-
1
-
-
65949124493
-
Recent trends in global production and utilization of bio-ethanol fuel
-
Balat M., Balat H. Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energy 2009, 86:2273-2282.
-
(2009)
Appl. Energy
, vol.86
, pp. 2273-2282
-
-
Balat, M.1
Balat, H.2
-
2
-
-
66749091546
-
Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae
-
Bengtsson O., Hahn-Hägerdal B., Gorwa-Grauslund M.F. Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels 2009, 2:9.
-
(2009)
Biotechnol. Biofuels
, vol.2
, pp. 9
-
-
Bengtsson, O.1
Hahn-Hägerdal, B.2
Gorwa-Grauslund, M.F.3
-
3
-
-
58149347653
-
Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering
-
Bengtsson O., Jeppsson M., Sonderegger M., Parachin N.S., Sauer U., Hahn-Hägerdal B., Gorwa-Grauslund M.F. Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering. Yeast 2008, 25:835-847.
-
(2008)
Yeast
, vol.25
, pp. 835-847
-
-
Bengtsson, O.1
Jeppsson, M.2
Sonderegger, M.3
Parachin, N.S.4
Sauer, U.5
Hahn-Hägerdal, B.6
Gorwa-Grauslund, M.F.7
-
4
-
-
79956076724
-
A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation
-
Bera A.K., Ho N.W.Y., Khan A., Sedlak M. A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. J. Ind. Microbiol. Biotechnol. 2011, 38:617-626.
-
(2011)
J. Ind. Microbiol. Biotechnol.
, vol.38
, pp. 617-626
-
-
Bera, A.K.1
Ho, N.W.Y.2
Khan, A.3
Sedlak, M.4
-
5
-
-
15044342010
-
Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts
-
Blank L.M., Lehmbeck F., Sauer U. Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res. 2005, 5:545-558.
-
(2005)
FEMS Yeast Res.
, vol.5
, pp. 545-558
-
-
Blank, L.M.1
Lehmbeck, F.2
Sauer, U.3
-
6
-
-
84862922807
-
Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: reflections and perspectives
-
Cai Z., Zhang B., Li Y. Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: reflections and perspectives. Biotechnol. J 2012, 7:34-46.
-
(2012)
Biotechnol. J
, vol.7
, pp. 34-46
-
-
Cai, Z.1
Zhang, B.2
Li, Y.3
-
7
-
-
43349089502
-
Validation of tandem mass spectrometry database search results using DTASelect
-
13.4.1-13.4.14
-
Cociorva D., Tabb D.L., Yates J.R. Validation of tandem mass spectrometry database search results using DTASelect. Curr. Protoc. Bioinf. 2007, 16:13.4.1-13.4.14.
-
(2007)
Curr. Protoc. Bioinf.
, vol.16
-
-
Cociorva, D.1
Tabb, D.L.2
Yates, J.R.3
-
9
-
-
0025110978
-
Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene. Scientific note
-
Deng X.X., Ho N.W. Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene. Scientific note. Appl. Biochem. Biotechnol. 1990, 24-25:193-199.
-
(1990)
Appl. Biochem. Biotechnol.
, vol.24-25
, pp. 193-199
-
-
Deng, X.X.1
Ho, N.W.2
-
10
-
-
84865278051
-
Customized optimization of metabolic pathways by combinatorial transcriptional engineering
-
Du J., Yuan Y., Si T., Lian J., Zhao H. Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res. 2012, 40:1-10.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 1-10
-
-
Du, J.1
Yuan, Y.2
Si, T.3
Lian, J.4
Zhao, H.5
-
11
-
-
0033856888
-
Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures anaerobic xylose fermentation by recombinant Saccharomyces
-
Eliasson A., Christensson C., Wahlbom C.F., Hahn-Hägerdal B. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures anaerobic xylose fermentation by recombinant Saccharomyces. Appl. Environ. Microbiol. 2000, 66:3381-3386.
