Kazmi, N.2
Durbhakula, M.M.3
Hering, T.M.4
Yoo, J.U.5
Johnstone, B.6
-
124
-
-
77958605841
-
Comparison of the osteogenic potential of equine mesenchymal stem cells from bone marrow, adipose tissue, umbilical cord blood, and umbilical cord tissue
-
Toupadakis C.A., Wong A., Genetos D.C., et al. Comparison of the osteogenic potential of equine mesenchymal stem cells from bone marrow, adipose tissue, umbilical cord blood, and umbilical cord tissue. Am. J. Vet. Res. 2010, 71(10):1237-1245.
-
(2010)
Am. J. Vet. Res.
, vol.71
, Issue.10
, pp. 1237-1245
-
-
Toupadakis, C.A.1
Wong, A.2
Genetos, D.C.3
-
125
-
-
58449135981
-
Why are MSCs therapeutic? New data: new insight
-
Caplan A. Why are MSCs therapeutic? New data: new insight. J. Pathol. 2009, 217(2):318-324.
-
(2009)
J. Pathol.
, vol.217
, Issue.2
, pp. 318-324
-
-
Caplan, A.1
-
126
-
-
84856605585
-
Therapeutic potential of stem cells in orthopedics
-
Bahney C.S., Miclau T. Therapeutic potential of stem cells in orthopedics. Indian J Orthop 2012, 46(1):4-9.
-
(2012)
Indian J Orthop
, vol.46
, Issue.1
, pp. 4-9
-
-
Bahney, C.S.1
Miclau, T.2
-
127
-
-
77957853504
-
"Mesenchymal" stem cells in human bone marrow (skeletal stem cells): a critical discussion of their nature, identity, and significance in incurable skeletal disease
-
Bianco P., Robey P.G., Saggio I., Riminucci M. "Mesenchymal" stem cells in human bone marrow (skeletal stem cells): a critical discussion of their nature, identity, and significance in incurable skeletal disease. Hum. Gene Ther. 2010, 21(9):1057-1066.
-
(2010)
Hum. Gene Ther.
, vol.21
, Issue.9
, pp. 1057-1066
-
-
Bianco, P.1
Robey, P.G.2
Saggio, I.3
Riminucci, M.4
-
128
-
-
84926660305
-
The multifaceted role of the vasculature in endochondral fracture repair
-
Bahney C.S., Hu D.P., Miclau T., Marcucio R.S. The multifaceted role of the vasculature in endochondral fracture repair. Front Endocrinol (Lausanne) 2015, 6:4.
-
(2015)
Front Endocrinol (Lausanne)
, vol.6
, pp. 4
-
-
Bahney, C.S.1
Hu, D.P.2
Miclau, T.3
Marcucio, R.S.4
-
130
-
-
2342482526
-
Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells
-
Le Blanc K., Rasmusson I., Sundberg B., et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004, 363(9419):1439-1441.
-
(2004)
Lancet
, vol.363
, Issue.9419
, pp. 1439-1441
-
-
Le Blanc, K.1
Rasmusson, I.2
Sundberg, B.3
-
131
-
-
0036142769
-
Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo
-
Bartholomew A., Sturgeon C., Siatskas M., et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 2002, 30(1):42-48.
-
(2002)
Exp. Hematol.
, vol.30
, Issue.1
, pp. 42-48
-
-
Bartholomew, A.1
Sturgeon, C.2
Siatskas, M.3
-
132
-
-
33846006154
-
Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells
-
Sato K., Ozaki K., Oh I., et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 2007, 109(1):228-234.
-
(2007)
Blood
, vol.109
, Issue.1
, pp. 228-234
-
-
Sato, K.1
Ozaki, K.2
Oh, I.3
-
133
-
-
13544249606
-
Human mesenchymal stem cells modulate allogeneic immune cell responses
-
Aggarwal S., Pittenger M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005, 105(4):1815-1822.
-
(2005)
Blood
, vol.105
, Issue.4
, pp. 1815-1822
-
-
Aggarwal, S.1
Pittenger, M.F.2
-
134
-
-
0037093058
-
Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli
-
Di Nicola M., Carlo-Stella C., Magni M., et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002, 99(10):3838-3843.
-
(2002)
Blood
, vol.99
, Issue.10
, pp. 3838-3843
-
-
Di Nicola, M.1
Carlo-Stella, C.2
Magni, M.3
-
135
-
-
15944376184
-
Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells
-
Glennie S., Soeiro I., Dyson P.J., Lam E.W., Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 2005, 105(7):2821-2827.
-
(2005)
Blood
, vol.105
, Issue.7
, pp. 2821-2827
-
-
Glennie, S.1
Soeiro, I.2
Dyson, P.J.3
Lam, E.W.4
Dazzi, F.5
-
136
-
-
33846220680
-
Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle
-
Ramasamy R., Fazekasova H., Lam E.W., Soeiro I., Lombardi G., Dazzi F. Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation 2007, 83(1):71-76.
-
(2007)
Transplantation
, vol.83
, Issue.1
, pp. 71-76
-
-
Ramasamy, R.1
Fazekasova, H.2
Lam, E.W.3
Soeiro, I.4
Lombardi, G.5
Dazzi, F.6
-
138
-
-
13544268736
-
Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells
-
Li Y., Chen J., Zhang C.L., et al. Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia 2005, 49(3):407-417.
