메뉴 건너뛰기




Volumn 25, Issue , 2014, Pages 20-29

Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae

Author keywords

Cofactor balance; Combinatorial expression engineering; Metabolic engineering; Synthetic biology; Xylose utilization

Indexed keywords

ENZYMES; FERMENTATION; GENE EXPRESSION; METABOLIC ENGINEERING; SUGAR SUBSTITUTES;

EID: 84903748219     PISSN: 10967176     EISSN: 10967184     Source Type: Journal    
DOI: 10.1016/j.ymben.2014.06.002     Document Type: Article
Times cited : (70)

References (62)
  • 1
    • 65949124493 scopus 로고    scopus 로고
    • Recent trends in global production and utilization of bio-ethanol fuel
    • Balat M., Balat H. Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energy 2009, 86:2273-2282.
    • (2009) Appl. Energy , vol.86 , pp. 2273-2282
    • Balat, M.1    Balat, H.2
  • 2
    • 66749091546 scopus 로고    scopus 로고
    • Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae
    • Bengtsson O., Hahn-Hägerdal B., Gorwa-Grauslund M.F. Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels 2009, 2:9.
    • (2009) Biotechnol. Biofuels , vol.2 , pp. 9
    • Bengtsson, O.1    Hahn-Hägerdal, B.2    Gorwa-Grauslund, M.F.3
  • 4
    • 79956076724 scopus 로고    scopus 로고
    • A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation
    • Bera A.K., Ho N.W.Y., Khan A., Sedlak M. A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. J. Ind. Microbiol. Biotechnol. 2011, 38:617-626.
    • (2011) J. Ind. Microbiol. Biotechnol. , vol.38 , pp. 617-626
    • Bera, A.K.1    Ho, N.W.Y.2    Khan, A.3    Sedlak, M.4
  • 5
    • 15044342010 scopus 로고    scopus 로고
    • Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts
    • Blank L.M., Lehmbeck F., Sauer U. Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res. 2005, 5:545-558.
    • (2005) FEMS Yeast Res. , vol.5 , pp. 545-558
    • Blank, L.M.1    Lehmbeck, F.2    Sauer, U.3
  • 6
    • 84862922807 scopus 로고    scopus 로고
    • Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: reflections and perspectives
    • Cai Z., Zhang B., Li Y. Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: reflections and perspectives. Biotechnol. J 2012, 7:34-46.
    • (2012) Biotechnol. J , vol.7 , pp. 34-46
    • Cai, Z.1    Zhang, B.2    Li, Y.3
  • 7
    • 43349089502 scopus 로고    scopus 로고
    • Validation of tandem mass spectrometry database search results using DTASelect
    • 13.4.1-13.4.14
    • Cociorva D., Tabb D.L., Yates J.R. Validation of tandem mass spectrometry database search results using DTASelect. Curr. Protoc. Bioinf. 2007, 16:13.4.1-13.4.14.
    • (2007) Curr. Protoc. Bioinf. , vol.16
    • Cociorva, D.1    Tabb, D.L.2    Yates, J.R.3
  • 9
    • 0025110978 scopus 로고
    • Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene. Scientific note
    • Deng X.X., Ho N.W. Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene. Scientific note. Appl. Biochem. Biotechnol. 1990, 24-25:193-199.
    • (1990) Appl. Biochem. Biotechnol. , vol.24-25 , pp. 193-199
    • Deng, X.X.1    Ho, N.W.2
  • 10
    • 84865278051 scopus 로고    scopus 로고
    • Customized optimization of metabolic pathways by combinatorial transcriptional engineering
    • Du J., Yuan Y., Si T., Lian J., Zhao H. Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res. 2012, 40:1-10.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 1-10
    • Du, J.1    Yuan, Y.2    Si, T.3    Lian, J.4    Zhao, H.5
  • 11
    • 0033856888 scopus 로고    scopus 로고
    • Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures anaerobic xylose fermentation by recombinant Saccharomyces
    • Eliasson A., Christensson C., Wahlbom C.F., Hahn-Hägerdal B. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures anaerobic xylose fermentation by recombinant Saccharomyces. Appl. Environ. Microbiol. 2000, 66:3381-3386.
