메뉴 건너뛰기




Volumn 83, Issue , 2016, Pages 197-209

Tissue engineering strategies for promoting vascularized bone regeneration

Author keywords

Angiogenesis; Bone regeneration; Controlled release; Endochondral ossification; Osteogenesis; Stem cells

Indexed keywords

ANGIOPOIETIN; BIOMATERIAL; FIBROBLAST GROWTH FACTOR 2; MICROPARTICLE; NANOPARTICLE; PLACENTAL GROWTH FACTOR; PLATELET DERIVED GROWTH FACTOR; SOMATOMEDIN; SONIC HEDGEHOG PROTEIN; UNCLASSIFIED DRUG; VASCULOTROPIN; SIGNAL PEPTIDE;

EID: 84961753014     PISSN: 87563282     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.bone.2015.11.011     Document Type: Review
Times cited : (166)

References (212)
  • 1
    • 84872868657 scopus 로고    scopus 로고
    • Vascularized bone grafts for the management of skeletal defects in orthopaedic trauma and reconstructive surgery
    • Soucacos P.N., Kokkalis Z.T., Piagkou M., Johnson E.O. Vascularized bone grafts for the management of skeletal defects in orthopaedic trauma and reconstructive surgery. Injury 2013, 44(Suppl. 1):S70-S75.
    • (2013) Injury , vol.44 , pp. S70-S75
    • Soucacos, P.N.1    Kokkalis, Z.T.2    Piagkou, M.3    Johnson, E.O.4
  • 2
    • 81155160910 scopus 로고    scopus 로고
    • What bone graft substitutes should we use in post-traumatic spinal fusion?
    • Guerado E., Fuerstenberg C.H. What bone graft substitutes should we use in post-traumatic spinal fusion?. Injury 2011, 42(Suppl. 2):S64-S71.
    • (2011) Injury , vol.42 , pp. S64-S71
    • Guerado, E.1    Fuerstenberg, C.H.2
  • 3
    • 84899076559 scopus 로고    scopus 로고
    • Bone regenerative medicine: classic options, novel strategies, and future directions
    • 799X-9-18
    • Oryan A., Alidadi S., Moshiri A., Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J. Orthop. Surg. Res. 2014, 9(1):18. -799X-9-18.
    • (2014) J. Orthop. Surg. Res. , vol.9 , Issue.1 , pp. 18
    • Oryan, A.1    Alidadi, S.2    Moshiri, A.3    Maffulli, N.4
  • 4
    • 0033961005 scopus 로고    scopus 로고
    • The use of allograft bone in lumbar spine surgery
    • Ehrler D.M., Vaccaro A.R. The use of allograft bone in lumbar spine surgery. Clin. Orthop. Relat. Res. 2000, (371):38-45.
    • (2000) Clin. Orthop. Relat. Res. , Issue.371 , pp. 38-45
    • Ehrler, D.M.1    Vaccaro, A.R.2
  • 6
    • 20444371864 scopus 로고    scopus 로고
    • Allograft bone decreases in strength in vivo over time
    • Wheeler D.L., Enneking W.F. Allograft bone decreases in strength in vivo over time. Clin. Orthop. Relat. Res. 2005, (435):36-42.
    • (2005) Clin. Orthop. Relat. Res. , Issue.435 , pp. 36-42
    • Wheeler, D.L.1    Enneking, W.F.2
  • 7
    • 84866840029 scopus 로고    scopus 로고
    • Vascularized bone tissue engineering: approaches for potential improvement
    • Nguyen L.H., Annabi N., Nikkhah M., et al. Vascularized bone tissue engineering: approaches for potential improvement. Tissue Eng. Part B Rev. 2012, 18(5):363-382.
    • (2012) Tissue Eng. Part B Rev. , vol.18 , Issue.5 , pp. 363-382
    • Nguyen, L.H.1    Annabi, N.2    Nikkhah, M.3
  • 9
    • 0015804548 scopus 로고
    • Self-regulation of growth in three dimensions
    • Folkman J., Hochberg M. Self-regulation of growth in three dimensions. J. Exp. Med. 1973, 138(4):745-753.
    • (1973) J. Exp. Med. , vol.138 , Issue.4 , pp. 745-753
    • Folkman, J.1    Hochberg, M.2
  • 10
    • 84874022424 scopus 로고    scopus 로고
    • Vascularized bone grafts for the treatment of carpal bone pathology
    • Derby B.M., Murray P.M., Shin A.Y., et al. Vascularized bone grafts for the treatment of carpal bone pathology. Hand (N Y). 2013, 8(1):27-40.
    • (2013) Hand (N Y). , vol.8 , Issue.1 , pp. 27-40
    • Derby, B.M.1    Murray, P.M.2    Shin, A.Y.3
  • 11
    • 37849186769 scopus 로고    scopus 로고
    • Avascular necrosis of the femoral head: role of vascularized bone grafts
    • v
    • Aldridge J.M., Urbaniak J.R. Avascular necrosis of the femoral head: role of vascularized bone grafts. Orthop. Clin. N. Am. 2007, 38(1):13-22. v.
    • (2007) Orthop. Clin. N. Am. , vol.38 , Issue.1 , pp. 13-22
    • Aldridge, J.M.1    Urbaniak, J.R.2
  • 12
    • 0034104295 scopus 로고    scopus 로고
    • VPF/VEGF and the angiogenic response
    • Dvorak H.F. VPF/VEGF and the angiogenic response. Semin. Perinatol. 2000, 24(1):75-78.
    • (2000) Semin. Perinatol. , vol.24 , Issue.1 , pp. 75-78
    • Dvorak, H.F.1
  • 13
    • 0034076189 scopus 로고    scopus 로고
    • Mechanisms of angiogenesis and arteriogenesis
    • Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 2000, 6(4):389-395.
    • (2000) Nat. Med. , vol.6 , Issue.4 , pp. 389-395
    • Carmeliet, P.1
  • 14
    • 0031039243 scopus 로고    scopus 로고
    • The biology of vascular endothelial growth factor
    • Ferrara N., Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr. Rev. 1997, 18(1):4-25.
    • (1997) Endocr. Rev. , vol.18 , Issue.1 , pp. 4-25
    • Ferrara, N.1    Davis-Smyth, T.2
  • 15
    • 0037699954 scopus 로고    scopus 로고
    • The biology of VEGF and its receptors
    • Ferrara N., Gerber H.P., LeCouter J. The biology of VEGF and its receptors. Nat. Med. 2003, 9(6):669-676.
    • (2003) Nat. Med. , vol.9 , Issue.6 , pp. 669-676
    • Ferrara, N.1    Gerber, H.P.2    LeCouter, J.3
  • 16
    • 0033059666 scopus 로고    scopus 로고
    • Cartilage to bone-angiogenesis leads the way
    • Harper J., Klagsbrun M. Cartilage to bone-angiogenesis leads the way. Nat. Med. 1999, 5(6):617-618.
    • (1999) Nat. Med. , vol.5 , Issue.6 , pp. 617-618
    • Harper, J.1    Klagsbrun, M.2
  • 17
    • 0033027858 scopus 로고    scopus 로고
    • VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation
    • Gerber H.P., Vu T.H., Ryan A.M., Kowalski J., Werb Z., Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med. 1999, 5(6):623-628.
    • (1999) Nat. Med. , vol.5 , Issue.6 , pp. 623-628
    • Gerber, H.P.1    Vu, T.H.2    Ryan, A.M.3    Kowalski, J.4    Werb, Z.5    Ferrara, N.6
  • 18
    • 34548543843 scopus 로고    scopus 로고
    • VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute
    • Geiger F., Lorenz H., Xu W., et al. VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute. Bone 2007, 41(4):516-522.
    • (2007) Bone , vol.41 , Issue.4 , pp. 516-522
    • Geiger, F.1    Lorenz, H.2    Xu, W.3
  • 20
    • 0035208929 scopus 로고    scopus 로고
    • Prevention of fracture healing in rats by an inhibitor of angiogenesis
    • Hausman M.R., Schaffler M.B., Majeska R.J. Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone 2001, 29(6):560-564.
    • (2001) Bone , vol.29 , Issue.6 , pp. 560-564
    • Hausman, M.R.1    Schaffler, M.B.2    Majeska, R.J.3
  • 21
    • 76649119775 scopus 로고    scopus 로고
    • Vascular endothelial growth factor: an essential component of angiogenesis and fracture healing
    • Beamer B., Hettrich C., Lane J. Vascular endothelial growth factor: an essential component of angiogenesis and fracture healing. HSS J. 2010, 6(1):85-94.
    • (2010) HSS J. , vol.6 , Issue.1 , pp. 85-94
    • Beamer, B.1    Hettrich, C.2    Lane, J.3
  • 22
    • 51849093548 scopus 로고    scopus 로고
    • Fracture vascularity and bone healing: a systematic review of the role of VEGF
    • Keramaris N.C., Calori G.M., Nikolaou V.S., Schemitsch E.H., Giannoudis P.V. Fracture vascularity and bone healing: a systematic review of the role of VEGF. Injury 2008, 39(Suppl. 2):S45-S57.
    • (2008) Injury , vol.39 , pp. S45-S57
    • Keramaris, N.C.1    Calori, G.M.2    Nikolaou, V.S.3    Schemitsch, E.H.4    Giannoudis, P.V.5
  • 23
    • 84870252896 scopus 로고    scopus 로고
    • Comparison of platelet-rich plasma and VEGF-transfected mesenchymal stem cells on vascularization and bone formation in a critical-size bone defect
    • Kasten P., Beverungen M., Lorenz H., Wieland J., Fehr M., Geiger F. Comparison of platelet-rich plasma and VEGF-transfected mesenchymal stem cells on vascularization and bone formation in a critical-size bone defect. Cells Tissues Organs 2012, 196(6):523-533.
    • (2012) Cells Tissues Organs , vol.196 , Issue.6 , pp. 523-533
    • Kasten, P.1    Beverungen, M.2    Lorenz, H.3    Wieland, J.4    Fehr, M.5    Geiger, F.6
  • 24
    • 0036738338 scopus 로고    scopus 로고
    • Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4
    • Peng H., Wright V., Usas A., et al. Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J. Clin. Invest. 2002, 110(6):751-759.
    • (2002) J. Clin. Invest. , vol.110 , Issue.6 , pp. 751-759
    • Peng, H.1    Wright, V.2    Usas, A.3
  • 25
    • 84855544502 scopus 로고    scopus 로고
    • Temporal and spatial vascularization patterns of unions and nonunions: role of vascular endothelial growth factor and bone morphogenetic proteins
    • Garcia P., Pieruschka A., Klein M., et al. Temporal and spatial vascularization patterns of unions and nonunions: role of vascular endothelial growth factor and bone morphogenetic proteins. J. Bone Joint Surg. (Am. Vol.) 2012, 94(1):49-58.
    • (2012) J. Bone Joint Surg. (Am. Vol.) , vol.94 , Issue.1 , pp. 49-58
    • Garcia, P.1    Pieruschka, A.2    Klein, M.3
  • 26
    • 27444446737 scopus 로고    scopus 로고
    • VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis
    • Peng H., Usas A., Olshanski A., et al. VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. J. Bone Miner. Res. 2005, 20(11):2017-2027.
    • (2005) J. Bone Miner. Res. , vol.20 , Issue.11 , pp. 2017-2027
    • Peng, H.1    Usas, A.2    Olshanski, A.3
  • 28
    • 77249148863 scopus 로고    scopus 로고
    • Structural determinants of growth factor binding and specificity by VEGF receptor 2
    • Leppanen V.M., Prota A.E., Jeltsch M., et al. Structural determinants of growth factor binding and specificity by VEGF receptor 2. Proc. Natl. Acad. Sci. U. S. A. 2010, 107(6):2425-2430.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , Issue.6 , pp. 2425-2430
    • Leppanen, V.M.1    Prota, A.E.2    Jeltsch, M.3
  • 29
    • 33646268150 scopus 로고    scopus 로고
    • VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects
    • Kaigler D., Wang Z., Horger K., Mooney D.J., Krebsbach P.H. VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J. Bone Miner. Res. 2006, 21(5):735-744.