-
(2005)
Glia
, vol.49
, Issue.3
, pp. 407-417
-
-
Li, Y.1
Chen, J.2
Zhang, C.L.3
-
139
-
-
0041336932
-
Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat
-
Chen J., Li Y., Katakowski M., et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J. Neurosci. Res. 2003, 73(6):778-786.
-
(2003)
J. Neurosci. Res.
, vol.73
, Issue.6
, pp. 778-786
-
-
Chen, J.1
Li, Y.2
Katakowski, M.3
-
140
-
-
0029867151
-
Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1α
-
Haynesworth S.E., Baber M.A., Caplan A.I. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1α. J. Cell. Physiol. 1996, 166(3):585-592.
-
(1996)
J. Cell. Physiol.
, vol.166
, Issue.3
, pp. 585-592
-
-
Haynesworth, S.E.1
Baber, M.A.2
Caplan, A.I.3
-
141
-
-
84898466874
-
Mesenchymal stem cells: immune evasive, not immune privileged
-
Ankrum J.A., Ong J.F., Karp J.M. Mesenchymal stem cells: immune evasive, not immune privileged. Nat. Biotechnol. 2014, 32(3):252-260.
-
(2014)
Nat. Biotechnol.
, vol.32
, Issue.3
, pp. 252-260
-
-
Ankrum, J.A.1
Ong, J.F.2
Karp, J.M.3
-
142
-
-
0141484485
-
HLA expression and immunologic propertiesof differentiated and undifferentiated mesenchymal stem cells
-
Le Blanc K., Tammik C., Rosendahl K., Zetterberg E., Ringdén O. HLA expression and immunologic propertiesof differentiated and undifferentiated mesenchymal stem cells. Exp. Hematol. 2003, 31(10):890-896.
-
(2003)
Exp. Hematol.
, vol.31
, Issue.10
, pp. 890-896
-
-
Le Blanc, K.1
Tammik, C.2
Rosendahl, K.3
Zetterberg, E.4
Ringdén, O.5
-
143
-
-
39049126521
-
Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications
-
De Palma M., Murdoch C., Venneri M.A., Naldini L., Lewis C.E. Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends Immunol. 2007, 28(12):519-524.
-
(2007)
Trends Immunol.
, vol.28
, Issue.12
, pp. 519-524
-
-
De Palma, M.1
Murdoch, C.2
Venneri, M.A.3
Naldini, L.4
Lewis, C.E.5
-
144
-
-
79955955742
-
Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing
-
Okuno Y., Nakamura-Ishizu A., Kishi K., Suda T., Kubota Y. Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing. Blood 2011, 117(19):5264-5272.
-
(2011)
Blood
, vol.117
, Issue.19
, pp. 5264-5272
-
-
Okuno, Y.1
Nakamura-Ishizu, A.2
Kishi, K.3
Suda, T.4
Kubota, Y.5
-
145
-
-
84866176698
-
Surfing the data tsunami, a bioinformatic dissection of the proangiogenic monocyte
-
van der Pouw Kraan T.C., van der Laan A.M., Piek J.J., Horrevoets A.J. Surfing the data tsunami, a bioinformatic dissection of the proangiogenic monocyte. Vasc. Pharmacol. 2012, 56(5-6):297-305.
-
(2012)
Vasc. Pharmacol.
, vol.56
, Issue.5-6
, pp. 297-305
-
-
van der Pouw Kraan, T.C.1
van der Laan, A.M.2
Piek, J.J.3
Horrevoets, A.J.4
-
146
-
-
0031019745
-
Isolation of putative progenitor endothelial cells for angiogenesis
-
Asahara T., Murohara T., Sullivan A., et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997, 275(5302):964-967.
-
(1997)
Science
, vol.275
, Issue.5302
, pp. 964-967
-
-
Asahara, T.1
Murohara, T.2
Sullivan, A.3
-
147
-
-
1542316118
-
Autologous transplantation of peripheral blood endothelial progenitor cells (CD34+) for therapeutic angiogenesis in patients with critical limb ischemia
-
Kudo F., Nishibe T., Nishibe M., Yasuda K. Autologous transplantation of peripheral blood endothelial progenitor cells (CD34+) for therapeutic angiogenesis in patients with critical limb ischemia. Int. Angiol. 2003, 22(4):344.
-
(2003)
Int. Angiol.
, vol.22
, Issue.4
, pp. 344
-
-
Kudo, F.1
Nishibe, T.2
Nishibe, M.3
Yasuda, K.4
-
148
-
-
4043052443
-
Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model
-
Taguchi A., Soma T., Tanaka H., et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J. Clin. Invest. 2004, 114(3):330-338.
-
(2004)
J. Clin. Invest.
, vol.114
, Issue.3
, pp. 330-338
-
-
Taguchi, A.1
Soma, T.2
Tanaka, H.3
-
149
-
-
24944526542
-
Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases
-
Yoon C.H., Hur J., Park K.W., et al. Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation 2005, 112(11):1618-1627.
-
(2005)
Circulation
, vol.112
, Issue.11
, pp. 1618-1627
-
-
Yoon, C.H.1
Hur, J.2
Park, K.W.3
-
150
-
-
51649102473
-
Human mature endothelial cells modulate peripheral blood mononuclear cell differentiation toward an endothelial phenotype
-
Bellik L., Musilli C., Vinci M.C., Ledda F., Parenti A. Human mature endothelial cells modulate peripheral blood mononuclear cell differentiation toward an endothelial phenotype. Exp. Cell Res. 2008, 314(16):2965-2974.