    • (2000) Appl. Environ. Microbiol. , vol.66 , pp. 3381-3386
    • Eliasson, A.1    Christensson, C.2    Wahlbom, C.F.3    Hahn-Hägerdal, B.4
  • 12
    • 0000857494 scopus 로고
    • An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database
    • Eng J.K., McCormack A.L., Yates J.R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom 1994, 5:976-989.
    • (1994) J. Am. Soc. Mass Spectrom , vol.5 , pp. 976-989
    • Eng, J.K.1    McCormack, A.L.2    Yates, J.R.3
  • 13
    • 65849183178 scopus 로고    scopus 로고
    • Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes
    • Engler C., Gruetzner R., Kandzia R., Marillonnet S. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 2009, 4:e5553.
    • (2009) PLoS One , vol.4
    • Engler, C.1    Gruetzner, R.2    Kandzia, R.3    Marillonnet, S.4
  • 15
    • 33644792045 scopus 로고    scopus 로고
    • Yeast Transformation by the LiAc/SS carrier DNA/PEG method
    • Gietz R.D., Woods R.A. Yeast Transformation by the LiAc/SS carrier DNA/PEG method. Yeast Protoc 2006, 313:107-120.
    • (2006) Yeast Protoc , vol.313 , pp. 107-120
    • Gietz, R.D.1    Woods, R.A.2
  • 17
    • 66849099855 scopus 로고    scopus 로고
    • An examination of biorefining processes, catalysts and challenges
    • Hayes D.J. An examination of biorefining processes, catalysts and challenges. Catal. Today 2009, 145:138-151.
    • (2009) Catal. Today , vol.145 , pp. 138-151
    • Hayes, D.J.1
  • 18
    • 80052302276 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation
    • Hector R.E., Mertens J.A., Bowman M.J., Nichols N.N., Cotta M.A., Hughes S.R. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation. Yeast 2011, 28:645-660.
    • (2011) Yeast , vol.28 , pp. 645-660
    • Hector, R.E.1    Mertens, J.A.2    Bowman, M.J.3    Nichols, N.N.4    Cotta, M.A.5    Hughes, S.R.6
  • 19
    • 0031832290 scopus 로고    scopus 로고
    • Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose
    • Ho N.W.Y., Chen Z., Brainard A.P. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol. 1998, 64:1852-1859.
    • (1998) Appl. Environ. Microbiol. , vol.64 , pp. 1852-1859
    • Ho, N.W.Y.1    Chen, Z.2    Brainard, A.P.3
  • 20
    • 0029285787 scopus 로고
    • PCR-mediated recombination and mutagenesis
    • Horton R.M. PCR-mediated recombination and mutagenesis. Mol. Biotechnol. 1995, 3:93-99.
    • (1995) Mol. Biotechnol. , vol.3 , pp. 93-99
    • Horton, R.M.1
  • 21
    • 33644879465 scopus 로고    scopus 로고
    • The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae
    • Jeppsson M., Bengtsson O., Franke K., Lee H., Hahn-Hägerdal B., Gorwa-Grauslund M.F. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 2006, 93:665-673.
    • (2006) Biotechnol. Bioeng. , vol.93 , pp. 665-673
    • Jeppsson, M.1    Bengtsson, O.2    Franke, K.3    Lee, H.4    Hahn-Hägerdal, B.5    Gorwa-Grauslund, M.F.6
  • 22
    • 0036208491 scopus 로고    scopus 로고
    • Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose
    • Jeppsson M., Johansson B., Hahn-Hägerdal B., Gorwa-Grauslund M.F. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl. Environ. Microbiol. 2002, 68:1604-1609.
    • (2002) Appl. Environ. Microbiol. , vol.68 , pp. 1604-1609
    • Jeppsson, M.1    Johansson, B.2    Hahn-Hägerdal, B.3    Gorwa-Grauslund, M.F.4
  • 23
    • 29144502422 scopus 로고    scopus 로고
    • Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach
    • Jin Y., Alper H., Yang Y., Stephanopoulos G. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl. Environ. Microbiol. 2005, 71:8249-8256.