    • (2006) J. Bone Miner. Res. , vol.21 , Issue.5 , pp. 735-744
    • Kaigler, D.1    Wang, Z.2    Horger, K.3    Mooney, D.J.4    Krebsbach, P.H.5
  • 31
    • 0023772740 scopus 로고
    • Regulation of bovine bone cell proliferation by fibroblast growth factor and transforming growth factor beta
    • Globus R.K., Patterson-Buckendahl P., Gospodarowicz D. Regulation of bovine bone cell proliferation by fibroblast growth factor and transforming growth factor beta. Endocrinology 1988, 123(1):98-105.
    • (1988) Endocrinology , vol.123 , Issue.1 , pp. 98-105
    • Globus, R.K.1    Patterson-Buckendahl, P.2    Gospodarowicz, D.3
  • 33
    • 0032215597 scopus 로고    scopus 로고
    • Single local injection of recombinant fibroblast growth factor-2 stimulates healing of segmental bone defects in rabbits
    • Kato T., Kawaguchi H., Hanada K., et al. Single local injection of recombinant fibroblast growth factor-2 stimulates healing of segmental bone defects in rabbits. J. Orthop. Res. 1998, 16(6):654-659.
    • (1998) J. Orthop. Res. , vol.16 , Issue.6 , pp. 654-659
    • Kato, T.1    Kawaguchi, H.2    Hanada, K.3
  • 34
    • 0031773204 scopus 로고    scopus 로고
    • Local application of basic fibroblast growth factor minipellet induces the healing of segmental bony defects in rabbits
    • Inui K., Maeda M., Sano A., et al. Local application of basic fibroblast growth factor minipellet induces the healing of segmental bony defects in rabbits. Calcif. Tissue Int. 1998, 63(6):490-495.
    • (1998) Calcif. Tissue Int. , vol.63 , Issue.6 , pp. 490-495
    • Inui, K.1    Maeda, M.2    Sano, A.3
  • 35
    • 0036035005 scopus 로고    scopus 로고
    • BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells
    • Fiedler J., Roderer G., Gunther K.P., Brenner R.E. BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells. J. Cell. Biochem. 2002, 87(3):305-312.
    • (2002) J. Cell. Biochem. , vol.87 , Issue.3 , pp. 305-312
    • Fiedler, J.1    Roderer, G.2    Gunther, K.P.3    Brenner, R.E.4
  • 36
    • 0344837389 scopus 로고    scopus 로고
    • Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment
    • Guo P., Hu B., Gu W., et al. Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am. J. Pathol. 2003, 162(4):1083-1093.
    • (2003) Am. J. Pathol. , vol.162 , Issue.4 , pp. 1083-1093
    • Guo, P.1    Hu, B.2    Gu, W.3
  • 37
    • 0030024836 scopus 로고    scopus 로고
    • The effect of systemically administered PDGF-BB on the rodent skeleton
    • Mitlak B.H., Finkelman R.D., Hill E.L., et al. The effect of systemically administered PDGF-BB on the rodent skeleton. J. Bone Miner. Res. 1996, 11(2):238-247.
    • (1996) J. Bone Miner. Res. , vol.11 , Issue.2 , pp. 238-247
    • Mitlak, B.H.1    Finkelman, R.D.2    Hill, E.L.3
  • 38
    • 38049090640 scopus 로고    scopus 로고
    • Accelerated fracture healing in the geriatric, osteoporotic rat with recombinant human platelet-derived growth factor-BB and an injectable beta-tricalcium phosphate/collagen matrix
    • Hollinger J.O., Onikepe A.O., MacKrell J., et al. Accelerated fracture healing in the geriatric, osteoporotic rat with recombinant human platelet-derived growth factor-BB and an injectable beta-tricalcium phosphate/collagen matrix. J. Orthop. Res. 2008, 26(1):83-90.
    • (2008) J. Orthop. Res. , vol.26 , Issue.1 , pp. 83-90
    • Hollinger, J.O.1    Onikepe, A.O.2    MacKrell, J.3
  • 39
    • 0028329938 scopus 로고
    • Effect of platelet-derived growth factor on tibial osteotomies in rabbits
    • Nash T.J., Howlett C.R., Martin C., Steele J., Johnson K.A., Hicklin D.J. Effect of platelet-derived growth factor on tibial osteotomies in rabbits. Bone 1994, 15(2):203-208.
    • (1994) Bone , vol.15 , Issue.2 , pp. 203-208
    • Nash, T.J.1    Howlett, C.R.2    Martin, C.3    Steele, J.4    Johnson, K.A.5    Hicklin, D.J.6
  • 40
    • 0029021469 scopus 로고
    • Periodontal regeneration in class III furcation defects of beagle dogs using guided tissue regenerative therapy with platelet-derived growth factor
    • Park J.B., Matsuura M., Han K.Y., et al. Periodontal regeneration in class III furcation defects of beagle dogs using guided tissue regenerative therapy with platelet-derived growth factor. J. Periodontol. 1995, 66(6):462-477.
    • (1995) J. Periodontol. , vol.66 , Issue.6 , pp. 462-477
    • Park, J.B.1    Matsuura, M.2    Han, K.Y.3
  • 41
    • 0042512285 scopus 로고    scopus 로고
    • Periodontal regeneration in human class II furcations using purified recombinant human platelet-derived growth factor-BB (rhPDGF-BB) with bone allograft
    • Camelo M., Nevins M.L., Schenk R.K., Lynch S.E., Nevins M. Periodontal regeneration in human class II furcations using purified recombinant human platelet-derived growth factor-BB (rhPDGF-BB) with bone allograft. Int. J. Periodontics Restorative Dent. 2003, 23(3):213-225.
    • (2003) Int. J. Periodontics Restorative Dent. , vol.23 , Issue.3 , pp. 213-225
    • Camelo, M.1    Nevins, M.L.2    Schenk, R.K.3    Lynch, S.E.4    Nevins, M.5
  • 42
    • 0242320424 scopus 로고    scopus 로고
    • Periodontal regeneration in humans using recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and allogenic bone
    • Nevins M., Camelo M., Nevins M.L., Schenk R.K., Lynch S.E. Periodontal regeneration in humans using recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and allogenic bone. J. Periodontol. 2003, 74(9):1282-1292.
    • (2003) J. Periodontol. , vol.74 , Issue.9 , pp. 1282-1292
    • Nevins, M.1    Camelo, M.2    Nevins, M.L.3    Schenk, R.K.4    Lynch, S.E.5
  • 43
    • 30944432610 scopus 로고    scopus 로고
    • Platelet-derived growth factor stimulates bone fill and rate of attachment level gain: results of a large multicenter randomized controlled trial
    • Nevins M., Giannobile W.V., McGuire M.K., et al. Platelet-derived growth factor stimulates bone fill and rate of attachment level gain: results of a large multicenter randomized controlled trial. J. Periodontol. 2005, 76(12):2205-2215.
    • (2005) J. Periodontol. , vol.76 , Issue.12 , pp. 2205-2215
    • Nevins, M.1    Giannobile, W.V.2    McGuire, M.K.3
  • 44
    • 14844357211 scopus 로고    scopus 로고
    • The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease
    • Holmes D.I., Zachary I. The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol. 2005, 6(2):209.
    • (2005) Genome Biol. , vol.6 , Issue.2 , pp. 209
    • Holmes, D.I.1    Zachary, I.2
  • 45
    • 48749111875 scopus 로고    scopus 로고
    • The discovery of the placental growth factor and its role in angiogenesis: a historical review
    • Ribatti D. The discovery of the placental growth factor and its role in angiogenesis: a historical review. Angiogenesis 2008, 11(3):215-221.
    • (2008) Angiogenesis , vol.11 , Issue.3 , pp. 215-221
    • Ribatti, D.1
  • 46
    • 33646411269 scopus 로고    scopus 로고
    • Placental growth factor mediates mesenchymal cell development, cartilage turnover, and bone remodeling during fracture repair
    • Maes C., Coenegrachts L., Stockmans I., et al. Placental growth factor mediates mesenchymal cell development, cartilage turnover, and bone remodeling during fracture repair. J. Clin. Invest. 2006, 116(5):1230-1242.
    • (2006) J. Clin. Invest. , vol.116 , Issue.5 , pp. 1230-1242
    • Maes, C.1    Coenegrachts, L.2    Stockmans, I.3
  • 47
    • 84923263916 scopus 로고    scopus 로고
    • Endothelial cells and the IGF system
    • Bach L.A. Endothelial cells and the IGF system. J. Mol. Endocrinol. 2015, 54(1):R1-R13.
    • (2015) J. Mol. Endocrinol. , vol.54 , Issue.1 , pp. R1-R13
    • Bach, L.A.1
  • 49
    • 0036309479 scopus 로고    scopus 로고
    • Improvement of fracture healing by systemic administration of growth hormone and local application of insulin-like growth factor-1 and transforming growth factor-beta1
    • Schmidmaier G., Wildemann B., Heeger J., et al. Improvement of fracture healing by systemic administration of growth hormone and local application of insulin-like growth factor-1 and transforming growth factor-beta1. Bone 2002, 31(1):165-172.
    • (2002) Bone , vol.31 , Issue.1 , pp. 165-172
    • Schmidmaier, G.1    Wildemann, B.2    Heeger, J.3
  • 50
    • 12444321550 scopus 로고    scopus 로고
    • Localized insulin-like growth factor I delivery to enhance new bone formation
    • Meinel L., Zoidis E., Zapf J., et al. Localized insulin-like growth factor I delivery to enhance new bone formation. Bone 2003, 33(4):660-672.
    • (2003) Bone , vol.33 , Issue.4 , pp. 660-672
    • Meinel, L.1    Zoidis, E.2    Zapf, J.3
  • 51
    • 79955578020 scopus 로고    scopus 로고
    • PTH receptor signaling in osteocytes governs periosteal bone formation and intracortical remodeling
    • Rhee Y., Allen M.R., Condon K., et al. PTH receptor signaling in osteocytes governs periosteal bone formation and intracortical remodeling. J. Bone Miner. Res. 2011, 26(5):1035-1046.
    • (2011) J. Bone Miner. Res. , vol.26 , Issue.5 , pp. 1035-1046
    • Rhee, Y.1    Allen, M.R.2    Condon, K.3
  • 52
    • 0036828498 scopus 로고    scopus 로고
    • Mechanisms for the enhancement of fracture healing in rats treated with intermittent low-dose human parathyroid hormone (1-34)
    • Nakajima A., Shimoji N., Shiomi K., et al. Mechanisms for the enhancement of fracture healing in rats treated with intermittent low-dose human parathyroid hormone (1-34). J. Bone Miner. Res. 2002, 17(11):2038-2047.
    • (2002) J. Bone Miner. Res. , vol.17 , Issue.11 , pp. 2038-2047
    • Nakajima, A.1    Shimoji, N.2    Shiomi, K.3
  • 53
    • 84884526437 scopus 로고    scopus 로고
    • The effect of PTH (1-34) on fracture healing during different loading conditions
    • Ellegaard M., Kringelbach T., Syberg S., et al. The effect of PTH (1-34) on fracture healing during different loading conditions. J. Bone Miner. Res. 2013, 28(10):2145-2155.