-
(2000)
Appl. Environ. Microbiol.
, vol.66
, pp. 3381-3386
-
-
Eliasson, A.1
Christensson, C.2
Wahlbom, C.F.3
Hahn-Hägerdal, B.4
-
12
-
-
0000857494
-
An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database
-
Eng J.K., McCormack A.L., Yates J.R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom 1994, 5:976-989.
-
(1994)
J. Am. Soc. Mass Spectrom
, vol.5
, pp. 976-989
-
-
Eng, J.K.1
McCormack, A.L.2
Yates, J.R.3
-
13
-
-
65849183178
-
Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes
-
Engler C., Gruetzner R., Kandzia R., Marillonnet S. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 2009, 4:e5553.
-
(2009)
PLoS One
, vol.4
-
-
Engler, C.1
Gruetzner, R.2
Kandzia, R.3
Marillonnet, S.4
-
14
-
-
0013096838
-
Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis
-
Fiaux J., Çakar Z.P., Sonderegger M., Wuthrich K., Szyperski T., Sauer U. Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot. Cell 2003, 2:170-180.
-
(2003)
Eukaryot. Cell
, vol.2
, pp. 170-180
-
-
Fiaux, J.1
Çakar, Z.P.2
Sonderegger, M.3
Wuthrich, K.4
Szyperski, T.5
Sauer, U.6
-
15
-
-
33644792045
-
Yeast Transformation by the LiAc/SS carrier DNA/PEG method
-
Gietz R.D., Woods R.A. Yeast Transformation by the LiAc/SS carrier DNA/PEG method. Yeast Protoc 2006, 313:107-120.
-
(2006)
Yeast Protoc
, vol.313
, pp. 107-120
-
-
Gietz, R.D.1
Woods, R.A.2
-
16
-
-
34548789083
-
Metabolic engineering for pentose utilization in Saccharomyces cerevisiae
-
Hahn-Hägerdal B., Karhumaa K., Jeppsson M., Gorwa-Grauslund M.F. Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 2007, 108:147-177.
-
(2007)
Adv. Biochem. Eng. Biotechnol.
, vol.108
, pp. 147-177
-
-
Hahn-Hägerdal, B.1
Karhumaa, K.2
Jeppsson, M.3
Gorwa-Grauslund, M.F.4
-
17
-
-
66849099855
-
An examination of biorefining processes, catalysts and challenges
-
Hayes D.J. An examination of biorefining processes, catalysts and challenges. Catal. Today 2009, 145:138-151.
-
(2009)
Catal. Today
, vol.145
, pp. 138-151
-
-
Hayes, D.J.1
-
18
-
-
80052302276
-
Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation
-
Hector R.E., Mertens J.A., Bowman M.J., Nichols N.N., Cotta M.A., Hughes S.R. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation. Yeast 2011, 28:645-660.
-
(2011)
Yeast
, vol.28
, pp. 645-660
-
-
Hector, R.E.1
Mertens, J.A.2
Bowman, M.J.3
Nichols, N.N.4
Cotta, M.A.5
Hughes, S.R.6
-
19
-
-
0031832290
-
Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose
-
Ho N.W.Y., Chen Z., Brainard A.P. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol. 1998, 64:1852-1859.
-
(1998)
Appl. Environ. Microbiol.
, vol.64
, pp. 1852-1859
-
-
Ho, N.W.Y.1
Chen, Z.2
Brainard, A.P.3
-
20
-
-
0029285787
-
PCR-mediated recombination and mutagenesis
-
Horton R.M. PCR-mediated recombination and mutagenesis. Mol. Biotechnol. 1995, 3:93-99.
-
(1995)
Mol. Biotechnol.
, vol.3
, pp. 93-99
-
-
Horton, R.M.1
-
21
-
-
33644879465
-
The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae
-
Jeppsson M., Bengtsson O., Franke K., Lee H., Hahn-Hägerdal B., Gorwa-Grauslund M.F. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 2006, 93:665-673.