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 8249-8256
    • Jin, Y.1    Alper, H.2    Yang, Y.3    Stephanopoulos, G.4
  • 24
    • 0037228901 scopus 로고    scopus 로고
    • Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate d-xylulokinase activity
    • Jin Y., Ni H., Laplaza J.M., Jeffries T.W. Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate d-xylulokinase activity. Appl. Environ. Microbiol. 2003, 69:495-503.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 495-503
    • Jin, Y.1    Ni, H.2    Laplaza, J.M.3    Jeffries, T.W.4
  • 25
    • 0035458838 scopus 로고    scopus 로고
    • Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate
    • Johansson B., Christensson C., Hobley T., Hahn-Hägerdal B. Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl. Environ. Microbiol. 2001, 67:4249-4255.
    • (2001) Appl. Environ. Microbiol. , vol.67 , pp. 4249-4255
    • Johansson, B.1    Christensson, C.2    Hobley, T.3    Hahn-Hägerdal, B.4
  • 26
    • 0036053504 scopus 로고    scopus 로고
    • The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001
    • Johansson B., Hahn-Hägerdal B. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res. 2002, 2:277-282.
    • (2002) FEMS Yeast Res. , vol.2 , pp. 277-282
    • Johansson, B.1    Hahn-Hägerdal, B.2
  • 27
    • 0036187741 scopus 로고    scopus 로고
    • Overproduction of pentose phosphate pathway enzymes using a new CRE-loxP expression vector for repeated genomic integration in Saccharomyces cerevisiae
    • Johansson B., Hahn-Hägerdal B. Overproduction of pentose phosphate pathway enzymes using a new CRE-loxP expression vector for repeated genomic integration in Saccharomyces cerevisiae. Yeast 2002, 19:225-231.
    • (2002) Yeast , vol.19 , pp. 225-231
    • Johansson, B.1    Hahn-Hägerdal, B.2
  • 28
    • 33845807902 scopus 로고    scopus 로고
    • High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae
    • Karhumaa K., Fromanger R., Hahn-Hägerdal B., Gorwa-Grauslund M.F. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2007, 73:1039-1046.
    • (2007) Appl. Environ. Microbiol. , vol.73 , pp. 1039-1046
    • Karhumaa, K.1    Fromanger, R.2    Hahn-Hägerdal, B.3    Gorwa-Grauslund, M.F.4
  • 29
    • 17644373035 scopus 로고    scopus 로고
    • Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering
    • Karhumaa K., Hahn-Hägerdal B., Gorwa-Grauslund M.F. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 2005, 22:359-368.
    • (2005) Yeast , vol.22 , pp. 359-368
    • Karhumaa, K.1    Hahn-Hägerdal, B.2    Gorwa-Grauslund, M.F.3
  • 30
  • 31
    • 84862231336 scopus 로고    scopus 로고
    • High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae
    • Kim S., Ha S., Iok I., Jin Y. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metab. Eng. 2012, 14:336-343.
    • (2012) Metab. Eng. , vol.14 , pp. 336-343
    • Kim, S.1    Ha, S.2    Iok, I.3    Jin, Y.4
  • 32
    • 84874499132 scopus 로고    scopus 로고
    • Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae
    • Kim S.R., Skerker J.M., Kang W., Lesmana A., Wei N., Arkin A.P., Jin Y.-S. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS One 2013, 8:e57048.
    • (2013) PLoS One , vol.8
    • Kim, S.R.1    Skerker, J.M.2    Kang, W.3    Lesmana, A.4    Wei, N.5    Arkin, A.P.6    Jin, Y.-S.7
  • 33
    • 0025633861 scopus 로고
    • Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant
    • Kotter P., Amore R., Hollenberg C.P., Ciriacy M. Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr. Genet. 1990, 18:493-500.
    • (1990) Curr. Genet. , vol.18 , pp. 493-500
    • Kotter, P.1    Amore, R.2    Hollenberg, C.P.3    Ciriacy, M.4
  • 34
    • 0027395082 scopus 로고
    • Xylose fermentation by Saccharomyces cerevisiae
    • Kotter P., Ciriacy M. Xylose fermentation by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 1993, 38:776-783.
    • (1993) Appl. Environ. Microbiol. , vol.38 , pp. 776-783
    • Kotter, P.1    Ciriacy, M.2
  • 35
    • 77949451258 scopus 로고    scopus 로고
    • Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization
    • Krahulec S., Petschacher B., Wallner M., Longus K., Klimacek M., Nidetzky B. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Microb. Cell Fact. 2010, 9:16.