-
(2008)
Exp. Cell Res.
, vol.314
, Issue.16
, pp. 2965-2974
-
-
Bellik, L.1
Musilli, C.2
Vinci, M.C.3
Ledda, F.4
Parenti, A.5
-
151
-
-
51649099800
-
Assessing identity, phenotype, and fate of endothelial progenitor cells
-
Hirschi K.K., Ingram D.A., Yoder M.C. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol. 2008, 28(9):1584-1595.
-
(2008)
Arterioscler. Thromb. Vasc. Biol.
, vol.28
, Issue.9
, pp. 1584-1595
-
-
Hirschi, K.K.1
Ingram, D.A.2
Yoder, M.C.3
-
152
-
-
7244242362
-
Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood
-
Ingram D.A., Mead L.E., Tanaka H., et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 2004, 104(9):2752-2760.
-
(2004)
Blood
, vol.104
, Issue.9
, pp. 2752-2760
-
-
Ingram, D.A.1
Mead, L.E.2
Tanaka, H.3
-
153
-
-
84920072936
-
Segregation of late outgrowth endothelial cells into functional endothelial CD34- and progenitor-like CD34+ cell populations
-
Ferreras C., Cole C.L., Urban K., Jayson G.C., Avizienyte E. Segregation of late outgrowth endothelial cells into functional endothelial CD34- and progenitor-like CD34+ cell populations. Angiogenesis 2015, 18(1):47-68.
-
(2015)
Angiogenesis
, vol.18
, Issue.1
, pp. 47-68
-
-
Ferreras, C.1
Cole, C.L.2
Urban, K.3
Jayson, G.C.4
Avizienyte, E.5
-
154
-
-
84857604290
-
Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use
-
Fadini G.P., Losordo D., Dimmeler S. Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ. Res. 2012, 110(4):624-637.
-
(2012)
Circ. Res.
, vol.110
, Issue.4
, pp. 624-637
-
-
Fadini, G.P.1
Losordo, D.2
Dimmeler, S.3
-
155
-
-
34250901535
-
Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors
-
Timmermans F., Van Hauwermeiren F., De Smedt M., et al. Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arterioscler. Thromb. Vasc. Biol. 2007, 27(7):1572-1579.
-
(2007)
Arterioscler. Thromb. Vasc. Biol.
, vol.27
, Issue.7
, pp. 1572-1579
-
-
Timmermans, F.1
Van Hauwermeiren, F.2
De Smedt, M.3
-
156
-
-
84855822374
-
Sca-1+ cardiosphere-derived cells are enriched for Isl1-expressing cardiac precursors and improve cardiac function after myocardial injury
-
Ye J., Boyle A., Shih H., et al. Sca-1+ cardiosphere-derived cells are enriched for Isl1-expressing cardiac precursors and improve cardiac function after myocardial injury. PLoS One 2012, 7(1).
-
(2012)
PLoS One
, vol.7
, Issue.1
-
-
Ye, J.1
Boyle, A.2
Shih, H.3
-
157
-
-
0038707459
-
Post-natal endothelial progenitor cells for neovascularization in tissue regeneration
-
Masuda H., Asahara T. Post-natal endothelial progenitor cells for neovascularization in tissue regeneration. Cardiovasc. Res. 2003, 58(2):390-398.
-
(2003)
Cardiovasc. Res.
, vol.58
, Issue.2
, pp. 390-398
-
-
Masuda, H.1
Asahara, T.2
-
158
-
-
0031453534
-
AC133, a novel marker for human hematopoietic stem and progenitor cells
-
Yin A.H., Miraglia S., Zanjani E.D., et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997, 90(12):5002-5012.
-
(1997)
Blood
, vol.90
, Issue.12
, pp. 5002-5012
-
-
Yin, A.H.1
Miraglia, S.2
Zanjani, E.D.3
-
159
-
-
12944253116
-
Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors
-
Peichev M., Naiyer A.J., Pereira D., et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000, 95(3):952-958.
-
(2000)
Blood
, vol.95
, Issue.3
, pp. 952-958
-
-
Peichev, M.1
Naiyer, A.J.2
Pereira, D.3
-
160
-
-
33846035640
-
Mobilization of endothelial precursor cells: systemic vascular response to musculoskeletal trauma
-
Laing A.J., Dillon J.P., Condon E.T., et al. Mobilization of endothelial precursor cells: systemic vascular response to musculoskeletal trauma. J. Orthop. Res. 2007, 25(1):44-50.
-
(2007)
J. Orthop. Res.
, vol.25
, Issue.1
, pp. 44-50
-
-
Laing, A.J.1
Dillon, J.P.2
Condon, E.T.3
-
161
-
-
41949103629
-
Mobilization of endothelial progenitor cells in fracture healing and distraction osteogenesis
-
Lee D.Y., Cho T.J., Kim J.A., et al. Mobilization of endothelial progenitor cells in fracture healing and distraction osteogenesis. Bone 2008, 42(5):932-941.