-
(2006)
Biotechnol. Bioeng.
, vol.93
, pp. 665-673
-
-
Jeppsson, M.1
Bengtsson, O.2
Franke, K.3
Lee, H.4
Hahn-Hägerdal, B.5
Gorwa-Grauslund, M.F.6
-
22
-
-
0036208491
-
Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose
-
Jeppsson M., Johansson B., Hahn-Hägerdal B., Gorwa-Grauslund M.F. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl. Environ. Microbiol. 2002, 68:1604-1609.
-
(2002)
Appl. Environ. Microbiol.
, vol.68
, pp. 1604-1609
-
-
Jeppsson, M.1
Johansson, B.2
Hahn-Hägerdal, B.3
Gorwa-Grauslund, M.F.4
-
23
-
-
29144502422
-
Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach
-
Jin Y., Alper H., Yang Y., Stephanopoulos G. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl. Environ. Microbiol. 2005, 71:8249-8256.
-
(2005)
Appl. Environ. Microbiol.
, vol.71
, pp. 8249-8256
-
-
Jin, Y.1
Alper, H.2
Yang, Y.3
Stephanopoulos, G.4
-
24
-
-
0037228901
-
Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate d-xylulokinase activity
-
Jin Y., Ni H., Laplaza J.M., Jeffries T.W. Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate d-xylulokinase activity. Appl. Environ. Microbiol. 2003, 69:495-503.
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 495-503
-
-
Jin, Y.1
Ni, H.2
Laplaza, J.M.3
Jeffries, T.W.4
-
25
-
-
0035458838
-
Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate
-
Johansson B., Christensson C., Hobley T., Hahn-Hägerdal B. Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl. Environ. Microbiol. 2001, 67:4249-4255.
-
(2001)
Appl. Environ. Microbiol.
, vol.67
, pp. 4249-4255
-
-
Johansson, B.1
Christensson, C.2
Hobley, T.3
Hahn-Hägerdal, B.4
-
26
-
-
0036053504
-
The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001
-
Johansson B., Hahn-Hägerdal B. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res. 2002, 2:277-282.
-
(2002)
FEMS Yeast Res.
, vol.2
, pp. 277-282
-
-
Johansson, B.1
Hahn-Hägerdal, B.2
-
27
-
-
0036187741
-
Overproduction of pentose phosphate pathway enzymes using a new CRE-loxP expression vector for repeated genomic integration in Saccharomyces cerevisiae
-
Johansson B., Hahn-Hägerdal B. Overproduction of pentose phosphate pathway enzymes using a new CRE-loxP expression vector for repeated genomic integration in Saccharomyces cerevisiae. Yeast 2002, 19:225-231.
-
(2002)
Yeast
, vol.19
, pp. 225-231
-
-
Johansson, B.1
Hahn-Hägerdal, B.2
-
28
-
-
33845807902
-
High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae
-
Karhumaa K., Fromanger R., Hahn-Hägerdal B., Gorwa-Grauslund M.F. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2007, 73:1039-1046.
-
(2007)
Appl. Environ. Microbiol.
, vol.73
, pp. 1039-1046
-
-
Karhumaa, K.1
Fromanger, R.2
Hahn-Hägerdal, B.3
Gorwa-Grauslund, M.F.4
-
29
-
-
17644373035
-
Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering
-
Karhumaa K., Hahn-Hägerdal B., Gorwa-Grauslund M.F. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 2005, 22:359-368.
-
(2005)
Yeast
, vol.22
, pp. 359-368
-
-
Karhumaa, K.1
Hahn-Hägerdal, B.2
Gorwa-Grauslund, M.F.3
-
30
-
-
70349463121
-
Computational design of Candida boidinii xylose reductase for altered cofactor specificity
-
Khoury G.a, Fazelinia H., Chin J.W., Pantazes R.J., Cirino P.C., Maranas C.D. Computational design of Candida boidinii xylose reductase for altered cofactor specificity. Protein Sci. 2009, 18:2125-2138.