    • (2010) Microb. Cell Fact. , vol.9 , pp. 16
    • Krahulec, S.1    Petschacher, B.2    Wallner, M.3    Longus, K.4    Klimacek, M.5    Nidetzky, B.6
  • 36
    • 0028048458 scopus 로고
    • Fermentable and nonfermentable carbon sources sustain constitutive levels of expression of yeast triosephosphate dehydrogenase 3 gene from distinct promoter elements
    • Kuroda S., Otaka S., Fujisawa Y. Fermentable and nonfermentable carbon sources sustain constitutive levels of expression of yeast triosephosphate dehydrogenase 3 gene from distinct promoter elements. J. Biol. Chem. 1994, 269:6153-6162.
    • (1994) J. Biol. Chem. , vol.269 , pp. 6153-6162
    • Kuroda, S.1    Otaka, S.2    Fujisawa, Y.3
  • 37
    • 21744438324 scopus 로고    scopus 로고
    • Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain
    • Kuyper M., Toirkens M.J., Diderich J.A., Winkler A.A., van Dijken J.P., Pronk J.T. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 2005, 5:925-934.
    • (2005) FEMS Yeast Res. , vol.5 , pp. 925-934
    • Kuyper, M.1    Toirkens, M.J.2    Diderich, J.A.3    Winkler, A.A.4    van Dijken, J.P.5    Pronk, J.T.6
  • 38
    • 84890395226 scopus 로고    scopus 로고
    • Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay
    • Lee M.E., Aswani A., Han A.S., Tomlin C.J., Dueber J.E. Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Res. 2013, 41:10668-10678.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 10668-10678
    • Lee, M.E.1    Aswani, A.2    Han, A.S.3    Tomlin, C.J.4    Dueber, J.E.5
  • 39
    • 35148890697 scopus 로고    scopus 로고
    • Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain
    • Lu C., Jeffries T. Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain. Appl. Environ. Microbiol. 2007, 73:6072-6077.
    • (2007) Appl. Environ. Microbiol. , vol.73 , pp. 6072-6077
    • Lu, C.1    Jeffries, T.2
  • 40
    • 68349109625 scopus 로고    scopus 로고
    • Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives
    • Matsushika A., Inoue H., Kodaki T., Sawayama S. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl. Microbiol. Biotechnol. 2009, 84:37-53.
    • (2009) Appl. Microbiol. Biotechnol. , vol.84 , pp. 37-53
    • Matsushika, A.1    Inoue, H.2    Kodaki, T.3    Sawayama, S.4
  • 41
    • 58649098156 scopus 로고    scopus 로고
    • Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae
    • Matsushika A., Inoue H., Murakami K., Takimura O., Sawayama S. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresour. Technol 2009, 100:2392-2398.
    • (2009) Bioresour. Technol , vol.100 , pp. 2392-2398
    • Matsushika, A.1    Inoue, H.2    Murakami, K.3    Takimura, O.4    Sawayama, S.5
  • 43
    • 53649084361 scopus 로고    scopus 로고
    • Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity
    • Matsushika A., Sawayama S. Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity. J. Biosci. Bioeng. 2008, 106:306-309.
    • (2008) J. Biosci. Bioeng. , vol.106 , pp. 306-309
    • Matsushika, A.1    Sawayama, S.2
  • 44
    • 0000607694 scopus 로고
    • Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates
    • Olsson L., Hahn-Hägerdal B. Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates. Process Biochem. 1993, 28:249-257.
    • (1993) Process Biochem. , vol.28 , pp. 249-257
    • Olsson, L.1    Hahn-Hägerdal, B.2
  • 45
    • 80052037221 scopus 로고    scopus 로고
    • Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae
    • Parachin N.S., Bergdahl B., van Niel E.W.J., Gorwa-Grauslund M.F. Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae. Metab. Eng. 2011, 13:508-517.
    • (2011) Metab. Eng. , vol.13 , pp. 508-517
    • Parachin, N.S.1    Bergdahl, B.2    van Niel, E.W.J.3    Gorwa-Grauslund, M.F.4
  • 46
    • 43549097333 scopus 로고    scopus 로고
    • Cell-wall carbohydrates and their modification as a resource for biofuels
    • Pauly M., Keegstra K. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J. 2008, 54:559-568.
    • (2008) Plant J. , vol.54 , pp. 559-568
    • Pauly, M.1    Keegstra, K.2
  • 48
    • 42449145157 scopus 로고    scopus 로고
    • Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae
    • Petschacher B., Nidetzky B. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb. Cell Fact. 2008, 7:9.