-
(2008)
Bone
, vol.42
, Issue.5
, pp. 932-941
-
-
Lee, D.Y.1
Cho, T.J.2
Kim, J.A.3
-
162
-
-
77954755705
-
Endothelial progenitor cells promote fracture healing in a segmental bone defect model
-
Atesok K., Li R., Stewart D.J., Schemitsch E.H. Endothelial progenitor cells promote fracture healing in a segmental bone defect model. J. Orthop. Res. 2010, 28(8):1007-1014.
-
(2010)
J. Orthop. Res.
, vol.28
, Issue.8
, pp. 1007-1014
-
-
Atesok, K.1
Li, R.2
Stewart, D.J.3
Schemitsch, E.H.4
-
163
-
-
70349426998
-
Transplanted blood-derived endothelial progenitor cells (EPC) enhance bridging of sheep tibia critical size defects
-
Rozen N., Bick T., Bajayo A., et al. Transplanted blood-derived endothelial progenitor cells (EPC) enhance bridging of sheep tibia critical size defects. Bone 2009, 45(5):918-924.
-
(2009)
Bone
, vol.45
, Issue.5
, pp. 918-924
-
-
Rozen, N.1
Bick, T.2
Bajayo, A.3
-
164
-
-
80051544413
-
Endothelial progenitor cells for fracture healing: a microcomputed tomography and biomechanical analysis
-
Li R., Atesok K., Nauth A., et al. Endothelial progenitor cells for fracture healing: a microcomputed tomography and biomechanical analysis. J. Orthop. Trauma 2011, 25(8):467-471.
-
(2011)
J. Orthop. Trauma
, vol.25
, Issue.8
, pp. 467-471
-
-
Li, R.1
Atesok, K.2
Nauth, A.3
-
165
-
-
58649108952
-
Endothelial progenitor cells: identity defined?
-
Timmermans F., Plum J., Yoder M.C., Ingram D.A., Vandekerckhove B., Case J. Endothelial progenitor cells: identity defined?. J. Cell. Mol. Med. 2009, 13(1):87-102.
-
(2009)
J. Cell. Mol. Med.
, vol.13
, Issue.1
, pp. 87-102
-
-
Timmermans, F.1
Plum, J.2
Yoder, M.C.3
Ingram, D.A.4
Vandekerckhove, B.5
Case, J.6
-
166
-
-
0037418213
-
Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors
-
Rehman J., Li J., Orschell C.M., March K.L. Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 2003, 107(8):1164-1169.
-
(2003)
Circulation
, vol.107
, Issue.8
, pp. 1164-1169
-
-
Rehman, J.1
Li, J.2
Orschell, C.M.3
March, K.L.4
-
167
-
-
80053135815
-
Paracrine effects influenced by cell culture medium and consequences on microvessel-like structures in cocultures of mesenchymal stem cells and outgrowth endothelial cells
-
Kolbe M., Xiang Z., Dohle E., Tonak M., Kirkpatrick C.J., Fuchs S. Paracrine effects influenced by cell culture medium and consequences on microvessel-like structures in cocultures of mesenchymal stem cells and outgrowth endothelial cells. Tissue Eng. A 2011, 17(17-18):2199-2212.
-
(2011)
Tissue Eng. A
, vol.17
, Issue.17-18
, pp. 2199-2212
-
-
Kolbe, M.1
Xiang, Z.2
Dohle, E.3
Tonak, M.4
Kirkpatrick, C.J.5
Fuchs, S.6
-
168
-
-
84889871241
-
Enhanced osteogenesis in cocultures with human mesenchymal stem cells and endothelial cells on polymeric microfiber scaffolds
-
Gershovich J.G., Dahlin R.L., Kasper F.K., Mikos A.G. Enhanced osteogenesis in cocultures with human mesenchymal stem cells and endothelial cells on polymeric microfiber scaffolds. Tissue Eng. A 2013, 19(23-24):2565-2576.
-
(2013)
Tissue Eng. A
, vol.19
, Issue.23-24
, pp. 2565-2576
-
-
Gershovich, J.G.1
Dahlin, R.L.2
Kasper, F.K.3
Mikos, A.G.4
-
169
-
-
78149414932
-
Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized beta-tricalcium phosphate scaffold and mesenchymal stem cells
-
Wang L., Fan H., Zhang Z.Y., et al. Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized beta-tricalcium phosphate scaffold and mesenchymal stem cells. Biomaterials 2010, 31(36):9452-9461.
-
(2010)
Biomaterials
, vol.31
, Issue.36
, pp. 9452-9461
-
-
Wang, L.1
Fan, H.2
Zhang, Z.Y.3
-
170
-
-
78249260036
-
Interactions of human endothelial and multipotent mesenchymal stem cells in cocultures
-
Ern C., Krump-Konvalinkova V., Docheva D., et al. Interactions of human endothelial and multipotent mesenchymal stem cells in cocultures. Open Biomed. Eng. J. 2010, 4:190-198.
-
(2010)
Open Biomed. Eng. J.
, vol.4
, pp. 190-198
-
-
Ern, C.1
Krump-Konvalinkova, V.2
Docheva, D.3
-
171
-
-
84880919027
-
Cell interactions between human progenitor-derived endothelial cells and human mesenchymal stem cells in a three-dimensional macroporous polysaccharide-based scaffold promote osteogenesis
-
Guerrero J., Catros S., Derkaoui S.M., et al. Cell interactions between human progenitor-derived endothelial cells and human mesenchymal stem cells in a three-dimensional macroporous polysaccharide-based scaffold promote osteogenesis. Acta Biomater. 2013, 9(9):8200-8213.