    • (2013) J. Bone Miner. Res. , vol.28 , Issue.10 , pp. 2145-2155
    • Ellegaard, M.1    Kringelbach, T.2    Syberg, S.3
  • 54
    • 84867477893 scopus 로고    scopus 로고
    • Disruption of the insulin-like growth factor-1 gene in osteocytes impairs developmental bone growth in mice
    • Sheng M.H., Zhou X.D., Bonewald L.F., Baylink D.J., Lau K.H. Disruption of the insulin-like growth factor-1 gene in osteocytes impairs developmental bone growth in mice. Bone 2013, 52(1):133-144.
    • (2013) Bone , vol.52 , Issue.1 , pp. 133-144
    • Sheng, M.H.1    Zhou, X.D.2    Bonewald, L.F.3    Baylink, D.J.4    Lau, K.H.5
  • 55
    • 84903960656 scopus 로고    scopus 로고
    • Role of osteocyte-derived insulin-like growth factor I in developmental growth, modeling, remodeling, and regeneration of the bone
    • Sheng M.H., Lau K.H., Baylink D.J. Role of osteocyte-derived insulin-like growth factor I in developmental growth, modeling, remodeling, and regeneration of the bone. J Bone Metab 2014, 21(1):41-54.
    • (2014) J Bone Metab , vol.21 , Issue.1 , pp. 41-54
    • Sheng, M.H.1    Lau, K.H.2    Baylink, D.J.3
  • 56
    • 84875365663 scopus 로고    scopus 로고
    • Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions
    • Cooper K.L., Oh S., Sung Y., Dasari R.R., Kirschner M.W., Tabin C.J. Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature 2013, 495(7441):375-378.
    • (2013) Nature , vol.495 , Issue.7441 , pp. 375-378
    • Cooper, K.L.1    Oh, S.2    Sung, Y.3    Dasari, R.R.4    Kirschner, M.W.5    Tabin, C.J.6
  • 58
    • 0034960583 scopus 로고    scopus 로고
    • The morphogen sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors
    • Pola R., Ling L.E., Silver M., et al. The morphogen sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat. Med. 2001, 7(6):706-711.
    • (2001) Nat. Med. , vol.7 , Issue.6 , pp. 706-711
    • Pola, R.1    Ling, L.E.2    Silver, M.3
  • 59
    • 79960695112 scopus 로고    scopus 로고
    • Comparative study assessing effects of sonic hedgehog and VEGF in a human co-culture model for bone vascularisation strategies
    • Dohle E., Fuchs S., Kolbe M., Hofmann A., Schmidt H., Kirkpatrick C.J. Comparative study assessing effects of sonic hedgehog and VEGF in a human co-culture model for bone vascularisation strategies. Eur. Cell. Mater. 2011, 21:144-156.
    • (2011) Eur. Cell. Mater. , vol.21 , pp. 144-156
    • Dohle, E.1    Fuchs, S.2    Kolbe, M.3    Hofmann, A.4    Schmidt, H.5    Kirkpatrick, C.J.6
  • 60
    • 77950842105 scopus 로고    scopus 로고
    • Sonic hedgehog promotes angiogenesis and osteogenesis in a coculture system consisting of primary osteoblasts and outgrowth endothelial cells
    • Dohle E., Fuchs S., Kolbe M., Hofmann A., Schmidt H., Kirkpatrick C.J. Sonic hedgehog promotes angiogenesis and osteogenesis in a coculture system consisting of primary osteoblasts and outgrowth endothelial cells. Tissue Eng. A 2010, 16(4):1235-1237.
    • (2010) Tissue Eng. A , vol.16 , Issue.4 , pp. 1235-1237
    • Dohle, E.1    Fuchs, S.2    Kolbe, M.3    Hofmann, A.4    Schmidt, H.5    Kirkpatrick, C.J.6
  • 61
    • 36849024465 scopus 로고    scopus 로고
    • Immobilized sonic hedgehog N-terminal signaling domain enhances differentiation of bone marrow-derived mesenchymal stem cells
    • Ho J.E., Chung E.H., Wall S., Schaffer D.V., Healy K.E. Immobilized sonic hedgehog N-terminal signaling domain enhances differentiation of bone marrow-derived mesenchymal stem cells. J. Biomed. Mater. Res. A 2007, 83(4):1200-1208.
    • (2007) J. Biomed. Mater. Res. A , vol.83 , Issue.4 , pp. 1200-1208
    • Ho, J.E.1    Chung, E.H.2    Wall, S.3    Schaffer, D.V.4    Healy, K.E.5
  • 62
    • 84868486023 scopus 로고    scopus 로고
    • Angiopoietins in angiogenesis
    • Fagiani E., Christofori G. Angiopoietins in angiogenesis. Cancer Lett. 2013, 328(1):18-26.
    • (2013) Cancer Lett. , vol.328 , Issue.1 , pp. 18-26
    • Fagiani, E.1    Christofori, G.2
  • 63
    • 84877109717 scopus 로고    scopus 로고
    • Angiopoietin signaling in the vasculature
    • Eklund L., Saharinen P. Angiopoietin signaling in the vasculature. Exp. Cell Res. 2013, 319(9):1271-1280.
    • (2013) Exp. Cell Res. , vol.319 , Issue.9 , pp. 1271-1280
    • Eklund, L.1    Saharinen, P.2
  • 65
    • 0033601357 scopus 로고    scopus 로고
    • Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1
    • Thurston G., Suri C., Smith K., et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 1999, 286(5449):2511-2514.
    • (1999) Science , vol.286 , Issue.5449 , pp. 2511-2514
    • Thurston, G.1    Suri, C.2    Smith, K.3
  • 66
    • 0030480322 scopus 로고    scopus 로고
    • Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis
    • Suri C., Jones P.F., Patan S., et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996, 87(7):1171-1180.
    • (1996) Cell , vol.87 , Issue.7 , pp. 1171-1180
    • Suri, C.1    Jones, P.F.2    Patan, S.3
  • 67
    • 33646780950 scopus 로고    scopus 로고
    • Signaling and functions of angiopoietin-1 in vascular protection
    • Brindle N.P., Saharinen P., Alitalo K. Signaling and functions of angiopoietin-1 in vascular protection. Circ. Res. 2006, 98(8):1014-1023.
    • (2006) Circ. Res. , vol.98 , Issue.8 , pp. 1014-1023
    • Brindle, N.P.1    Saharinen, P.2    Alitalo, K.3
  • 68
    • 0033580889 scopus 로고    scopus 로고
    • Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF
    • Holash J., Maisonpierre P.C., Compton D., et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999, 284(5422):1994-1998.
    • (1999) Science , vol.284 , Issue.5422 , pp. 1994-1998
    • Holash, J.1    Maisonpierre, P.C.2    Compton, D.3
  • 69
    • 0037062491 scopus 로고    scopus 로고
    • Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF)
    • Visconti R.P., Richardson C.D., Sato T.N. Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proc. Natl. Acad. Sci. U. S. A. 2002, 99(12):8219-8224.
    • (2002) Proc. Natl. Acad. Sci. U. S. A. , vol.99 , Issue.12 , pp. 8219-8224
    • Visconti, R.P.1    Richardson, C.D.2    Sato, T.N.3
  • 70
    • 77955662371 scopus 로고    scopus 로고
    • Regulation of the expression balance of angiopoietin-1 and angiopoietin-2 by shh and FGF-2
    • Fujii T., Kuwano H. Regulation of the expression balance of angiopoietin-1 and angiopoietin-2 by shh and FGF-2. In Vitro Cell. Dev. Biol. Anim. 2010, 46(6):487-491.
    • (2010) In Vitro Cell. Dev. Biol. Anim. , vol.46 , Issue.6 , pp. 487-491
    • Fujii, T.1    Kuwano, H.2
  • 71
    • 0031471950 scopus 로고    scopus 로고
    • Vascular endothelial growth factor/vascular permeability factor produces nitric oxide-dependent hypotension. Evidence for a maintenance role in quiescent adult endothelium
    • Horowitz J.R., Rivard A., van der Zee R., et al. Vascular endothelial growth factor/vascular permeability factor produces nitric oxide-dependent hypotension. Evidence for a maintenance role in quiescent adult endothelium. Arterioscler. Thromb. Vasc. Biol. 1997, 17(11):2793-2800.
    • (1997) Arterioscler. Thromb. Vasc. Biol. , vol.17 , Issue.11 , pp. 2793-2800
    • Horowitz, J.R.1    Rivard, A.2    van der Zee, R.3
  • 72
    • 0032215354 scopus 로고    scopus 로고
    • VEGF gene delivery to muscle: potential role for vasculogenesis in adults
    • Springer M.L., Chen A.S., Kraft P.E., Bednarski M., Blau H.M. VEGF gene delivery to muscle: potential role for vasculogenesis in adults. Mol. Cell 1998, 2(5):549-558.
    • (1998) Mol. Cell , vol.2 , Issue.5 , pp. 549-558
    • Springer, M.L.1    Chen, A.S.2    Kraft, P.E.3    Bednarski, M.4    Blau, H.M.5
  • 73
    • 79961187336 scopus 로고    scopus 로고
    • Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels
    • (discussion 55)
    • Bahney C.S., Lujan T.J., Hsu C.W., Bottlang M., West J.L., Johnstone B. Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels. Eur. Cell. Mater. 2011, 22:43-55. (discussion 55).
    • (2011) Eur. Cell. Mater. , vol.22 , pp. 43-55
    • Bahney, C.S.1    Lujan, T.J.2    Hsu, C.W.3    Bottlang, M.4    West, J.L.5    Johnstone, B.6
  • 74
    • 84906946132 scopus 로고    scopus 로고
    • Modulating hydrogel crosslink density and degradation to control bone morphogenetic protein delivery and in vivo bone formation
    • Holloway J.L., Ma H., Rai R., Burdick J.A. Modulating hydrogel crosslink density and degradation to control bone morphogenetic protein delivery and in vivo bone formation. J. Control. Release 2014, 191:63-70.
    • (2014) J. Control. Release , vol.191 , pp. 63-70
    • Holloway, J.L.1    Ma, H.2    Rai, R.3    Burdick, J.A.4
  • 75
    • 0037547104 scopus 로고    scopus 로고
    • Repair of bone defects using synthetic mimetics of collagenous extracellular matrices
    • Lutolf M.P., Weber F.E., Schmoekel H.G., et al. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat. Biotechnol. 2003, 21(5):513-518.
    • (2003) Nat. Biotechnol. , vol.21 , Issue.5 , pp. 513-518
    • Lutolf, M.P.1    Weber, F.E.2    Schmoekel, H.G.3
  • 76
    • 42949146918 scopus 로고    scopus 로고
    • Multivalency of sonic hedgehog conjugated to linear polymer chains modulates protein potency
    • Wall S.T., Saha K., Ashton R.S., Kam K.R., Schaffer D.V., Healy K.E. Multivalency of sonic hedgehog conjugated to linear polymer chains modulates protein potency. Bioconjug. Chem. 2008, 19(4):806-812.
    • (2008) Bioconjug. Chem. , vol.19 , Issue.4 , pp. 806-812
    • Wall, S.T.1    Saha, K.2    Ashton, R.S.3    Kam, K.R.4    Schaffer, D.V.5    Healy, K.E.6
  • 77
    • 0036272313 scopus 로고    scopus 로고
    • Internalization-dependent and -independent requirements for transforming growth factor beta receptor signaling via the smad pathway
    • Penheiter S.G., Mitchell H., Garamszegi N., Edens M., Dore J.J., Leof E.B. Internalization-dependent and -independent requirements for transforming growth factor beta receptor signaling via the smad pathway. Mol. Cell. Biol. 2002, 22(13):4750-4759.
    • (2002) Mol. Cell. Biol. , vol.22 , Issue.13 , pp. 4750-4759
    • Penheiter, S.G.1    Mitchell, H.2    Garamszegi, N.3    Edens, M.4    Dore, J.J.5    Leof, E.B.6
  • 78
    • 0030044984 scopus 로고    scopus 로고
    • Vascular endothelial growth factor, a potent and selective angiogenic agent
    • Thomas K.A. Vascular endothelial growth factor, a potent and selective angiogenic agent. J. Biol. Chem. 1996, 271(2):603-606.
