메뉴 건너뛰기




Volumn 10, Issue 12, 2014, Pages

Chondrocytes Transdifferentiate into Osteoblasts in Endochondral Bone during Development, Postnatal Growth and Fracture Healing in Mice

Author keywords

[No Author keywords available]

Indexed keywords

AGC1 CREERT2 GENE; ANIMAL CELL; ANIMAL EXPERIMENT; ANIMAL MODEL; ANIMAL TISSUE; ARTICLE; BIRTH; BONE DEVELOPMENT; BONE MATRIX; CARTILAGE CELL; CELL FATE; CELL FUNCTION; CELL LINEAGE; CELL TRANSDIFFERENTIATION; COL10A1 CRE GENE; CONTROLLED STUDY; EMBRYO; ENCHONDRAL OSSIFICATION; FEMALE; FRACTURE HEALING; GENE; GENE EXPRESSION; GROWTH PLATE; IN VIVO STUDY; MOUSE; NONHUMAN; OSTEOBLAST; PERICHONDRIUM; PERIOSTEUM; POSTNATAL GROWTH; TRABECULAR BONE; TRANSGENIC MOUSE; ANIMAL; CARTILAGE; CELL CULTURE; CHONDROCYTE; CHONDROGENESIS; EMBRYO DEVELOPMENT; EMBRYOLOGY; EPIPHYSIS PLATE; GENETICS; GROWTH, DEVELOPMENT AND AGING; MAMMALIAN EMBRYO; METABOLISM; PHYSIOLOGY; PREGNANCY;

EID: 84919667212     PISSN: 15537390     EISSN: 15537404     Source Type: Journal    
DOI: 10.1371/journal.pgen.1004820     Document Type: Article
Times cited : (446)