    • (2008) Microb. Cell Fact. , vol.7 , pp. 9
    • Petschacher, B.1    Nidetzky, B.2
  • 49
    • 0032080753 scopus 로고    scopus 로고
    • The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae
    • Rodriguez-pena J.M., Cid V.J., Arroyo J., Nombela C. The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 1998, 162:155-160.
    • (1998) FEMS Microbiol. Lett. , vol.162 , pp. 155-160
    • Rodriguez-pena, J.M.1    Cid, V.J.2    Arroyo, J.3    Nombela, C.4
  • 50
    • 78650327471 scopus 로고    scopus 로고
    • Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase
    • Runquist D., Hahn-Hägerdal B., Bettiga M. Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase. Appl. Environ. Microbiol. 2010, 76:7796-7802.
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 7796-7802
    • Runquist, D.1    Hahn-Hägerdal, B.2    Bettiga, M.3
  • 54
    • 0037394596 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose
    • Sonderegger M., Sauer U. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl. Environ. Microbiol. 2003, 69:1990-1998.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 1990-1998
    • Sonderegger, M.1    Sauer, U.2
  • 55
    • 0036393898 scopus 로고    scopus 로고
    • DTASelect and contrast: tools for assembling and comparing protein identifications from shotgun proteomics
    • Tabb D.L., McDonald W.H., Yates J.R. DTASelect and contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome Res. 2002, 1:21-26.
    • (2002) J. Proteome Res. , vol.1 , pp. 21-26
    • Tabb, D.L.1    McDonald, W.H.2    Yates, J.R.3
  • 56
    • 57049166496 scopus 로고    scopus 로고
    • Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on d-xylose
    • Van Vleet J.H., Jeffries T.W., Olsson L. Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on d-xylose. Metab. Eng. 2008, 10:360-369.
    • (2008) Metab. Eng. , vol.10 , pp. 360-369
    • Van Vleet, J.H.1    Jeffries, T.W.2    Olsson, L.3
  • 57
    • 12444258773 scopus 로고    scopus 로고
    • Generation of the improved recombinant xylose-utilizing TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054
    • Wahlbom C.F., van Zyl W.H., Jonsson L.J., Hahn-Hägerdal B., Otero R.R.C. Generation of the improved recombinant xylose-utilizing TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res. 2003, 3:319-326.
    • (2003) FEMS Yeast Res. , vol.3 , pp. 319-326
    • Wahlbom, C.F.1    van Zyl, W.H.2    Jonsson, L.J.3    Hahn-Hägerdal, B.4    Otero, R.R.C.5
  • 58
    • 0028829654 scopus 로고
    • Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase
    • Walfridsson M., Hallborn J., Penttila M., Keranen S., Hahn-Hagerdal B. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl. Environ. Microbiol. 1995, 61:4184-4190.
    • (1995) Appl. Environ. Microbiol. , vol.61 , pp. 4184-4190
    • Walfridsson, M.1    Hallborn, J.2    Penttila, M.3    Keranen, S.4    Hahn-Hagerdal, B.5
  • 59
    • 15544372361 scopus 로고    scopus 로고
    • Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc
    • Watanabe S., Kodaki T., Makino K. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J. Biol. Chem. 2005, 280:10340-10349.
    • (2005) J. Biol. Chem. , vol.280 , pp. 10340-10349
    • Watanabe, S.1    Kodaki, T.2    Makino, K.3
  • 61
    • 0031923093 scopus 로고    scopus 로고
    • Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production
    • Yomano L.P., York S.W., Ingram L.O. Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J. Ind. Microbiol. Biotechnol. 1998, 20:132-138.
    • (1998) J. Ind. Microbiol. Biotechnol. , vol.20 , pp. 132-138
    • Yomano, L.P.1    York, S.W.2    Ingram, L.O.3
  • 62
    • 84869043924 scopus 로고    scopus 로고
    • Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae
    • Zhou H., Cheng J., Wang B., Fink G.R., Stephanopoulos G. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab. Eng. 2012, 14:611-622.
    • (2012) Metab. Eng. , vol.14 , pp. 611-622
    • Zhou, H.1    Cheng, J.2    Wang, B.3    Fink, G.R.4    Stephanopoulos, G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.