-
(2013)
Acta Biomater.
, vol.9
, Issue.9
, pp. 8200-8213
-
-
Guerrero, J.1
Catros, S.2
Derkaoui, S.M.3
-
172
-
-
84860425709
-
Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue
-
Hsiao S.T., Asgari A., Lokmic Z., et al. Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem Cells Dev. 2011, 21(12):2189-2203.
-
(2011)
Stem Cells Dev.
, vol.21
, Issue.12
, pp. 2189-2203
-
-
Hsiao, S.T.1
Asgari, A.2
Lokmic, Z.3
-
173
-
-
84896491744
-
Osteogenic differentiation and angiogenesis with cocultured adipose-derived stromal cells and bone marrow stromal cells
-
Kim K.I., Park S., Im G.I. Osteogenic differentiation and angiogenesis with cocultured adipose-derived stromal cells and bone marrow stromal cells. Biomaterials 2014, 35(17):4792-4804.
-
(2014)
Biomaterials
, vol.35
, Issue.17
, pp. 4792-4804
-
-
Kim, K.I.1
Park, S.2
Im, G.I.3
-
174
-
-
84883795646
-
Lara de Freitas R, meury T, et al. 3D scaffolds co-seeded with human endothelial progenitor and mesenchymal stem cells: evidence of prevascularisation within 7 days
-
discussion 64-5
-
Duttenhoefer F. Lara de Freitas R, meury T, et al. 3D scaffolds co-seeded with human endothelial progenitor and mesenchymal stem cells: evidence of prevascularisation within 7 days. Eur. Cell. Mater. 2013, 26:49-64. discussion 64-5.
-
(2013)
Eur. Cell. Mater.
, vol.26
, pp. 49-64
-
-
Duttenhoefer, F.1
-
175
-
-
84893791551
-
Direct cell-cell contact between mesenchymal stem cells and endothelial progenitor cells induces a pericyte-like phenotype in vitro
-
Loibl M., Binder A., Herrmann M., et al. Direct cell-cell contact between mesenchymal stem cells and endothelial progenitor cells induces a pericyte-like phenotype in vitro. Biomed Res Int. 2014, 2014:395781.
-
(2014)
Biomed Res Int.
, vol.2014
, pp. 395781
-
-
Loibl, M.1
Binder, A.2
Herrmann, M.3
-
176
-
-
84869760954
-
Human endothelial progenitor cells induce extracellular signal-regulated kinase-dependent differentiation of mesenchymal stem cells into smooth muscle cells upon cocultivation
-
Goerke S.M., Plaha J., Hager S., et al. Human endothelial progenitor cells induce extracellular signal-regulated kinase-dependent differentiation of mesenchymal stem cells into smooth muscle cells upon cocultivation. Tissue Eng. A 2012, 18(23-24):2395-2405.
-
(2012)
Tissue Eng. A
, vol.18
, Issue.23-24
, pp. 2395-2405
-
-
Goerke, S.M.1
Plaha, J.2
Hager, S.3
-
177
-
-
84857684777
-
How mesenchymal stem cells interact with tissue immune responses
-
Shi Y., Su J., Roberts A.I., Shou P., Rabson A.B., Ren G. How mesenchymal stem cells interact with tissue immune responses. Trends Immunol. 2012, 33(3):136-143.
-
(2012)
Trends Immunol.
, vol.33
, Issue.3
, pp. 136-143
-
-
Shi, Y.1
Su, J.2
Roberts, A.I.3
Shou, P.4
Rabson, A.B.5
Ren, G.6
-
178
-
-
84892433295
-
Immunobiology of mesenchymal stem cells
-
Ma S., Xie N., Li W., Yuan B., Shi Y., Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differ. 2014, 21(2):216-225.
-
(2014)
Cell Death Differ.
, vol.21
, Issue.2
, pp. 216-225
-
-
Ma, S.1
Xie, N.2
Li, W.3
Yuan, B.4
Shi, Y.5
Wang, Y.6
-
179
-
-
0038676258
-
Regulation of wound healing by growth factors and cytokines
-
Werner S., Grose R. Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 2003, 83(3):835-870.
-
(2003)
Physiol. Rev.
, vol.83
, Issue.3
, pp. 835-870
-
-
Werner, S.1
Grose, R.2
-
180
-
-
77954717770
-
Rejuvenation of the inflammatory system stimulates fracture repair in aged mice
-
Xing Z., Lu C., Hu D., Miclau T., Marcucio R.S. Rejuvenation of the inflammatory system stimulates fracture repair in aged mice. J. Orthop. Res. 2010, 28(8):1000-1006.
-
(2010)
J. Orthop. Res.
, vol.28
, Issue.8
, pp. 1000-1006
-
-
Xing, Z.1
Lu, C.2
Hu, D.3
Miclau, T.4
Marcucio, R.S.5
-
181
-
-
77954859347
-
Multiple roles for CCR2 during fracture healing
-
Xing Z., Lu C., Hu D., et al. Multiple roles for CCR2 during fracture healing. Dis. Model. Mech. 2010, 3(7-8):451-458.
-
(2010)
Dis. Model. Mech.