-
(2009)
Protein Sci.
, vol.18
, pp. 2125-2138
-
-
Khoury, G.A.1
Fazelinia, H.2
Chin, J.W.3
Pantazes, R.J.4
Cirino, P.C.5
Maranas, C.D.6
-
31
-
-
84862231336
-
High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae
-
Kim S., Ha S., Iok I., Jin Y. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metab. Eng. 2012, 14:336-343.
-
(2012)
Metab. Eng.
, vol.14
, pp. 336-343
-
-
Kim, S.1
Ha, S.2
Iok, I.3
Jin, Y.4
-
32
-
-
84874499132
-
Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae
-
Kim S.R., Skerker J.M., Kang W., Lesmana A., Wei N., Arkin A.P., Jin Y.-S. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS One 2013, 8:e57048.
-
(2013)
PLoS One
, vol.8
-
-
Kim, S.R.1
Skerker, J.M.2
Kang, W.3
Lesmana, A.4
Wei, N.5
Arkin, A.P.6
Jin, Y.-S.7
-
33
-
-
0025633861
-
Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant
-
Kotter P., Amore R., Hollenberg C.P., Ciriacy M. Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr. Genet. 1990, 18:493-500.
-
(1990)
Curr. Genet.
, vol.18
, pp. 493-500
-
-
Kotter, P.1
Amore, R.2
Hollenberg, C.P.3
Ciriacy, M.4
-
34
-
-
0027395082
-
Xylose fermentation by Saccharomyces cerevisiae
-
Kotter P., Ciriacy M. Xylose fermentation by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 1993, 38:776-783.
-
(1993)
Appl. Environ. Microbiol.
, vol.38
, pp. 776-783
-
-
Kotter, P.1
Ciriacy, M.2
-
35
-
-
77949451258
-
Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization
-
Krahulec S., Petschacher B., Wallner M., Longus K., Klimacek M., Nidetzky B. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Microb. Cell Fact. 2010, 9:16.
-
(2010)
Microb. Cell Fact.
, vol.9
, pp. 16
-
-
Krahulec, S.1
Petschacher, B.2
Wallner, M.3
Longus, K.4
Klimacek, M.5
Nidetzky, B.6
-
36
-
-
0028048458
-
Fermentable and nonfermentable carbon sources sustain constitutive levels of expression of yeast triosephosphate dehydrogenase 3 gene from distinct promoter elements
-
Kuroda S., Otaka S., Fujisawa Y. Fermentable and nonfermentable carbon sources sustain constitutive levels of expression of yeast triosephosphate dehydrogenase 3 gene from distinct promoter elements. J. Biol. Chem. 1994, 269:6153-6162.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 6153-6162
-
-
Kuroda, S.1
Otaka, S.2
Fujisawa, Y.3
-
37
-
-
21744438324
-
Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain
-
Kuyper M., Toirkens M.J., Diderich J.A., Winkler A.A., van Dijken J.P., Pronk J.T. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 2005, 5:925-934.
-
(2005)
FEMS Yeast Res.
, vol.5
, pp. 925-934
-
-
Kuyper, M.1
Toirkens, M.J.2
Diderich, J.A.3
Winkler, A.A.4
van Dijken, J.P.5
Pronk, J.T.6
-
38
-
-
84890395226
-
Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay
-
Lee M.E., Aswani A., Han A.S., Tomlin C.J., Dueber J.E. Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Res. 2013, 41:10668-10678.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 10668-10678
-
-
Lee, M.E.1
Aswani, A.2
Han, A.S.3
Tomlin, C.J.4
Dueber, J.E.5
-
39
-
-
35148890697
-
Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain
-
Lu C., Jeffries T. Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain. Appl. Environ. Microbiol. 2007, 73:6072-6077.