    • (1996) J. Biol. Chem. , vol.271 , Issue.2 , pp. 603-606
    • Thomas, K.A.1
  • 79
    • 1542345480 scopus 로고    scopus 로고
    • Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties
    • Almqvist N., Bhatia R., Primbs G., Desai N., Banerjee S., Lal R. Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties. Biophys. J. 2004, 86(3):1753-1762.
    • (2004) Biophys. J. , vol.86 , Issue.3 , pp. 1753-1762
    • Almqvist, N.1    Bhatia, R.2    Primbs, G.3    Desai, N.4    Banerjee, S.5    Lal, R.6
  • 80
    • 64249113913 scopus 로고    scopus 로고
    • Photodegradable hydrogels for dynamic tuning of physical and chemical properties
    • Kloxin A.M., Kasko A.M., Salinas C.N., Anseth K.S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 2009, 324(5923):59-63.
    • (2009) Science , vol.324 , Issue.5923 , pp. 59-63
    • Kloxin, A.M.1    Kasko, A.M.2    Salinas, C.N.3    Anseth, K.S.4
  • 81
    • 0642272484 scopus 로고    scopus 로고
    • Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth
    • Zisch A.H., Lutolf M.P., Ehrbar M., et al. Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J. 2003, 17(15):2260-2262.
    • (2003) FASEB J. , vol.17 , Issue.15 , pp. 2260-2262
    • Zisch, A.H.1    Lutolf, M.P.2    Ehrbar, M.3
  • 82
    • 34247502714 scopus 로고    scopus 로고
    • Controlling cartilaginous matrix evolution in hydrogels with degradation triggered by exogenous addition of an enzyme
    • Rice M.A., Anseth K.S. Controlling cartilaginous matrix evolution in hydrogels with degradation triggered by exogenous addition of an enzyme. Tissue Eng. 2007, 13(4):683-691.
    • (2007) Tissue Eng. , vol.13 , Issue.4 , pp. 683-691
    • Rice, M.A.1    Anseth, K.S.2
  • 83
    • 2342623399 scopus 로고    scopus 로고
    • Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth
    • Ehrbar M., Djonov V.G., Schnell C., et al. Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ. Res. 2004, 94(8):1124-1132.
    • (2004) Circ. Res. , vol.94 , Issue.8 , pp. 1124-1132
    • Ehrbar, M.1    Djonov, V.G.2    Schnell, C.3
  • 85
    • 10044253411 scopus 로고    scopus 로고
    • Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity
    • Ehrbar M., Metters A., Zammaretti P., Hubbell J.A., Zisch A.H. Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity. J. Control. Release 2005, 101(1-3):93-109.
    • (2005) J. Control. Release , vol.101 , Issue.1-3 , pp. 93-109
    • Ehrbar, M.1    Metters, A.2    Zammaretti, P.3    Hubbell, J.A.4    Zisch, A.H.5
  • 86
    • 84896394738 scopus 로고    scopus 로고
    • Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications
    • Liang Y., Kiick K.L. Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications. Acta Biomater. 2014, 10(4):1588-1600.
    • (2014) Acta Biomater. , vol.10 , Issue.4 , pp. 1588-1600
    • Liang, Y.1    Kiick, K.L.2
  • 87
    • 33845476866 scopus 로고    scopus 로고
    • Heparin-immobilized biodegradable scaffolds for local and sustained release of angiogenic growth factor
    • Yoon J.J., Chung H.J., Lee H.J., Park T.G. Heparin-immobilized biodegradable scaffolds for local and sustained release of angiogenic growth factor. J. Biomed. Mater. Res. A 2006, 79(4):934-942.
    • (2006) J. Biomed. Mater. Res. A , vol.79 , Issue.4 , pp. 934-942
    • Yoon, J.J.1    Chung, H.J.2    Lee, H.J.3    Park, T.G.4
  • 88
    • 84922803124 scopus 로고    scopus 로고
    • Enhanced survival and engraftment of transplanted stem cells using growth factor sequestering hydrogels
    • Jha A.K., Tharp K.M., Ye J., et al. Enhanced survival and engraftment of transplanted stem cells using growth factor sequestering hydrogels. Biomaterials 2015, 47:1-12.
    • (2015) Biomaterials , vol.47 , pp. 1-12
    • Jha, A.K.1    Tharp, K.M.2    Ye, J.3
  • 89
    • 84897499979 scopus 로고    scopus 로고
    • Incorporation of sulfated hyaluronic acid macromers into degradable hydrogel scaffolds for sustained molecule delivery
    • Purcell B.P., Kim I.L., Chuo V., Guinen T., Dorsey S.M., Burdick J.A. Incorporation of sulfated hyaluronic acid macromers into degradable hydrogel scaffolds for sustained molecule delivery. Biomater. Sci. 2014, 2:693-702.
    • (2014) Biomater. Sci. , vol.2 , pp. 693-702
    • Purcell, B.P.1    Kim, I.L.2    Chuo, V.3    Guinen, T.4    Dorsey, S.M.5    Burdick, J.A.6
  • 90
    • 84875248854 scopus 로고    scopus 로고
    • Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix
    • Martino M.M., Briquez P.S., Ranga A., Lutolf M.P., Hubbell J.A. Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc. Natl. Acad. Sci. U. S. A. 2013, 110(12):4563-4568.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , Issue.12 , pp. 4563-4568
    • Martino, M.M.1    Briquez, P.S.2    Ranga, A.3    Lutolf, M.P.4    Hubbell, J.A.5
  • 91
    • 84930209012 scopus 로고    scopus 로고
    • Molecular weight and concentration of heparin in hyaluronic acid-based matrices modulates growth factor retention kinetics and stem cell fate
    • Jha A.K., Mathur A., Svedlund F.L., Ye J., Yeghiazarians Y., Healy K.E. Molecular weight and concentration of heparin in hyaluronic acid-based matrices modulates growth factor retention kinetics and stem cell fate. J. Control. Release 2015, 209:308-316.
    • (2015) J. Control. Release , vol.209 , pp. 308-316
    • Jha, A.K.1    Mathur, A.2    Svedlund, F.L.3    Ye, J.4    Yeghiazarians, Y.5    Healy, K.E.6
  • 92
    • 79959831619 scopus 로고    scopus 로고
    • Heparin-decorated, hyaluronic acid-based hydrogel particles for the controlled release of bone morphogenetic protein 2
    • Xu X., Jha A.K., Duncan R.L., Jia X. Heparin-decorated, hyaluronic acid-based hydrogel particles for the controlled release of bone morphogenetic protein 2. Acta Biomater. 2011, 7(8):3050-3059.
    • (2011) Acta Biomater. , vol.7 , Issue.8 , pp. 3050-3059
    • Xu, X.1    Jha, A.K.2    Duncan, R.L.3    Jia, X.4
  • 93
    • 70350188311 scopus 로고    scopus 로고
    • Perlecan domain I-conjugated, hyaluronic acid-based hydrogel particles for enhanced chondrogenic differentiation via BMP-2 release
    • Jha A.K., Yang W., Kirn-Safran C.B., Farach-Carson M.C., Jia X. Perlecan domain I-conjugated, hyaluronic acid-based hydrogel particles for enhanced chondrogenic differentiation via BMP-2 release. Biomaterials 2009, 30(36):6964-6975.
    • (2009) Biomaterials , vol.30 , Issue.36 , pp. 6964-6975
    • Jha, A.K.1    Yang, W.2    Kirn-Safran, C.B.3    Farach-Carson, M.C.4    Jia, X.5
  • 94
    • 77957733284 scopus 로고    scopus 로고
    • Nanoparticles based on PLGA:poloxamer blends for the delivery of proangiogenic growth factors
    • d'Angelo I., Garcia-Fuentes M., Parajo Y., et al. Nanoparticles based on PLGA:poloxamer blends for the delivery of proangiogenic growth factors. Mol. Pharm. 2010, 7(5):1724-1733.
    • (2010) Mol. Pharm. , vol.7 , Issue.5 , pp. 1724-1733
    • d'Angelo, I.1    Garcia-Fuentes, M.2    Parajo, Y.3
  • 95
    • 84902118252 scopus 로고    scopus 로고
    • Heparin microparticle effects on presentation and bioactivity of bone morphogenetic protein-2
    • Hettiaratchi M.H., Miller T., Temenoff J.S., Guldberg R.E., McDevitt T.C. Heparin microparticle effects on presentation and bioactivity of bone morphogenetic protein-2. Biomaterials 2014, 35(25):7228-7238.
    • (2014) Biomaterials , vol.35 , Issue.25 , pp. 7228-7238
    • Hettiaratchi, M.H.1    Miller, T.2    Temenoff, J.S.3    Guldberg, R.E.4    McDevitt, T.C.5
  • 98
    • 81755188465 scopus 로고    scopus 로고
    • Evaluation of angiogenesis and osteogenesis
    • Das A., Botchwey E. Evaluation of angiogenesis and osteogenesis. Tissue Eng. B Rev. 2011, 17(6):403-414.
    • (2011) Tissue Eng. B Rev. , vol.17 , Issue.6 , pp. 403-414
    • Das, A.1    Botchwey, E.2
  • 99
    • 0033529618 scopus 로고    scopus 로고
    • Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization
    • Asahara T., Masuda H., Takahashi T., et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 1999, 85(3):221-228.
    • (1999) Circ. Res. , vol.85 , Issue.3 , pp. 221-228
    • Asahara, T.1    Masuda, H.2    Takahashi, T.3
  • 100
    • 33847348148 scopus 로고    scopus 로고
    • Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals
    • Yoder M.C., Mead L.E., Prater D., et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007, 109(5):1801-1809.
    • (2007) Blood , vol.109 , Issue.5 , pp. 1801-1809
    • Yoder, M.C.1    Mead, L.E.2    Prater, D.3
  • 101
    • 84893051099 scopus 로고    scopus 로고
    • Early endothelial progenitor cells as a source of myeloid cells to improve the pre-vascularisation of bone constructs
    • (discussion 79-80)
    • Shi Y., Kramer G., Schroder A., et al. Early endothelial progenitor cells as a source of myeloid cells to improve the pre-vascularisation of bone constructs. Eur. Cell. Mater. 2014, 27:64-79. (discussion 79-80).
    • (2014) Eur. Cell. Mater. , vol.27 , pp. 64-79
    • Shi, Y.1    Kramer, G.2    Schroder, A.3
  • 102
    • 79955795428 scopus 로고    scopus 로고
    • Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC
    • (12-811X-9-12)
    • Hass R., Kasper C., Bohm S., Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 2011, 9. (12-811X-9-12).
    • (2011) Cell Commun Signal , vol.9
    • Hass, R.1    Kasper, C.2    Bohm, S.3    Jacobs, R.4
  • 103
    • 84906234415 scopus 로고    scopus 로고
    • Expansion of murine periosteal progenitor cells with fibroblast growth factor 2 reveals an intrinsic endochondral ossification program mediated by bone morphogenetic protein 2
    • van Gastel N., Stegen S., Stockmans I., et al. Expansion of murine periosteal progenitor cells with fibroblast growth factor 2 reveals an intrinsic endochondral ossification program mediated by bone morphogenetic protein 2. Stem Cells 2014, 32(9):2407-2418.
    • (2014) Stem Cells , vol.32 , Issue.9 , pp. 2407-2418
    • van Gastel, N.1    Stegen, S.2    Stockmans, I.3
  • 104
    • 84877577935 scopus 로고    scopus 로고
    • Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the international federation for adipose therapeutics and science (IFATS) and the international society for cellular therapy (ISCT)
    • Bourin P., Bunnell B.A., Casteilla L., et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the international federation for adipose therapeutics and science (IFATS) and the international society for cellular therapy (ISCT). Cytotherapy 2013, 15(6):641-648.