, vol.3
, Issue.7-8
, pp. 451-458
-
-
Xing, Z.1
Lu, C.2
Hu, D.3
-
182
-
-
84897107812
-
Modulation of macrophage activity during fracture repair has differential effects in young adult and elderly mice
-
S10-4
-
Slade Shantz J.A., Yu Y.Y., Andres W., Miclau T., Marcucio R. Modulation of macrophage activity during fracture repair has differential effects in young adult and elderly mice. J. Orthop. Trauma 2014, 28(Suppl. 1):S10-4.
-
(2014)
J. Orthop. Trauma
, vol.28
-
-
Slade Shantz, J.A.1
Yu, Y.Y.2
Andres, W.3
Miclau, T.4
Marcucio, R.5
-
183
-
-
7644231561
-
The chemokine system in diverse forms of macrophage activation and polarization
-
Mantovani A., Sica A., Sozzani S., Allavena P., Vecchi A., Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004, 25(12):677-686.
-
(2004)
Trends Immunol.
, vol.25
, Issue.12
, pp. 677-686
-
-
Mantovani, A.1
Sica, A.2
Sozzani, S.3
Allavena, P.4
Vecchi, A.5
Locati, M.6
-
184
-
-
55849103960
-
Macrophage diversity in renal injury and repair
-
Ricardo S.D., van Goor H., Eddy A.A. Macrophage diversity in renal injury and repair. J. Clin. Invest. 2008, 118(11):3522-3530.
-
(2008)
J. Clin. Invest.
, vol.118
, Issue.11
, pp. 3522-3530
-
-
Ricardo, S.D.1
van Goor, H.2
Eddy, A.A.3
-
185
-
-
80355131976
-
Protective and pathogenic functions of macrophage subsets
-
Murray P.J., Wynn T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011, 11(11):723-737.
-
(2011)
Nat. Rev. Immunol.
, vol.11
, Issue.11
, pp. 723-737
-
-
Murray, P.J.1
Wynn, T.A.2
-
186
-
-
84897556094
-
The M1 and M2 paradigm of macrophage activation: Time for reassessment
-
(eCollection 2014)
-
Martinez F.O., Gordon S. The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep 2014, 6:6-13. (eCollection 2014).
-
(2014)
F1000Prime Rep
, vol.6
, pp. 6-13
-
-
Martinez, F.O.1
Gordon, S.2
-
187
-
-
84923792299
-
The convergence of fracture repair and stem cells: interplay of genes, aging, environmental factors and disease
-
Hadjiargyrou M., O'Keefe R.J. The convergence of fracture repair and stem cells: interplay of genes, aging, environmental factors and disease. J. Bone Miner. Res. 2014, 29(11):2307-2322.
-
(2014)
J. Bone Miner. Res.
, vol.29
, Issue.11
, pp. 2307-2322
-
-
Hadjiargyrou, M.1
O'Keefe, R.J.2
-
188
-
-
84896960713
-
The chondrocytic journey in endochondral bone growth and skeletal dysplasia
-
Yeung Tsang K., Wa Tsang S., Chan D., Cheah K.S. The chondrocytic journey in endochondral bone growth and skeletal dysplasia. Birth Defects Res. C Embryo Today 2014, 102(1):52-73.
-
(2014)
Birth Defects Res. C Embryo Today
, vol.102
, Issue.1
, pp. 52-73
-
-
Yeung Tsang, K.1
Wa Tsang, S.2
Chan, D.3
Cheah, K.S.4
-
189
-
-
84873156275
-
Engineering osteochondral constructs through spatial regulation of endochondral ossification
-
Sheehy E.J., Vinardell T., Buckley C.T., Kelly D.J. Engineering osteochondral constructs through spatial regulation of endochondral ossification. Acta Biomater. 2013, 9(3):5484-5492.
-
(2013)
Acta Biomater.
, vol.9
, Issue.3
, pp. 5484-5492
-
-
Sheehy, E.J.1
Vinardell, T.2
Buckley, C.T.3
Kelly, D.J.4
-
191
-
-
64549096039
-
Engineering endochondral bone: in vivo studies
-
Oliveira S.M., Mijares D.Q., Turner G., Amaral I.F., Barbosa M.A., Teixeira C.C. Engineering endochondral bone: in vivo studies. Tissue Eng. A 2009, 15(3):635-643.
-
(2009)
Tissue Eng. A
, vol.15
, Issue.3
, pp. 635-643
-
-
Oliveira, S.M.1
Mijares, D.Q.2
Turner, G.3
Amaral, I.F.4
Barbosa, M.A.5
Teixeira, C.C.6
-
192
-
-
0034056758
-
Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model
-
Muraglia A., Cancedda R., Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J. Cell Sci. 2000, 113(Pt 7):1161-1166.
-
(2000)
J. Cell Sci.
, vol.113
, pp. 1161-1166
-
-
Muraglia, A.1
Cancedda, R.2
Quarto, R.3
-
193
-
-
85016531506
-
The efficacy of periosteal cells compared to chondrocytes in the tissue engineered repair of bone defects
-
Vacanti C.A., Kim W., Upton J., Mooney D., Vacanti J.P. The efficacy of periosteal cells compared to chondrocytes in the tissue engineered repair of bone defects. Tissue Eng. 1995, 1(3):301-308.
-
(1995)
Tissue Eng.