References (39)
  • 2
    • 35748954326 scopus 로고    scopus 로고
    • Endochondral ossification: how cartilage is converted into bone in the developing skeleto
    • Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M, (2008) Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 40: 46–62.
    • (2008) Int J Biochem Cell Biol , vol.40 , pp. 46-62
    • Mackie, E.J.1    Ahmed, Y.A.2    Tatarczuch, L.3    Chen, K.S.4    Mirams, M.5
  • 3
    • 77955569142 scopus 로고    scopus 로고
    • Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessel
    • Maes C, Kobayashi T, Selig MK, Torrekens S, Roth SI, et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19: 329–344.
    • Dev Cell , vol.19 , pp. 329-344
    • Maes, C.1    Kobayashi, T.2    Selig, M.K.3    Torrekens, S.4    Roth, S.I.5
  • 4
    • 77957668144 scopus 로고    scopus 로고
    • On bone-forming cells and blood vessels in bone developmen
    • Clarkin C, Olsen BR, On bone-forming cells and blood vessels in bone development. Cell Metab 12: 314–316.
    • Cell Metab , vol.12 , pp. 314-316
    • Clarkin, C.1    Olsen, B.R.2
  • 5
    • 0029820144 scopus 로고    scopus 로고
    • Expression of bone-specific genes by hypertrophic chondrocytes: implication of the complex functions of the hypertrophic chondrocyte during endochondral bone developmen
    • Gerstenfeld LC, Shapiro FD, (1996) Expression of bone-specific genes by hypertrophic chondrocytes: implication of the complex functions of the hypertrophic chondrocyte during endochondral bone development. J Cell Biochem 62: 1–9.
    • (1996) J Cell Biochem , vol.62 , pp. 1-9
    • Gerstenfeld, L.C.1    Shapiro, F.D.2
  • 6
    • 0031926816 scopus 로고    scopus 로고
    • Bone formation via cartilage models: the “borderline” chondrocyt
    • Bianco P, Cancedda FD, Riminucci M, Cancedda R, (1998) Bone formation via cartilage models: the “borderline” chondrocyte. Matrix Biol 17: 185–192.
    • (1998) Matrix Biol , vol.17 , pp. 185-192
    • Bianco, P.1    Cancedda, F.D.2    Riminucci, M.3    Cancedda, R.4
  • 7
    • 0027403281 scopus 로고
    • Ascorbate independent differentiation of human chondrocytes in vitro: simultaneous expression of types I and X collagen and matrix mineralizatio
    • Kirsch T, Swoboda B, von der Mark K, (1992) Ascorbate independent differentiation of human chondrocytes in vitro: simultaneous expression of types I and X collagen and matrix mineralization. Differentiation 52: 89–100.
    • (1992) Differentiation , vol.52 , pp. 89-100
    • Kirsch, T.1    Swoboda, B.2    von der Mark, K.3
  • 8
    • 0028826658 scopus 로고
    • Osteogenic differentiation of hypertrophic chondrocytes involves asymmetric cell divisions and apoptosi
    • Roach HI, Erenpreisa J, Aigner T, (1995) Osteogenic differentiation of hypertrophic chondrocytes involves asymmetric cell divisions and apoptosis. J Cell Biol 131: 483–494.
    • (1995) J Cell Biol , vol.131 , pp. 483-494
    • Roach, H.I.1    Erenpreisa, J.2    Aigner, T.3
  • 9
    • 0029949977 scopus 로고    scopus 로고
    • Epigenetic selection as a possible component of transdifferentiation. Further study of the commitment of hypertrophic chondrocytes to become osteocyte
    • Erenpreisa J, Roach HI, (1996) Epigenetic selection as a possible component of transdifferentiation. Further study of the commitment of hypertrophic chondrocytes to become osteocytes. Mech Ageing Dev 87: 165–182.
    • (1996) Mech Ageing Dev , vol.87 , pp. 165-182
    • Erenpreisa, J.1    Roach, H.I.2
  • 10
    • 0030968234 scopus 로고    scopus 로고
    • New aspects of endochondral ossification in the chick: chondrocyte apoptosis, bone formation by former chondrocytes, and acid phosphatase activity in the endochondral bone matri
    • Roach HI, (1997) New aspects of endochondral ossification in the chick: chondrocyte apoptosis, bone formation by former chondrocytes, and acid phosphatase activity in the endochondral bone matrix. J Bone Miner Res 12: 795–805.
    • (1997) J Bone Miner Res , vol.12 , pp. 795-805
    • Roach, H.I.1
  • 11
    • 32644441951 scopus 로고    scopus 로고
    • Fate of the hypertrophic chondrocyte: microenvironmental perspectives on apoptosis and survival in the epiphyseal growth plat
    • Shapiro IM, Adams CS, Freeman T, Srinivas V, (2005) Fate of the hypertrophic chondrocyte: microenvironmental perspectives on apoptosis and survival in the epiphyseal growth plate. Birth Defects Res C Embryo Today 75: 330–339.