    • (2013) Cytotherapy , vol.15 , Issue.6 , pp. 641-648
    • Bourin, P.1    Bunnell, B.A.2    Casteilla, L.3
  • 105
    • 33847665632 scopus 로고    scopus 로고
    • Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells
    • Varma M.J., Breuls R.G., Schouten T.E., et al. Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells Dev. 2007, 16(1):91-104.
    • (2007) Stem Cells Dev. , vol.16 , Issue.1 , pp. 91-104
    • Varma, M.J.1    Breuls, R.G.2    Schouten, T.E.3
  • 106
    • 33747713246 scopus 로고    scopus 로고
    • Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy Position Statement
    • Dominici M., Le Blanc K., Mueller I., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 2006, 8(4):315-317.
    • (2006) Cytotherapy , vol.8 , Issue.4 , pp. 315-317
    • Dominici, M.1    Le Blanc, K.2    Mueller, I.3
  • 107
    • 58649117944 scopus 로고    scopus 로고
    • Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration
    • Colnot C. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J. Bone Miner. Res. 2009, 24(2):274-282.
    • (2009) J. Bone Miner. Res. , vol.24 , Issue.2 , pp. 274-282
    • Colnot, C.1
  • 108
    • 0002345348 scopus 로고
    • Endochondral bone formation: the lineage cascade
    • HallB (Ed.). CRC Press: Boca Raton, FL
    • Caplan A.I.B.B. Endochondral bone formation: the lineage cascade. Bone 1994, 8(HallB (Ed.). CRC Press: Boca Raton, FL):1-46.
    • (1994) Bone , vol.8 , pp. 1-46
    • Caplan, A.I.B.B.1
  • 109
    • 84925507776 scopus 로고    scopus 로고
    • Characterization of adipose tissue-derived stromal vascular fraction for clinical application to cartilage regeneration
    • Jang Y., Koh Y.G., Choi Y.J., et al. Characterization of adipose tissue-derived stromal vascular fraction for clinical application to cartilage regeneration. In Vitro Cell. Dev. Biol. Anim. 2014.
    • (2014) In Vitro Cell. Dev. Biol. Anim.
    • Jang, Y.1    Koh, Y.G.2    Choi, Y.J.3
  • 110
    • 0030678549 scopus 로고    scopus 로고
    • Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation
    • Ducy P., Zhang R., Geoffroy V., Ridall A.L., Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997, 89(5):747-754.
    • (1997) Cell , vol.89 , Issue.5 , pp. 747-754
    • Ducy, P.1    Zhang, R.2    Geoffroy, V.3    Ridall, A.L.4    Karsenty, G.5
  • 111
    • 0030684749 scopus 로고    scopus 로고
    • Targeted disruption of Cbfa1results in a complete lack of bone formation owing to maturational arrest of osteoblasts
    • Komori T., Yagi H., Nomura S., et al. Targeted disruption of Cbfa1results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 1997, 89(5):755-764.
    • (1997) Cell , vol.89 , Issue.5 , pp. 755-764
    • Komori, T.1    Yagi, H.2    Nomura, S.3
  • 112
    • 0030666372 scopus 로고    scopus 로고
    • Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development
    • Otto F., Thornell A.P., Crompton T., et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 1997, 89(5):765-771.
    • (1997) Cell , vol.89 , Issue.5 , pp. 765-771
    • Otto, F.1    Thornell, A.P.2    Crompton, T.3
  • 113
    • 33746808398 scopus 로고    scopus 로고
    • Wnt/β-catenin signaling in development and disease
    • Clevers H. Wnt/β-catenin signaling in development and disease. Cell 2006, 127(3):469-480.
    • (2006) Cell , vol.127 , Issue.3 , pp. 469-480
    • Clevers, H.1
  • 114
    • 25844509347 scopus 로고    scopus 로고
    • Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression
    • Gaur T., Lengner C.J., Hovhannisyan H., et al. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J. Biol. Chem. 2005, 280(39):33132-33140.
    • (2005) J. Biol. Chem. , vol.280 , Issue.39 , pp. 33132-33140
    • Gaur, T.1    Lengner, C.J.2    Hovhannisyan, H.3
  • 115
    • 0037059614 scopus 로고    scopus 로고
    • The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation
    • Nakashima K., Zhou X., Kunkel G., et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002, 108(1):17-29.
    • (2002) Cell , vol.108 , Issue.1 , pp. 17-29
    • Nakashima, K.1    Zhou, X.2    Kunkel, G.3
  • 116
    • 17844372752 scopus 로고    scopus 로고
    • Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis
    • Day T.F., Guo X., Garrett-Beal L., Yang Y. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell 2005, 8(5):739-750.
    • (2005) Dev. Cell , vol.8 , Issue.5 , pp. 739-750
    • Day, T.F.1    Guo, X.2    Garrett-Beal, L.3    Yang, Y.4
  • 117
    • 17844363974 scopus 로고    scopus 로고
    • Canonical wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes
    • Hill T.P., Später D., Taketo M.M., Birchmeier W., Hartmann C. Canonical wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev. Cell 2005, 8(5):727-738.
    • (2005) Dev. Cell , vol.8 , Issue.5 , pp. 727-738
    • Hill, T.P.1    Später, D.2    Taketo, M.M.3    Birchmeier, W.4    Hartmann, C.5
  • 118
    • 33747152561 scopus 로고    scopus 로고
    • Matrix elasticity directs stem cell lineage specification
    • Engler A.J., Sen S., Sweeney H.L., Discher D.E. Matrix elasticity directs stem cell lineage specification. Cell 2006, 126(4):677-689.
    • (2006) Cell , vol.126 , Issue.4 , pp. 677-689
    • Engler, A.J.1    Sen, S.2    Sweeney, H.L.3    Discher, D.E.4
  • 119
    • 0036376885 scopus 로고    scopus 로고
    • A model for intramembranous ossification during fracture healing
    • Thompson Z., Miclau T., Hu D., Helms J.A. A model for intramembranous ossification during fracture healing. J. Orthop. Res. 2002, 20(5):1091-1098.
    • (2002) J. Orthop. Res. , vol.20 , Issue.5 , pp. 1091-1098
    • Thompson, Z.1    Miclau, T.2    Hu, D.3    Helms, J.A.4
  • 120
    • 4444269045 scopus 로고    scopus 로고
    • Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue
    • Lee R.H., Kim B., Choi I., et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell. Physiol. Biochem. 2004, 14(4-6):311-324.
    • (2004) Cell. Physiol. Biochem. , vol.14 , Issue.4-6 , pp. 311-324
    • Lee, R.H.1    Kim, B.2    Choi, I.3
  • 121
    • 33745437684 scopus 로고    scopus 로고
    • Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue
    • Kern S., Eichler H., Stoeve J., Klüter H., Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006, 24(5):1294-1301.
    • (2006) Stem Cells , vol.24 , Issue.5 , pp. 1294-1301
    • Kern, S.1    Eichler, H.2    Stoeve, J.3    Klüter, H.4    Bieback, K.5
  • 122
    • 26444553353 scopus 로고    scopus 로고
    • Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?
    • Im G., Shin Y., Lee K. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?. Osteoarthr. Cartil. 2005, 13(10):845-853.
    • (2005) Osteoarthr. Cartil. , vol.13 , Issue.10 , pp. 845-853
    • Im, G.1    Shin, Y.2    Lee, K.3
  • 123
    • 27644565830 scopus 로고    scopus 로고
    • Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison
    • Huang J.I., Kazmi N., Durbhakula M.M., Hering T.M., Yoo J.U., Johnstone B. Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison. J. Orthop. Res. 2005, 23(6):1383-1389.
    • (2005) J. Orthop. Res. , vol.23 , Issue.6 , pp. 1383-1389
    • Huang, J.I.1    Kazmi, N.2    Durbhakula, M.M.3    Hering, T.M.4    Yoo, J.U.5    Johnstone, B.6
  • 124
    • 77958605841 scopus 로고    scopus 로고
    • Comparison of the osteogenic potential of equine mesenchymal stem cells from bone marrow, adipose tissue, umbilical cord blood, and umbilical cord tissue
    • Toupadakis C.A., Wong A., Genetos D.C., et al. Comparison of the osteogenic potential of equine mesenchymal stem cells from bone marrow, adipose tissue, umbilical cord blood, and umbilical cord tissue. Am. J. Vet. Res. 2010, 71(10):1237-1245.
    • (2010) Am. J. Vet. Res. , vol.71 , Issue.10 , pp. 1237-1245
    • Toupadakis, C.A.1    Wong, A.2    Genetos, D.C.3
  • 125
    • 58449135981 scopus 로고    scopus 로고
    • Why are MSCs therapeutic? New data: new insight
    • Caplan A. Why are MSCs therapeutic? New data: new insight. J. Pathol. 2009, 217(2):318-324.
    • (2009) J. Pathol. , vol.217 , Issue.2 , pp. 318-324
    • Caplan, A.1
  • 126
    • 84856605585 scopus 로고    scopus 로고
    • Therapeutic potential of stem cells in orthopedics
    • Bahney C.S., Miclau T. Therapeutic potential of stem cells in orthopedics. Indian J Orthop 2012, 46(1):4-9.
    • (2012) Indian J Orthop , vol.46 , Issue.1 , pp. 4-9
    • Bahney, C.S.1    Miclau, T.2
  • 127
    • 77957853504 scopus 로고    scopus 로고
    • "Mesenchymal" stem cells in human bone marrow (skeletal stem cells): a critical discussion of their nature, identity, and significance in incurable skeletal disease
    • Bianco P., Robey P.G., Saggio I., Riminucci M. "Mesenchymal" stem cells in human bone marrow (skeletal stem cells): a critical discussion of their nature, identity, and significance in incurable skeletal disease. Hum. Gene Ther. 2010, 21(9):1057-1066.
    • (2010) Hum. Gene Ther. , vol.21 , Issue.9 , pp. 1057-1066
    • Bianco, P.1    Robey, P.G.2    Saggio, I.3    Riminucci, M.4
  • 130
    • 2342482526 scopus 로고    scopus 로고
    • Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells
    • Le Blanc K., Rasmusson I., Sundberg B., et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004, 363(9419):1439-1441.
    • (2004) Lancet , vol.363 , Issue.9419 , pp. 1439-1441
    • Le Blanc, K.1    Rasmusson, I.2    Sundberg, B.3
  • 131
    • 0036142769 scopus 로고    scopus 로고
    • Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo
    • Bartholomew A., Sturgeon C., Siatskas M., et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 2002, 30(1):42-48.
    • (2002) Exp. Hematol. , vol.30 , Issue.1 , pp. 42-48
    • Bartholomew, A.1    Sturgeon, C.2    Siatskas, M.3
  • 132
    • 33846006154 scopus 로고    scopus 로고
    • Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells
    • Sato K., Ozaki K., Oh I., et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 2007, 109(1):228-234.
    • (2007) Blood , vol.109 , Issue.1 , pp. 228-234
    • Sato, K.1    Ozaki, K.2    Oh, I.3
  • 133
    • 13544249606 scopus 로고    scopus 로고
    • Human mesenchymal stem cells modulate allogeneic immune cell responses
    • Aggarwal S., Pittenger M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005, 105(4):1815-1822.
    • (2005) Blood , vol.105 , Issue.4 , pp. 1815-1822
    • Aggarwal, S.1    Pittenger, M.F.2
  • 134
    • 0037093058 scopus 로고    scopus 로고
    • Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli
    • Di Nicola M., Carlo-Stella C., Magni M., et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002, 99(10):3838-3843.