, vol.1
, Issue.3
, pp. 301-308
-
-
Vacanti, C.A.1
Kim, W.2
Upton, J.3
Mooney, D.4
Vacanti, J.P.5
-
194
-
-
77952199886
-
Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering
-
Scotti C., Tonnarelli B., Papadimitropoulos A., et al. Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proc. Natl. Acad. Sci. U. S. A. 2010, 107(16):7251-7256.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, Issue.16
, pp. 7251-7256
-
-
Scotti, C.1
Tonnarelli, B.2
Papadimitropoulos, A.3
-
195
-
-
60849084882
-
Calcification or dedifferentiation: requirement to lock mesenchymal stem cells in a desired differentiation stage
-
Dickhut A., Pelttari K., Janicki P., et al. Calcification or dedifferentiation: requirement to lock mesenchymal stem cells in a desired differentiation stage. J. Cell. Physiol. 2009, 219(1):219-226.
-
(2009)
J. Cell. Physiol.
, vol.219
, Issue.1
, pp. 219-226
-
-
Dickhut, A.1
Pelttari, K.2
Janicki, P.3
-
196
-
-
84896707848
-
Stem cell-derived endochondral cartilage stimulates bone healing by tissue transformation
-
Bahney C.S., Hu D.P., Taylor A.J., et al. Stem cell-derived endochondral cartilage stimulates bone healing by tissue transformation. J. Bone Miner. Res. 2014, 29(5):1269-1282.
-
(2014)
J. Bone Miner. Res.
, vol.29
, Issue.5
, pp. 1269-1282
-
-
Bahney, C.S.1
Hu, D.P.2
Taylor, A.J.3
-
197
-
-
84903462515
-
Bone regeneration in a massive rat femur defect through endochondral ossification achieved with chondrogenically differentiated MSCs in a degradable scaffold
-
Harada N., Watanabe Y., Sato K., et al. Bone regeneration in a massive rat femur defect through endochondral ossification achieved with chondrogenically differentiated MSCs in a degradable scaffold. Biomaterials 2014, 35(27):7800-7810.
-
(2014)
Biomaterials
, vol.35
, Issue.27
, pp. 7800-7810
-
-
Harada, N.1
Watanabe, Y.2
Sato, K.3
-
198
-
-
84874615532
-
Engineering of a functional bone organ through endochondral ossification
-
Scotti C., Piccinini E., Takizawa H., et al. Engineering of a functional bone organ through endochondral ossification. Proc. Natl. Acad. Sci. U. S. A. 2013, 110(10):3997-4002.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, Issue.10
, pp. 3997-4002
-
-
Scotti, C.1
Piccinini, E.2
Takizawa, H.3
-
199
-
-
33645689091
-
Lunate arthroplasty with autologous mesenchymal stem cells in a rabbit model
-
Huang J.I., Durbhakula M.M., Angele P., Johnstone B., Yoo J.U. Lunate arthroplasty with autologous mesenchymal stem cells in a rabbit model. J. Bone Joint Surg. (Am. Vol.) 2006, 88(4):744-752.
-
(2006)
J. Bone Joint Surg. (Am. Vol.)
, vol.88
, Issue.4
, pp. 744-752
-
-
Huang, J.I.1
Durbhakula, M.M.2
Angele, P.3
Johnstone, B.4
Yoo, J.U.5
-
200
-
-
77955066100
-
Modulating endochondral ossification of multipotent stromal cells for bone regeneration
-
Gawlitta D., Farrell E., Malda J., Creemers L.B., Alblas J., Dhert W.J. Modulating endochondral ossification of multipotent stromal cells for bone regeneration. Tissue Eng. B Rev. 2010, 16(4):385-395.
-
(2010)
Tissue Eng. B Rev.
, vol.16
, Issue.4
, pp. 385-395
-
-
Gawlitta, D.1
Farrell, E.2
Malda, J.3
Creemers, L.B.4
Alblas, J.5
Dhert, W.J.6
-
201
-
-
84960103172
-
Endochondral ossification for enhancing bone regeneration: converging native extracellular matrix biomaterials and developmental engineering in vivo
-
Dennis S.C., Berkland C.J., Bonewald L.F., Detamore M.S. Endochondral ossification for enhancing bone regeneration: converging native extracellular matrix biomaterials and developmental engineering in vivo. Tissue Eng. B Rev. 2014.
-
(2014)
Tissue Eng. B Rev.
-
-
Dennis, S.C.1
Berkland, C.J.2
Bonewald, L.F.3
Detamore, M.S.4
-
202
-
-
84860518543
-
A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources
-
Vinardell T., Sheehy E.J., Buckley C.T., Kelly D.J. A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources. Tissue Eng. A 2012, 18(11-12):1161-1170.
-
(2012)
Tissue Eng. A
, vol.18
, Issue.11-12
, pp. 1161-1170
-
-
Vinardell, T.1
Sheehy, E.J.2
Buckley, C.T.3
Kelly, D.J.4
-
203
-
-
84897074272
-
Altering the architecture of tissue engineered hypertrophic cartilaginous grafts facilitates vascularisation and accelerates mineralisation
-
Sheehy E.J., Vinardell T., Toner M.E., Buckley C.T., Kelly D.J. Altering the architecture of tissue engineered hypertrophic cartilaginous grafts facilitates vascularisation and accelerates mineralisation. PLoS One 2014, 9(3).