    • (2005) Birth Defects Res C Embryo Today , vol.75 , pp. 330-339
    • Shapiro, I.M.1    Adams, C.S.2    Freeman, T.3    Srinivas, V.4
  • 12
    • 1842766265 scopus 로고    scopus 로고
    • Distinguishing the contributions of the perichondrium, cartilage, and vascular endothelium to skeletal developmen
    • Colnot C, Lu C, Hu D, Helms JA, (2004) Distinguishing the contributions of the perichondrium, cartilage, and vascular endothelium to skeletal development. Dev Biol 269: 55–69.
    • (2004) Dev Biol , vol.269 , pp. 55-69
    • Colnot, C.1    Lu, C.2    Hu, D.3    Helms, J.A.4
  • 13
    • 79955983802 scopus 로고    scopus 로고
    • Generation and characterization of Col10a1-mcherry reporter mic
    • Maye P, Fu Y, Butler DL, Chokalingam K, Liu Y, et al. Generation and characterization of Col10a1-mcherry reporter mice. Genesis 49: 410–418.
    • Genesis , vol.49 , pp. 410-418
    • Maye, P.1    Fu, Y.2    Butler, D.L.3    Chokalingam, K.4    Liu, Y.5
  • 14
    • 0030684749 scopus 로고    scopus 로고
    • Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblast
    • Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, et al. (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89: 755–764.
    • (1997) Cell , vol.89 , pp. 755-764
    • Komori, T.1    Yagi, H.2    Nomura, S.3    Yamaguchi, A.4    Sasaki, K.5
  • 15
    • 0030666372 scopus 로고    scopus 로고
    • Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone developmen
    • Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, et al. (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89: 765–771.
    • (1997) Cell , vol.89 , pp. 765-771
    • Otto, F.1    Thornell, A.P.2    Crompton, T.3    Denzel, A.4    Gilmour, K.C.5
  • 16
    • 0037059614 scopus 로고    scopus 로고
    • The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formatio
    • Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, et al. (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108: 17–29.
    • (2002) Cell , vol.108 , pp. 17-29
    • Nakashima, K.1    Zhou, X.2    Kunkel, G.3    Zhang, Z.4    Deng, J.M.5
  • 17
    • 77955602968 scopus 로고    scopus 로고
    • Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mic
    • Zhou X, Zhang Z, Feng JQ, Dusevich VM, Sinha K, et al. Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice. Proc Natl Acad Sci U S A 107: 12919–12924.
    • Proc Natl Acad Sci U S A , vol.107 , pp. 12919-12924
    • Zhou, X.1    Zhang, Z.2    Feng, J.Q.3    Dusevich, V.M.4    Sinha, K.5
  • 18
    • 56649099063 scopus 로고    scopus 로고
    • Specific expression of Cre recombinase in hypertrophic cartilage under the control of a BAC-Col10a1 promote
    • Gebhard S, Hattori T, Bauer E, Schlund B, Bosl MR, et al. (2008) Specific expression of Cre recombinase in hypertrophic cartilage under the control of a BAC-Col10a1 promoter. Matrix Biol 27: 693–699.
    • (2008) Matrix Biol , vol.27 , pp. 693-699
    • Gebhard, S.1    Hattori, T.2    Bauer, E.3    Schlund, B.4    Bosl, M.R.5
  • 19
    • 73649135324 scopus 로고    scopus 로고
    • Generation of aggrecan-CreERT2 knockin mice for inducible Cre activity in adult cartilag
    • Henry SP, Jang CW, Deng JM, Zhang Z, Behringer RR, et al. (2009) Generation of aggrecan-CreERT2 knockin mice for inducible Cre activity in adult cartilage. Genesis 47: 805–814.
    • (2009) Genesis , vol.47 , pp. 805-814
    • Henry, S.P.1    Jang, C.W.2    Deng, J.M.3    Zhang, Z.4    Behringer, R.R.5
  • 20
    • 0035170536 scopus 로고    scopus 로고
    • Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strai
    • Mao X, Fujiwara Y, Chapdelaine A, Yang H, Orkin SH, (2001) Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97: 324–326.
    • (2001) Blood , vol.97 , pp. 324-326
    • Mao, X.1    Fujiwara, Y.2    Chapdelaine, A.3    Yang, H.4    Orkin, S.H.5
  • 21
    • 0032923739 scopus 로고    scopus 로고
    • Generalized lacZ expression with the ROSA26 Cre reporter strai
    • Soriano P, (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21: 70–71.
    • (1999) Nat Genet , vol.21 , pp. 70-71
    • Soriano, P.1
  • 22
    • 11144267737 scopus 로고    scopus 로고
    • Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protei
    • Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, et al. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22: 1567–1572.
    • (2004) Nat Biotechnol , vol.22 , pp. 1567-1572