    • (2002) Blood , vol.99 , Issue.10 , pp. 3838-3843
    • Di Nicola, M.1    Carlo-Stella, C.2    Magni, M.3
  • 135
    • 15944376184 scopus 로고    scopus 로고
    • Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells
    • Glennie S., Soeiro I., Dyson P.J., Lam E.W., Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 2005, 105(7):2821-2827.
    • (2005) Blood , vol.105 , Issue.7 , pp. 2821-2827
    • Glennie, S.1    Soeiro, I.2    Dyson, P.J.3    Lam, E.W.4    Dazzi, F.5
  • 136
    • 33846220680 scopus 로고    scopus 로고
    • Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle
    • Ramasamy R., Fazekasova H., Lam E.W., Soeiro I., Lombardi G., Dazzi F. Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation 2007, 83(1):71-76.
    • (2007) Transplantation , vol.83 , Issue.1 , pp. 71-76
    • Ramasamy, R.1    Fazekasova, H.2    Lam, E.W.3    Soeiro, I.4    Lombardi, G.5    Dazzi, F.6
  • 137
  • 138
    • 13544268736 scopus 로고    scopus 로고
    • Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells
    • Li Y., Chen J., Zhang C.L., et al. Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia 2005, 49(3):407-417.
    • (2005) Glia , vol.49 , Issue.3 , pp. 407-417
    • Li, Y.1    Chen, J.2    Zhang, C.L.3
  • 139
    • 0041336932 scopus 로고    scopus 로고
    • Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat
    • Chen J., Li Y., Katakowski M., et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J. Neurosci. Res. 2003, 73(6):778-786.
    • (2003) J. Neurosci. Res. , vol.73 , Issue.6 , pp. 778-786
    • Chen, J.1    Li, Y.2    Katakowski, M.3
  • 140
    • 0029867151 scopus 로고    scopus 로고
    • Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1α
    • Haynesworth S.E., Baber M.A., Caplan A.I. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1α. J. Cell. Physiol. 1996, 166(3):585-592.
    • (1996) J. Cell. Physiol. , vol.166 , Issue.3 , pp. 585-592
    • Haynesworth, S.E.1    Baber, M.A.2    Caplan, A.I.3
  • 141
    • 84898466874 scopus 로고    scopus 로고
    • Mesenchymal stem cells: immune evasive, not immune privileged
    • Ankrum J.A., Ong J.F., Karp J.M. Mesenchymal stem cells: immune evasive, not immune privileged. Nat. Biotechnol. 2014, 32(3):252-260.
    • (2014) Nat. Biotechnol. , vol.32 , Issue.3 , pp. 252-260
    • Ankrum, J.A.1    Ong, J.F.2    Karp, J.M.3
  • 142
    • 0141484485 scopus 로고    scopus 로고
    • HLA expression and immunologic propertiesof differentiated and undifferentiated mesenchymal stem cells
    • Le Blanc K., Tammik C., Rosendahl K., Zetterberg E., Ringdén O. HLA expression and immunologic propertiesof differentiated and undifferentiated mesenchymal stem cells. Exp. Hematol. 2003, 31(10):890-896.
    • (2003) Exp. Hematol. , vol.31 , Issue.10 , pp. 890-896
    • Le Blanc, K.1    Tammik, C.2    Rosendahl, K.3    Zetterberg, E.4    Ringdén, O.5
  • 143
    • 39049126521 scopus 로고    scopus 로고
    • Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications
    • De Palma M., Murdoch C., Venneri M.A., Naldini L., Lewis C.E. Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends Immunol. 2007, 28(12):519-524.
    • (2007) Trends Immunol. , vol.28 , Issue.12 , pp. 519-524
    • De Palma, M.1    Murdoch, C.2    Venneri, M.A.3    Naldini, L.4    Lewis, C.E.5
  • 144
    • 79955955742 scopus 로고    scopus 로고
    • Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing
    • Okuno Y., Nakamura-Ishizu A., Kishi K., Suda T., Kubota Y. Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing. Blood 2011, 117(19):5264-5272.
    • (2011) Blood , vol.117 , Issue.19 , pp. 5264-5272
    • Okuno, Y.1    Nakamura-Ishizu, A.2    Kishi, K.3    Suda, T.4    Kubota, Y.5
  • 145
  • 146
    • 0031019745 scopus 로고    scopus 로고
    • Isolation of putative progenitor endothelial cells for angiogenesis
    • Asahara T., Murohara T., Sullivan A., et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997, 275(5302):964-967.
    • (1997) Science , vol.275 , Issue.5302 , pp. 964-967
    • Asahara, T.1    Murohara, T.2    Sullivan, A.3
  • 147
    • 1542316118 scopus 로고    scopus 로고
    • Autologous transplantation of peripheral blood endothelial progenitor cells (CD34+) for therapeutic angiogenesis in patients with critical limb ischemia
    • Kudo F., Nishibe T., Nishibe M., Yasuda K. Autologous transplantation of peripheral blood endothelial progenitor cells (CD34+) for therapeutic angiogenesis in patients with critical limb ischemia. Int. Angiol. 2003, 22(4):344.
    • (2003) Int. Angiol. , vol.22 , Issue.4 , pp. 344
    • Kudo, F.1    Nishibe, T.2    Nishibe, M.3    Yasuda, K.4
  • 148
    • 4043052443 scopus 로고    scopus 로고
    • Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model
    • Taguchi A., Soma T., Tanaka H., et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J. Clin. Invest. 2004, 114(3):330-338.
    • (2004) J. Clin. Invest. , vol.114 , Issue.3 , pp. 330-338
    • Taguchi, A.1    Soma, T.2    Tanaka, H.3
  • 149
    • 24944526542 scopus 로고    scopus 로고
    • Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases
    • Yoon C.H., Hur J., Park K.W., et al. Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation 2005, 112(11):1618-1627.
    • (2005) Circulation , vol.112 , Issue.11 , pp. 1618-1627
    • Yoon, C.H.1    Hur, J.2    Park, K.W.3
  • 150
    • 51649102473 scopus 로고    scopus 로고
    • Human mature endothelial cells modulate peripheral blood mononuclear cell differentiation toward an endothelial phenotype
    • Bellik L., Musilli C., Vinci M.C., Ledda F., Parenti A. Human mature endothelial cells modulate peripheral blood mononuclear cell differentiation toward an endothelial phenotype. Exp. Cell Res. 2008, 314(16):2965-2974.
    • (2008) Exp. Cell Res. , vol.314 , Issue.16 , pp. 2965-2974
    • Bellik, L.1    Musilli, C.2    Vinci, M.C.3    Ledda, F.4    Parenti, A.5
  • 151
    • 51649099800 scopus 로고    scopus 로고
    • Assessing identity, phenotype, and fate of endothelial progenitor cells
    • Hirschi K.K., Ingram D.A., Yoder M.C. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol. 2008, 28(9):1584-1595.
    • (2008) Arterioscler. Thromb. Vasc. Biol. , vol.28 , Issue.9 , pp. 1584-1595
    • Hirschi, K.K.1    Ingram, D.A.2    Yoder, M.C.3
  • 152
    • 7244242362 scopus 로고    scopus 로고
    • Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood
    • Ingram D.A., Mead L.E., Tanaka H., et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 2004, 104(9):2752-2760.
    • (2004) Blood , vol.104 , Issue.9 , pp. 2752-2760
    • Ingram, D.A.1    Mead, L.E.2    Tanaka, H.3
  • 153
    • 84920072936 scopus 로고    scopus 로고
    • Segregation of late outgrowth endothelial cells into functional endothelial CD34- and progenitor-like CD34+ cell populations
    • Ferreras C., Cole C.L., Urban K., Jayson G.C., Avizienyte E. Segregation of late outgrowth endothelial cells into functional endothelial CD34- and progenitor-like CD34+ cell populations. Angiogenesis 2015, 18(1):47-68.
    • (2015) Angiogenesis , vol.18 , Issue.1 , pp. 47-68
    • Ferreras, C.1    Cole, C.L.2    Urban, K.3    Jayson, G.C.4    Avizienyte, E.5
  • 154
    • 84857604290 scopus 로고    scopus 로고
    • Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use
    • Fadini G.P., Losordo D., Dimmeler S. Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ. Res. 2012, 110(4):624-637.
    • (2012) Circ. Res. , vol.110 , Issue.4 , pp. 624-637
    • Fadini, G.P.1    Losordo, D.2    Dimmeler, S.3
  • 155
    • 34250901535 scopus 로고    scopus 로고
    • Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors
    • Timmermans F., Van Hauwermeiren F., De Smedt M., et al. Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arterioscler. Thromb. Vasc. Biol. 2007, 27(7):1572-1579.
    • (2007) Arterioscler. Thromb. Vasc. Biol. , vol.27 , Issue.7 , pp. 1572-1579
    • Timmermans, F.1    Van Hauwermeiren, F.2    De Smedt, M.3
  • 156
    • 84855822374 scopus 로고    scopus 로고
    • Sca-1+ cardiosphere-derived cells are enriched for Isl1-expressing cardiac precursors and improve cardiac function after myocardial injury
    • Ye J., Boyle A., Shih H., et al. Sca-1+ cardiosphere-derived cells are enriched for Isl1-expressing cardiac precursors and improve cardiac function after myocardial injury. PLoS One 2012, 7(1).
    • (2012) PLoS One , vol.7 , Issue.1
    • Ye, J.1    Boyle, A.2    Shih, H.3
  • 157
    • 0038707459 scopus 로고    scopus 로고
    • Post-natal endothelial progenitor cells for neovascularization in tissue regeneration
    • Masuda H., Asahara T. Post-natal endothelial progenitor cells for neovascularization in tissue regeneration. Cardiovasc. Res. 2003, 58(2):390-398.
    • (2003) Cardiovasc. Res. , vol.58 , Issue.2 , pp. 390-398
    • Masuda, H.1    Asahara, T.2
  • 158
    • 0031453534 scopus 로고    scopus 로고
    • AC133, a novel marker for human hematopoietic stem and progenitor cells
    • Yin A.H., Miraglia S., Zanjani E.D., et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997, 90(12):5002-5012.
    • (1997) Blood , vol.90 , Issue.12 , pp. 5002-5012
    • Yin, A.H.1    Miraglia, S.2    Zanjani, E.D.3
  • 159
    • 12944253116 scopus 로고    scopus 로고
    • Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors
    • Peichev M., Naiyer A.J., Pereira D., et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000, 95(3):952-958.
    • (2000) Blood , vol.95 , Issue.3 , pp. 952-958
    • Peichev, M.1    Naiyer, A.J.2    Pereira, D.3
  • 160
    • 33846035640 scopus 로고    scopus 로고
    • Mobilization of endothelial precursor cells: systemic vascular response to musculoskeletal trauma
    • Laing A.J., Dillon J.P., Condon E.T., et al. Mobilization of endothelial precursor cells: systemic vascular response to musculoskeletal trauma. J. Orthop. Res. 2007, 25(1):44-50.
    • (2007) J. Orthop. Res. , vol.25 , Issue.1 , pp. 44-50
    • Laing, A.J.1    Dillon, J.P.2    Condon, E.T.3
  • 161
    • 41949103629 scopus 로고    scopus 로고
    • Mobilization of endothelial progenitor cells in fracture healing and distraction osteogenesis
    • Lee D.Y., Cho T.J., Kim J.A., et al. Mobilization of endothelial progenitor cells in fracture healing and distraction osteogenesis. Bone 2008, 42(5):932-941.
    • (2008) Bone , vol.42 , Issue.5 , pp. 932-941
    • Lee, D.Y.1    Cho, T.J.2    Kim, J.A.3
  • 162
    • 77954755705 scopus 로고    scopus 로고
    • Endothelial progenitor cells promote fracture healing in a segmental bone defect model
    • Atesok K., Li R., Stewart D.J., Schemitsch E.H. Endothelial progenitor cells promote fracture healing in a segmental bone defect model. J. Orthop. Res. 2010, 28(8):1007-1014.