-
(2014)
PLoS One
, vol.9
, Issue.3
-
-
Sheehy, E.J.1
Vinardell, T.2
Toner, M.E.3
Buckley, C.T.4
Kelly, D.J.5
-
204
-
-
80053166672
-
Chondrocytes and bone marrow-derived mesenchymal stem cells undergoing chondrogenesis in agarose hydrogels of solid and channelled architectures respond differentially to dynamic culture conditions
-
Sheehy E.J., Buckley C.T., Kelly D.J. Chondrocytes and bone marrow-derived mesenchymal stem cells undergoing chondrogenesis in agarose hydrogels of solid and channelled architectures respond differentially to dynamic culture conditions. J. Tissue Eng. Regen. Med. 2011, 5(9):747-758.
-
(2011)
J. Tissue Eng. Regen. Med.
, vol.5
, Issue.9
, pp. 747-758
-
-
Sheehy, E.J.1
Buckley, C.T.2
Kelly, D.J.3
-
205
-
-
84923343709
-
Fate of growth plate hypertrophic chondrocytes: death or lineage extension?
-
Tsang K.Y., Chan D., Cheah K.S. Fate of growth plate hypertrophic chondrocytes: death or lineage extension?. Develop. Growth Differ. 2015, 57(2):179-192.
-
(2015)
Develop. Growth Differ.
, vol.57
, Issue.2
, pp. 179-192
-
-
Tsang, K.Y.1
Chan, D.2
Cheah, K.S.3
-
206
-
-
84906319227
-
Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation
-
Yang L., Tsang K.Y., Tang H.C., Chan D., Cheah K.S. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc. Natl. Acad. Sci. U. S. A. 2014, 111(33):12097-12102.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, Issue.33
, pp. 12097-12102
-
-
Yang, L.1
Tsang, K.Y.2
Tang, H.C.3
Chan, D.4
Cheah, K.S.5
-
207
-
-
84919667212
-
Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice
-
Zhou X., von der Mark K., Henry S., Norton W., Adams H., de Crombrugghe B. Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genet. 2014, 10(12).
-
(2014)
PLoS Genet.
, vol.10
, Issue.12
-
-
Zhou, X.1
von der Mark, K.2
Henry, S.3
Norton, W.4
Adams, H.5
de Crombrugghe, B.6
-
208
-
-
84880722847
-
Complications associated with the use of the recombinant human bone morphogenetic proteins for posterior interbody fusions of the lumbar spine
-
Chrastil J., Low J.B., Whang P.G., Patel A.A. Complications associated with the use of the recombinant human bone morphogenetic proteins for posterior interbody fusions of the lumbar spine. Spine (Phila Pa 1976) 2013, 38(16):E1020-E1027.
-
(2013)
Spine (Phila Pa 1976)
, vol.38
, Issue.16
, pp. E1020-E1027
-
-
Chrastil, J.1
Low, J.B.2
Whang, P.G.3
Patel, A.A.4
-
209
-
-
84877703515
-
The use of rhBMP in spine surgery: is there a cancer risk?
-
DeVine J.G., Dettori J.R., France J.C., Brodt E., McGuire R.A. The use of rhBMP in spine surgery: is there a cancer risk?. Evidence-based spine-care journal 2012, 3(2):35.
-
(2012)
Evidence-based spine-care journal
, vol.3
, Issue.2
, pp. 35
-
-
DeVine, J.G.1
Dettori, J.R.2
France, J.C.3
Brodt, E.4
McGuire, R.A.5
-
210
-
-
84926959772
-
The synergistic effect of micro-topography and biochemical culture environment to promote angiogenesis and osteogenic differentiation of human mesenchymal stem cells
-
Song S., Kim E.J., Bahney C.S., Miclau T., Marcucio R., Roy S. The synergistic effect of micro-topography and biochemical culture environment to promote angiogenesis and osteogenic differentiation of human mesenchymal stem cells. Acta Biomater. 2015, 18:100-111.
-
(2015)
Acta Biomater.
, vol.18
, pp. 100-111
-
-
Song, S.1
Kim, E.J.2
Bahney, C.S.3
Miclau, T.4
Marcucio, R.5
Roy, S.6
-
211
-
-
84905734341
-
Award winner in the young investigator category, 2014 society for biomaterials annual meeting and exposition, Denver, Colorado, April 16-19, 2014: periodically perforated core-shell collagen biomaterials balance cell infiltration, bioactivity, and mechanical properties
-
Caliari S.R., Mozdzen L.C., Armitage O., Oyen M.L., Harley B.A. Award winner in the young investigator category, 2014 society for biomaterials annual meeting and exposition, Denver, Colorado, April 16-19, 2014: periodically perforated core-shell collagen biomaterials balance cell infiltration, bioactivity, and mechanical properties. J. Biomed. Mater. Res. A 2014, 102(4):917-927.
-
(2014)
J. Biomed. Mater. Res. A
, vol.102
, Issue.4
, pp. 917-927
-
-
Caliari, S.R.1
Mozdzen, L.C.2
Armitage, O.3
Oyen, M.L.4
Harley, B.A.5
-
212
-
-
84905725612
-
3D bioprinting of tissues and organs
-
Murphy S.V., Atala A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32(8):773-785.
-
(2014)
Nat. Biotechnol.
, vol.32
, Issue.8
, pp. 773-785
-
-
Murphy, S.V.1
Atala, A.2
|