-
(2007)
Appl. Environ. Microbiol.
, vol.73
, pp. 6072-6077
-
-
Lu, C.1
Jeffries, T.2
-
40
-
-
68349109625
-
Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives
-
Matsushika A., Inoue H., Kodaki T., Sawayama S. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl. Microbiol. Biotechnol. 2009, 84:37-53.
-
(2009)
Appl. Microbiol. Biotechnol.
, vol.84
, pp. 37-53
-
-
Matsushika, A.1
Inoue, H.2
Kodaki, T.3
Sawayama, S.4
-
41
-
-
58649098156
-
Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae
-
Matsushika A., Inoue H., Murakami K., Takimura O., Sawayama S. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresour. Technol 2009, 100:2392-2398.
-
(2009)
Bioresour. Technol
, vol.100
, pp. 2392-2398
-
-
Matsushika, A.1
Inoue, H.2
Murakami, K.3
Takimura, O.4
Sawayama, S.5
-
43
-
-
53649084361
-
Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity
-
Matsushika A., Sawayama S. Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity. J. Biosci. Bioeng. 2008, 106:306-309.
-
(2008)
J. Biosci. Bioeng.
, vol.106
, pp. 306-309
-
-
Matsushika, A.1
Sawayama, S.2
-
44
-
-
0000607694
-
Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates
-
Olsson L., Hahn-Hägerdal B. Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates. Process Biochem. 1993, 28:249-257.
-
(1993)
Process Biochem.
, vol.28
, pp. 249-257
-
-
Olsson, L.1
Hahn-Hägerdal, B.2
-
45
-
-
80052037221
-
Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae
-
Parachin N.S., Bergdahl B., van Niel E.W.J., Gorwa-Grauslund M.F. Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae. Metab. Eng. 2011, 13:508-517.
-
(2011)
Metab. Eng.
, vol.13
, pp. 508-517
-
-
Parachin, N.S.1
Bergdahl, B.2
van Niel, E.W.J.3
Gorwa-Grauslund, M.F.4
-
46
-
-
43549097333
-
Cell-wall carbohydrates and their modification as a resource for biofuels
-
Pauly M., Keegstra K. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J. 2008, 54:559-568.
-
(2008)
Plant J.
, vol.54
, pp. 559-568
-
-
Pauly, M.1
Keegstra, K.2
-
47
-
-
0035132047
-
Pyruvate kinase (Pyk1) levels influence both the rate and direction of carbon flux in yeast under fermentative conditions
-
Pearce A.K., Crimmins K., Groussac E., Hewlins M.J., Dickinson J.R., Francois J., Booth I.R., Brown A.J. Pyruvate kinase (Pyk1) levels influence both the rate and direction of carbon flux in yeast under fermentative conditions. Microbiology 2001, 147:391-401.
-
(2001)
Microbiology
, vol.147
, pp. 391-401
-
-
Pearce, A.K.1
Crimmins, K.2
Groussac, E.3
Hewlins, M.J.4
Dickinson, J.R.5
Francois, J.6
Booth, I.R.7
Brown, A.J.8
-
48
-
-
42449145157
-
Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae
-
Petschacher B., Nidetzky B. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb. Cell Fact. 2008, 7:9.
-
(2008)
Microb. Cell Fact.
, vol.7
, pp. 9
-
-
Petschacher, B.1
Nidetzky, B.2
-
49
-
-
0032080753
-
The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae
-
Rodriguez-pena J.M., Cid V.J., Arroyo J., Nombela C. The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 1998, 162:155-160.
-
(1998)
FEMS Microbiol. Lett.
, vol.162
, pp. 155-160
-
-
Rodriguez-pena, J.M.1
Cid, V.J.2
Arroyo, J.3
Nombela, C.4
-
50
-
-
78650327471
-
Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase
-
Runquist D., Hahn-Hägerdal B., Bettiga M. Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase. Appl. Environ. Microbiol. 2010, 76:7796-7802.