    • (2010) J. Orthop. Res. , vol.28 , Issue.8 , pp. 1007-1014
    • Atesok, K.1    Li, R.2    Stewart, D.J.3    Schemitsch, E.H.4
  • 163
    • 70349426998 scopus 로고    scopus 로고
    • Transplanted blood-derived endothelial progenitor cells (EPC) enhance bridging of sheep tibia critical size defects
    • Rozen N., Bick T., Bajayo A., et al. Transplanted blood-derived endothelial progenitor cells (EPC) enhance bridging of sheep tibia critical size defects. Bone 2009, 45(5):918-924.
    • (2009) Bone , vol.45 , Issue.5 , pp. 918-924
    • Rozen, N.1    Bick, T.2    Bajayo, A.3
  • 164
    • 80051544413 scopus 로고    scopus 로고
    • Endothelial progenitor cells for fracture healing: a microcomputed tomography and biomechanical analysis
    • Li R., Atesok K., Nauth A., et al. Endothelial progenitor cells for fracture healing: a microcomputed tomography and biomechanical analysis. J. Orthop. Trauma 2011, 25(8):467-471.
    • (2011) J. Orthop. Trauma , vol.25 , Issue.8 , pp. 467-471
    • Li, R.1    Atesok, K.2    Nauth, A.3
  • 166
    • 0037418213 scopus 로고    scopus 로고
    • Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors
    • Rehman J., Li J., Orschell C.M., March K.L. Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 2003, 107(8):1164-1169.
    • (2003) Circulation , vol.107 , Issue.8 , pp. 1164-1169
    • Rehman, J.1    Li, J.2    Orschell, C.M.3    March, K.L.4
  • 167
    • 80053135815 scopus 로고    scopus 로고
    • Paracrine effects influenced by cell culture medium and consequences on microvessel-like structures in cocultures of mesenchymal stem cells and outgrowth endothelial cells
    • Kolbe M., Xiang Z., Dohle E., Tonak M., Kirkpatrick C.J., Fuchs S. Paracrine effects influenced by cell culture medium and consequences on microvessel-like structures in cocultures of mesenchymal stem cells and outgrowth endothelial cells. Tissue Eng. A 2011, 17(17-18):2199-2212.
    • (2011) Tissue Eng. A , vol.17 , Issue.17-18 , pp. 2199-2212
    • Kolbe, M.1    Xiang, Z.2    Dohle, E.3    Tonak, M.4    Kirkpatrick, C.J.5    Fuchs, S.6
  • 168
    • 84889871241 scopus 로고    scopus 로고
    • Enhanced osteogenesis in cocultures with human mesenchymal stem cells and endothelial cells on polymeric microfiber scaffolds
    • Gershovich J.G., Dahlin R.L., Kasper F.K., Mikos A.G. Enhanced osteogenesis in cocultures with human mesenchymal stem cells and endothelial cells on polymeric microfiber scaffolds. Tissue Eng. A 2013, 19(23-24):2565-2576.
    • (2013) Tissue Eng. A , vol.19 , Issue.23-24 , pp. 2565-2576
    • Gershovich, J.G.1    Dahlin, R.L.2    Kasper, F.K.3    Mikos, A.G.4
  • 169
    • 78149414932 scopus 로고    scopus 로고
    • Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized beta-tricalcium phosphate scaffold and mesenchymal stem cells
    • Wang L., Fan H., Zhang Z.Y., et al. Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized beta-tricalcium phosphate scaffold and mesenchymal stem cells. Biomaterials 2010, 31(36):9452-9461.
    • (2010) Biomaterials , vol.31 , Issue.36 , pp. 9452-9461
    • Wang, L.1    Fan, H.2    Zhang, Z.Y.3
  • 170
    • 78249260036 scopus 로고    scopus 로고
    • Interactions of human endothelial and multipotent mesenchymal stem cells in cocultures
    • Ern C., Krump-Konvalinkova V., Docheva D., et al. Interactions of human endothelial and multipotent mesenchymal stem cells in cocultures. Open Biomed. Eng. J. 2010, 4:190-198.
    • (2010) Open Biomed. Eng. J. , vol.4 , pp. 190-198
    • Ern, C.1    Krump-Konvalinkova, V.2    Docheva, D.3
  • 171
    • 84880919027 scopus 로고    scopus 로고
    • Cell interactions between human progenitor-derived endothelial cells and human mesenchymal stem cells in a three-dimensional macroporous polysaccharide-based scaffold promote osteogenesis
    • Guerrero J., Catros S., Derkaoui S.M., et al. Cell interactions between human progenitor-derived endothelial cells and human mesenchymal stem cells in a three-dimensional macroporous polysaccharide-based scaffold promote osteogenesis. Acta Biomater. 2013, 9(9):8200-8213.
    • (2013) Acta Biomater. , vol.9 , Issue.9 , pp. 8200-8213
    • Guerrero, J.1    Catros, S.2    Derkaoui, S.M.3
  • 172
    • 84860425709 scopus 로고    scopus 로고
    • Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue
    • Hsiao S.T., Asgari A., Lokmic Z., et al. Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem Cells Dev. 2011, 21(12):2189-2203.
    • (2011) Stem Cells Dev. , vol.21 , Issue.12 , pp. 2189-2203
    • Hsiao, S.T.1    Asgari, A.2    Lokmic, Z.3
  • 173
    • 84896491744 scopus 로고    scopus 로고
    • Osteogenic differentiation and angiogenesis with cocultured adipose-derived stromal cells and bone marrow stromal cells
    • Kim K.I., Park S., Im G.I. Osteogenic differentiation and angiogenesis with cocultured adipose-derived stromal cells and bone marrow stromal cells. Biomaterials 2014, 35(17):4792-4804.
    • (2014) Biomaterials , vol.35 , Issue.17 , pp. 4792-4804
    • Kim, K.I.1    Park, S.2    Im, G.I.3
  • 174
    • 84883795646 scopus 로고    scopus 로고
    • Lara de Freitas R, meury T, et al. 3D scaffolds co-seeded with human endothelial progenitor and mesenchymal stem cells: evidence of prevascularisation within 7 days
    • discussion 64-5
    • Duttenhoefer F. Lara de Freitas R, meury T, et al. 3D scaffolds co-seeded with human endothelial progenitor and mesenchymal stem cells: evidence of prevascularisation within 7 days. Eur. Cell. Mater. 2013, 26:49-64. discussion 64-5.
    • (2013) Eur. Cell. Mater. , vol.26 , pp. 49-64
    • Duttenhoefer, F.1
  • 175
    • 84893791551 scopus 로고    scopus 로고
    • Direct cell-cell contact between mesenchymal stem cells and endothelial progenitor cells induces a pericyte-like phenotype in vitro
    • Loibl M., Binder A., Herrmann M., et al. Direct cell-cell contact between mesenchymal stem cells and endothelial progenitor cells induces a pericyte-like phenotype in vitro. Biomed Res Int. 2014, 2014:395781.
    • (2014) Biomed Res Int. , vol.2014 , pp. 395781
    • Loibl, M.1    Binder, A.2    Herrmann, M.3
  • 176
    • 84869760954 scopus 로고    scopus 로고
    • Human endothelial progenitor cells induce extracellular signal-regulated kinase-dependent differentiation of mesenchymal stem cells into smooth muscle cells upon cocultivation
    • Goerke S.M., Plaha J., Hager S., et al. Human endothelial progenitor cells induce extracellular signal-regulated kinase-dependent differentiation of mesenchymal stem cells into smooth muscle cells upon cocultivation. Tissue Eng. A 2012, 18(23-24):2395-2405.
    • (2012) Tissue Eng. A , vol.18 , Issue.23-24 , pp. 2395-2405
    • Goerke, S.M.1    Plaha, J.2    Hager, S.3
  • 177
    • 84857684777 scopus 로고    scopus 로고
    • How mesenchymal stem cells interact with tissue immune responses
    • Shi Y., Su J., Roberts A.I., Shou P., Rabson A.B., Ren G. How mesenchymal stem cells interact with tissue immune responses. Trends Immunol. 2012, 33(3):136-143.
    • (2012) Trends Immunol. , vol.33 , Issue.3 , pp. 136-143
    • Shi, Y.1    Su, J.2    Roberts, A.I.3    Shou, P.4    Rabson, A.B.5    Ren, G.6
  • 179
    • 0038676258 scopus 로고    scopus 로고
    • Regulation of wound healing by growth factors and cytokines
    • Werner S., Grose R. Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 2003, 83(3):835-870.
    • (2003) Physiol. Rev. , vol.83 , Issue.3 , pp. 835-870
    • Werner, S.1    Grose, R.2
  • 180
    • 77954717770 scopus 로고    scopus 로고
    • Rejuvenation of the inflammatory system stimulates fracture repair in aged mice
    • Xing Z., Lu C., Hu D., Miclau T., Marcucio R.S. Rejuvenation of the inflammatory system stimulates fracture repair in aged mice. J. Orthop. Res. 2010, 28(8):1000-1006.
    • (2010) J. Orthop. Res. , vol.28 , Issue.8 , pp. 1000-1006
    • Xing, Z.1    Lu, C.2    Hu, D.3    Miclau, T.4    Marcucio, R.S.5
  • 181
    • 77954859347 scopus 로고    scopus 로고
    • Multiple roles for CCR2 during fracture healing
    • Xing Z., Lu C., Hu D., et al. Multiple roles for CCR2 during fracture healing. Dis. Model. Mech. 2010, 3(7-8):451-458.
    • (2010) Dis. Model. Mech. , vol.3 , Issue.7-8 , pp. 451-458
    • Xing, Z.1    Lu, C.2    Hu, D.3
  • 182
    • 84897107812 scopus 로고    scopus 로고
    • Modulation of macrophage activity during fracture repair has differential effects in young adult and elderly mice
    • S10-4
    • Slade Shantz J.A., Yu Y.Y., Andres W., Miclau T., Marcucio R. Modulation of macrophage activity during fracture repair has differential effects in young adult and elderly mice. J. Orthop. Trauma 2014, 28(Suppl. 1):S10-4.
    • (2014) J. Orthop. Trauma , vol.28
    • Slade Shantz, J.A.1    Yu, Y.Y.2    Andres, W.3    Miclau, T.4    Marcucio, R.5
  • 183
    • 7644231561 scopus 로고    scopus 로고
    • The chemokine system in diverse forms of macrophage activation and polarization
    • Mantovani A., Sica A., Sozzani S., Allavena P., Vecchi A., Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004, 25(12):677-686.
    • (2004) Trends Immunol. , vol.25 , Issue.12 , pp. 677-686
    • Mantovani, A.1    Sica, A.2    Sozzani, S.3    Allavena, P.4    Vecchi, A.5    Locati, M.6
  • 184
    • 55849103960 scopus 로고    scopus 로고
    • Macrophage diversity in renal injury and repair
    • Ricardo S.D., van Goor H., Eddy A.A. Macrophage diversity in renal injury and repair. J. Clin. Invest. 2008, 118(11):3522-3530.
    • (2008) J. Clin. Invest. , vol.118 , Issue.11 , pp. 3522-3530
    • Ricardo, S.D.1    van Goor, H.2    Eddy, A.A.3
  • 185
    • 80355131976 scopus 로고    scopus 로고
    • Protective and pathogenic functions of macrophage subsets
    • Murray P.J., Wynn T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011, 11(11):723-737.
    • (2011) Nat. Rev. Immunol. , vol.11 , Issue.11 , pp. 723-737
    • Murray, P.J.1    Wynn, T.A.2
  • 186
    • 84897556094 scopus 로고    scopus 로고
    • The M1 and M2 paradigm of macrophage activation: Time for reassessment
    • (eCollection 2014)
    • Martinez F.O., Gordon S. The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep 2014, 6:6-13. (eCollection 2014).