    • Shaner, N.C.1    Campbell, R.E.2    Steinbach, P.A.3    Giepmans, B.N.4    Palmer, A.E.5
  • 23
    • 26844574574 scopus 로고    scopus 로고
    • Osteo-chondroprogenitor cells are derived from Sox9 expressing precursor
    • Akiyama H, Kim JE, Nakashima K, Balmes G, Iwai N, et al. (2005) Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proc Natl Acad Sci U S A 102: 14665–14670.
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 14665-14670
    • Akiyama, H.1    Kim, J.E.2    Nakashima, K.3    Balmes, G.4    Iwai, N.5
  • 24
    • 0036948172 scopus 로고    scopus 로고
    • Directing the expression of a green fluorescent protein transgene in differentiated osteoblasts: comparison between rat type I collagen and rat osteocalcin promoter
    • Kalajzic Z, Liu P, Kalajzic I, Du Z, Braut A, et al. (2002) Directing the expression of a green fluorescent protein transgene in differentiated osteoblasts: comparison between rat type I collagen and rat osteocalcin promoters. Bone 31: 654–660.
    • (2002) Bone , vol.31 , pp. 654-660
    • Kalajzic, Z.1    Liu, P.2    Kalajzic, I.3    Du, Z.4    Braut, A.5
  • 26
    • 0037376627 scopus 로고    scopus 로고
    • Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulatio
    • Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA, (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88: 873–884.
    • (2003) J Cell Biochem , vol.88 , pp. 873-884
    • Gerstenfeld, L.C.1    Cullinane, D.M.2    Barnes, G.L.3    Graves, D.T.4    Einhorn, T.A.5
  • 27
    • 17844372752 scopus 로고    scopus 로고
    • Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesi
    • Day TF, Guo X, Garrett-Beal L, Yang Y, (2005) Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8: 739–750.
    • (2005) Dev Cell , vol.8 , pp. 739-750
    • Day, T.F.1    Guo, X.2    Garrett-Beal, L.3    Yang, Y.4
  • 28
    • 17844363974 scopus 로고    scopus 로고
    • Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocyte
    • Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C, (2005) Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 8: 727–738.
    • (2005) Dev Cell , vol.8 , pp. 727-738
    • Hill, T.P.1    Spater, D.2    Taketo, M.M.3    Birchmeier, W.4    Hartmann, C.5
  • 29
    • 33748768971 scopus 로고    scopus 로고
    • Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitor
    • Rodda SJ, McMahon AP, (2006) Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133: 3231–3244.
    • (2006) Development , vol.133 , pp. 3231-3244
    • Rodda, S.J.1    McMahon, A.P.2
  • 30
    • 13444302715 scopus 로고    scopus 로고
    • Sequential roles of Hedgehog and Wnt signaling in osteoblast developmen
    • Hu H, Hilton MJ, Tu X, Yu K, Ornitz DM, et al. (2005) Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132: 49–60.
    • (2005) Development , vol.132 , pp. 49-60
    • Hu, H.1    Hilton, M.J.2    Tu, X.3    Yu, K.4    Ornitz, D.M.5
  • 32
    • 78951478823 scopus 로고    scopus 로고
    • Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneratio
    • Jopling C, Boue S, Izpisua Belmonte JC, Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol 12: 79–89.
    • Nat Rev Mol Cell Biol , vol.12 , pp. 79-89
    • Jopling, C.1    Boue, S.2    Izpisua Belmonte, J.C.3
  • 36
    • 77956275161 scopus 로고    scopus 로고
    • Inherited human diseases of heterotopic bone formatio
    • Shore EM, Kaplan FS, (2010) Inherited human diseases of heterotopic bone formation. Nat Rev Rheumatol 6: 518–527.
    • (2010) Nat Rev Rheumatol , vol.6 , pp. 518-527
    • Shore, E.M.1    Kaplan, F.S.2
  • 37
    • 84906319227 scopus 로고    scopus 로고
    • Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formatio
    • Yang L, Tsang KY, Tang HC, Chan D, Cheah KS, (2014) Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc Natl Acad Sci U S A 111: 12097–12102.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. 12097-12102
    • Yang, L.1    Tsang, K.Y.2    Tang, H.C.3    Chan, D.4    Cheah, K.S.5
  • 38
    • 33750357688 scopus 로고    scopus 로고
    • Beta-catenin is essential for lamination but not neurogenesis in mouse retinal developmen
    • Fu X, Sun H, Klein WH, Mu X, (2006) Beta-catenin is essential for lamination but not neurogenesis in mouse retinal development. Dev Biol 299: 424–437.
    • (2006) Dev Biol , vol.299 , pp. 424-437
    • Fu, X.1    Sun, H.2    Klein, W.H.3    Mu, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.