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 7796-7802
-
-
Runquist, D.1
Hahn-Hägerdal, B.2
Bettiga, M.3
-
51
-
-
84863618228
-
Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption
-
Scalcinati G., Otero J.M., Vleet J.R.H., Van, Jeffries T.W., Olsson L., Nielsen J. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption. FEMS Yeast Res. 2012, 12:582-597.
-
(2012)
FEMS Yeast Res.
, vol.12
, pp. 582-597
-
-
Scalcinati, G.1
Otero, J.M.2
Vleet, J.R.H.3
Van Jeffries, T.W.4
Olsson, L.5
Nielsen, J.6
-
54
-
-
0037394596
-
Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose
-
Sonderegger M., Sauer U. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl. Environ. Microbiol. 2003, 69:1990-1998.
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 1990-1998
-
-
Sonderegger, M.1
Sauer, U.2
-
55
-
-
0036393898
-
DTASelect and contrast: tools for assembling and comparing protein identifications from shotgun proteomics
-
Tabb D.L., McDonald W.H., Yates J.R. DTASelect and contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome Res. 2002, 1:21-26.
-
(2002)
J. Proteome Res.
, vol.1
, pp. 21-26
-
-
Tabb, D.L.1
McDonald, W.H.2
Yates, J.R.3
-
56
-
-
57049166496
-
Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on d-xylose
-
Van Vleet J.H., Jeffries T.W., Olsson L. Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on d-xylose. Metab. Eng. 2008, 10:360-369.
-
(2008)
Metab. Eng.
, vol.10
, pp. 360-369
-
-
Van Vleet, J.H.1
Jeffries, T.W.2
Olsson, L.3
-
57
-
-
12444258773
-
Generation of the improved recombinant xylose-utilizing TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054
-
Wahlbom C.F., van Zyl W.H., Jonsson L.J., Hahn-Hägerdal B., Otero R.R.C. Generation of the improved recombinant xylose-utilizing TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res. 2003, 3:319-326.
-
(2003)
FEMS Yeast Res.
, vol.3
, pp. 319-326
-
-
Wahlbom, C.F.1
van Zyl, W.H.2
Jonsson, L.J.3
Hahn-Hägerdal, B.4
Otero, R.R.C.5
-
58
-
-
0028829654
-
Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase
-
Walfridsson M., Hallborn J., Penttila M., Keranen S., Hahn-Hagerdal B. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl. Environ. Microbiol. 1995, 61:4184-4190.
-
(1995)
Appl. Environ. Microbiol.
, vol.61
, pp. 4184-4190
-
-
Walfridsson, M.1
Hallborn, J.2
Penttila, M.3
Keranen, S.4
Hahn-Hagerdal, B.5
-
59
-
-
15544372361
-
Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc
-
Watanabe S., Kodaki T., Makino K. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J. Biol. Chem. 2005, 280:10340-10349.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 10340-10349
-
-
Watanabe, S.1
Kodaki, T.2
Makino, K.3
-
61
-
-
0031923093
-
Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production
-
Yomano L.P., York S.W., Ingram L.O. Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J. Ind. Microbiol. Biotechnol. 1998, 20:132-138.
-
(1998)
J. Ind. Microbiol. Biotechnol.
, vol.20
, pp. 132-138
-
-
Yomano, L.P.1
York, S.W.2
Ingram, L.O.3
-
62
-
-
84869043924
-
Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae
-
Zhou H., Cheng J., Wang B., Fink G.R., Stephanopoulos G. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab. Eng. 2012, 14:611-622.
-
(2012)
Metab. Eng.
, vol.14
, pp. 611-622
-
-
Zhou, H.1
Cheng, J.2
Wang, B.3
Fink, G.R.4
Stephanopoulos, G.5
|