    • (2014) F1000Prime Rep , vol.6 , pp. 6-13
    • Martinez, F.O.1    Gordon, S.2
  • 187
    • 84923792299 scopus 로고    scopus 로고
    • The convergence of fracture repair and stem cells: interplay of genes, aging, environmental factors and disease
    • Hadjiargyrou M., O'Keefe R.J. The convergence of fracture repair and stem cells: interplay of genes, aging, environmental factors and disease. J. Bone Miner. Res. 2014, 29(11):2307-2322.
    • (2014) J. Bone Miner. Res. , vol.29 , Issue.11 , pp. 2307-2322
    • Hadjiargyrou, M.1    O'Keefe, R.J.2
  • 189
    • 84873156275 scopus 로고    scopus 로고
    • Engineering osteochondral constructs through spatial regulation of endochondral ossification
    • Sheehy E.J., Vinardell T., Buckley C.T., Kelly D.J. Engineering osteochondral constructs through spatial regulation of endochondral ossification. Acta Biomater. 2013, 9(3):5484-5492.
    • (2013) Acta Biomater. , vol.9 , Issue.3 , pp. 5484-5492
    • Sheehy, E.J.1    Vinardell, T.2    Buckley, C.T.3    Kelly, D.J.4
  • 192
    • 0034056758 scopus 로고    scopus 로고
    • Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model
    • Muraglia A., Cancedda R., Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J. Cell Sci. 2000, 113(Pt 7):1161-1166.
    • (2000) J. Cell Sci. , vol.113 , pp. 1161-1166
    • Muraglia, A.1    Cancedda, R.2    Quarto, R.3
  • 193
    • 85016531506 scopus 로고
    • The efficacy of periosteal cells compared to chondrocytes in the tissue engineered repair of bone defects
    • Vacanti C.A., Kim W., Upton J., Mooney D., Vacanti J.P. The efficacy of periosteal cells compared to chondrocytes in the tissue engineered repair of bone defects. Tissue Eng. 1995, 1(3):301-308.
    • (1995) Tissue Eng. , vol.1 , Issue.3 , pp. 301-308
    • Vacanti, C.A.1    Kim, W.2    Upton, J.3    Mooney, D.4    Vacanti, J.P.5
  • 194
    • 77952199886 scopus 로고    scopus 로고
    • Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering
    • Scotti C., Tonnarelli B., Papadimitropoulos A., et al. Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proc. Natl. Acad. Sci. U. S. A. 2010, 107(16):7251-7256.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , Issue.16 , pp. 7251-7256
    • Scotti, C.1    Tonnarelli, B.2    Papadimitropoulos, A.3
  • 195
    • 60849084882 scopus 로고    scopus 로고
    • Calcification or dedifferentiation: requirement to lock mesenchymal stem cells in a desired differentiation stage
    • Dickhut A., Pelttari K., Janicki P., et al. Calcification or dedifferentiation: requirement to lock mesenchymal stem cells in a desired differentiation stage. J. Cell. Physiol. 2009, 219(1):219-226.
    • (2009) J. Cell. Physiol. , vol.219 , Issue.1 , pp. 219-226
    • Dickhut, A.1    Pelttari, K.2    Janicki, P.3
  • 196
    • 84896707848 scopus 로고    scopus 로고
    • Stem cell-derived endochondral cartilage stimulates bone healing by tissue transformation
    • Bahney C.S., Hu D.P., Taylor A.J., et al. Stem cell-derived endochondral cartilage stimulates bone healing by tissue transformation. J. Bone Miner. Res. 2014, 29(5):1269-1282.
    • (2014) J. Bone Miner. Res. , vol.29 , Issue.5 , pp. 1269-1282
    • Bahney, C.S.1    Hu, D.P.2    Taylor, A.J.3
  • 197
    • 84903462515 scopus 로고    scopus 로고
    • Bone regeneration in a massive rat femur defect through endochondral ossification achieved with chondrogenically differentiated MSCs in a degradable scaffold
    • Harada N., Watanabe Y., Sato K., et al. Bone regeneration in a massive rat femur defect through endochondral ossification achieved with chondrogenically differentiated MSCs in a degradable scaffold. Biomaterials 2014, 35(27):7800-7810.
    • (2014) Biomaterials , vol.35 , Issue.27 , pp. 7800-7810
    • Harada, N.1    Watanabe, Y.2    Sato, K.3
  • 198
    • 84874615532 scopus 로고    scopus 로고
    • Engineering of a functional bone organ through endochondral ossification
    • Scotti C., Piccinini E., Takizawa H., et al. Engineering of a functional bone organ through endochondral ossification. Proc. Natl. Acad. Sci. U. S. A. 2013, 110(10):3997-4002.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , Issue.10 , pp. 3997-4002
    • Scotti, C.1    Piccinini, E.2    Takizawa, H.3
  • 200
    • 77955066100 scopus 로고    scopus 로고
    • Modulating endochondral ossification of multipotent stromal cells for bone regeneration
    • Gawlitta D., Farrell E., Malda J., Creemers L.B., Alblas J., Dhert W.J. Modulating endochondral ossification of multipotent stromal cells for bone regeneration. Tissue Eng. B Rev. 2010, 16(4):385-395.
    • (2010) Tissue Eng. B Rev. , vol.16 , Issue.4 , pp. 385-395
    • Gawlitta, D.1    Farrell, E.2    Malda, J.3    Creemers, L.B.4    Alblas, J.5    Dhert, W.J.6
  • 201
    • 84960103172 scopus 로고    scopus 로고
    • Endochondral ossification for enhancing bone regeneration: converging native extracellular matrix biomaterials and developmental engineering in vivo
    • Dennis S.C., Berkland C.J., Bonewald L.F., Detamore M.S. Endochondral ossification for enhancing bone regeneration: converging native extracellular matrix biomaterials and developmental engineering in vivo. Tissue Eng. B Rev. 2014.
    • (2014) Tissue Eng. B Rev.
    • Dennis, S.C.1    Berkland, C.J.2    Bonewald, L.F.3    Detamore, M.S.4
  • 202
    • 84860518543 scopus 로고    scopus 로고
    • A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources
    • Vinardell T., Sheehy E.J., Buckley C.T., Kelly D.J. A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources. Tissue Eng. A 2012, 18(11-12):1161-1170.
    • (2012) Tissue Eng. A , vol.18 , Issue.11-12 , pp. 1161-1170
    • Vinardell, T.1    Sheehy, E.J.2    Buckley, C.T.3    Kelly, D.J.4
  • 203
    • 84897074272 scopus 로고    scopus 로고
    • Altering the architecture of tissue engineered hypertrophic cartilaginous grafts facilitates vascularisation and accelerates mineralisation
    • Sheehy E.J., Vinardell T., Toner M.E., Buckley C.T., Kelly D.J. Altering the architecture of tissue engineered hypertrophic cartilaginous grafts facilitates vascularisation and accelerates mineralisation. PLoS One 2014, 9(3).
    • (2014) PLoS One , vol.9 , Issue.3
    • Sheehy, E.J.1    Vinardell, T.2    Toner, M.E.3    Buckley, C.T.4    Kelly, D.J.5
  • 204
    • 80053166672 scopus 로고    scopus 로고
    • Chondrocytes and bone marrow-derived mesenchymal stem cells undergoing chondrogenesis in agarose hydrogels of solid and channelled architectures respond differentially to dynamic culture conditions
    • Sheehy E.J., Buckley C.T., Kelly D.J. Chondrocytes and bone marrow-derived mesenchymal stem cells undergoing chondrogenesis in agarose hydrogels of solid and channelled architectures respond differentially to dynamic culture conditions. J. Tissue Eng. Regen. Med. 2011, 5(9):747-758.
    • (2011) J. Tissue Eng. Regen. Med. , vol.5 , Issue.9 , pp. 747-758
    • Sheehy, E.J.1    Buckley, C.T.2    Kelly, D.J.3
  • 205
    • 84923343709 scopus 로고    scopus 로고
    • Fate of growth plate hypertrophic chondrocytes: death or lineage extension?
    • Tsang K.Y., Chan D., Cheah K.S. Fate of growth plate hypertrophic chondrocytes: death or lineage extension?. Develop. Growth Differ. 2015, 57(2):179-192.
    • (2015) Develop. Growth Differ. , vol.57 , Issue.2 , pp. 179-192
    • Tsang, K.Y.1    Chan, D.2    Cheah, K.S.3
  • 206
    • 84906319227 scopus 로고    scopus 로고
    • Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation
    • Yang L., Tsang K.Y., Tang H.C., Chan D., Cheah K.S. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc. Natl. Acad. Sci. U. S. A. 2014, 111(33):12097-12102.
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , Issue.33 , pp. 12097-12102
    • Yang, L.1    Tsang, K.Y.2    Tang, H.C.3    Chan, D.4    Cheah, K.S.5
  • 207
    • 84919667212 scopus 로고    scopus 로고
    • Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice
    • Zhou X., von der Mark K., Henry S., Norton W., Adams H., de Crombrugghe B. Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genet. 2014, 10(12).
    • (2014) PLoS Genet. , vol.10 , Issue.12
    • Zhou, X.1    von der Mark, K.2    Henry, S.3    Norton, W.4    Adams, H.5    de Crombrugghe, B.6
  • 208
    • 84880722847 scopus 로고    scopus 로고
    • Complications associated with the use of the recombinant human bone morphogenetic proteins for posterior interbody fusions of the lumbar spine
    • Chrastil J., Low J.B., Whang P.G., Patel A.A. Complications associated with the use of the recombinant human bone morphogenetic proteins for posterior interbody fusions of the lumbar spine. Spine (Phila Pa 1976) 2013, 38(16):E1020-E1027.
    • (2013) Spine (Phila Pa 1976) , vol.38 , Issue.16 , pp. E1020-E1027
    • Chrastil, J.1    Low, J.B.2    Whang, P.G.3    Patel, A.A.4
  • 210
    • 84926959772 scopus 로고    scopus 로고
    • The synergistic effect of micro-topography and biochemical culture environment to promote angiogenesis and osteogenic differentiation of human mesenchymal stem cells
    • Song S., Kim E.J., Bahney C.S., Miclau T., Marcucio R., Roy S. The synergistic effect of micro-topography and biochemical culture environment to promote angiogenesis and osteogenic differentiation of human mesenchymal stem cells. Acta Biomater. 2015, 18:100-111.
    • (2015) Acta Biomater. , vol.18 , pp. 100-111
    • Song, S.1    Kim, E.J.2    Bahney, C.S.3    Miclau, T.4    Marcucio, R.5    Roy, S.6
  • 211
    • 84905734341 scopus 로고    scopus 로고
    • Award winner in the young investigator category, 2014 society for biomaterials annual meeting and exposition, Denver, Colorado, April 16-19, 2014: periodically perforated core-shell collagen biomaterials balance cell infiltration, bioactivity, and mechanical properties
    • Caliari S.R., Mozdzen L.C., Armitage O., Oyen M.L., Harley B.A. Award winner in the young investigator category, 2014 society for biomaterials annual meeting and exposition, Denver, Colorado, April 16-19, 2014: periodically perforated core-shell collagen biomaterials balance cell infiltration, bioactivity, and mechanical properties. J. Biomed. Mater. Res. A 2014, 102(4):917-927.
    • (2014) J. Biomed. Mater. Res. A , vol.102 , Issue.4 , pp. 917-927
    • Caliari, S.R.1    Mozdzen, L.C.2    Armitage, O.3    Oyen, M.L.4    Harley, B.A.5
  • 212
    • 84905725612 scopus 로고    scopus 로고
    • 3D bioprinting of tissues and organs
    • Murphy S.V., Atala A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32(8):773-785.
    • (2014) Nat. Biotechnol. , vol.32 , Issue.8 , pp. 773-785
    • Murphy, S.V.1    Atala, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.