메뉴 건너뛰기




Volumn 197, Issue 5, 2015, Pages 943-950

Photoheterotrophic fluxome in Synechocystis sp. strain PCC 6803 and its implications for cyanobacterial bioenergetics

Author keywords

[No Author keywords available]

Indexed keywords

4 AMINOBUTYRIC ACID; DIURON; GLUCOSE 6 PHOSPHATE; GLUCOSE 6 PHOSPHATE ISOMERASE; PENTOSE PHOSPHATE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; RIBULOSEBISPHOSPHATE CARBOXYLASE; SUCCINATE DEHYDROGENASE; SUCCINIC SEMIALDEHYDE; TRICARBOXYLIC ACID; 2-OXOGLUTARATE DECARBOXYLASE; ADENOSINE TRIPHOSPHATE; BACTERIAL PROTEIN; CARBOXYLYASE; NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE;

EID: 84961290155     PISSN: 00219193     EISSN: 10985530     Source Type: Journal    
DOI: 10.1128/JB.02149-14     Document Type: Article
Times cited : (46)

References (44)
  • 2
    • 54549114449 scopus 로고    scopus 로고
    • Reassessing the first appearance of eukaryotes and cyanobacteria
    • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR. 2008. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101-1104. http://dx.doi.org/10.1038/nature07381.
    • (2008) Nature , vol.455 , pp. 1101-1104
    • Rasmussen, B.1    Fletcher, I.R.2    Brocks, J.J.3    Kilburn, M.R.4
  • 3
    • 0020788584 scopus 로고
    • Modes of cyanobacterial carbon metabolism.
    • Smith AJ. 1983. Modes of cyanobacterial carbon metabolism. Ann Microbiol (Paris) 134B:93-113.
    • (1983) Ann Microbiol (Paris) , vol.134 B , pp. 93-113
    • Smith, A.J.1
  • 4
    • 0025801445 scopus 로고
    • Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-lightrequiring process.
    • Anderson S, McIntosh L. 1991. Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-lightrequiring process. J Bacteriol 173:2761-2767.
    • (1991) J Bacteriol , vol.173 , pp. 2761-2767
    • Anderson, S.1    McIntosh, L.2
  • 5
    • 33845543484 scopus 로고    scopus 로고
    • Evidence for the ubiquity of mixotrophic bacteria in the upper ocean: implications and consequences
    • Eiler A. 2006. Evidence for the ubiquity of mixotrophic bacteria in the upper ocean: implications and consequences. Appl Environ Microbiol 72:7431- 7437. http://dx.doi.org/10.1128/AEM.01559-06.
    • (2006) Appl Environ Microbiol , vol.72 , pp. 7431- 7437
    • Eiler, A.1
  • 6
    • 79960211573 scopus 로고    scopus 로고
    • Photosynthesis and respiration in cyanobacteria.
    • 25 April. IneLS. John Wiley & Sons Ltd, Chichester, United Kingdom.
    • Vermaas WFJ. 25 April 2001. Photosynthesis and respiration in cyanobacteria. IneLS. John Wiley & Sons Ltd, Chichester, United Kingdom. http://dx.doi.org/10.1038/npg.els.0001670.
    • (2001)
    • Vermaas, W.F.J.1
  • 7
    • 19444376568 scopus 로고    scopus 로고
    • The Calvin cycle in cyanobacteria is regulated by CP12 via the NAD(H)/NADP(H) ratio under light/dark conditions
    • Tamoi M, Miyazaki T, Fukamizo T, Shigeoka S. 2005. The Calvin cycle in cyanobacteria is regulated by CP12 via the NAD(H)/NADP(H) ratio under light/dark conditions. Plant J 42:504-513. http://dx.doi.org/10 .1111/j.1365-313X.2005.02391.x.
    • (2005) Plant J , vol.42 , pp. 504-513
    • Tamoi, M.1    Miyazaki, T.2    Fukamizo, T.3    Shigeoka, S.4
  • 8
    • 78650985721 scopus 로고    scopus 로고
    • The importance of energy balance in improving photosynthetic productivity
    • Kramer DM, Evans JR. 2011. The importance of energy balance in improving photosynthetic productivity. Plant Physiol 155:70-78. http://dx .doi.org/10.1104/pp.110.166652.
    • (2011) Plant Physiol , vol.155 , pp. 70-78
    • Kramer, D.M.1    Evans, J.R.2
  • 9
    • 77950366997 scopus 로고    scopus 로고
    • An Arabidopsis mutant with high cyclic electron flow around photosystem I (hcef) involving the NADPH dehydrogenase complex
    • Livingston AK, Cruz JA, Kohzuma K, Dhingra A, Kramer DM. 2010. An Arabidopsis mutant with high cyclic electron flow around photosystem I (hcef) involving the NADPH dehydrogenase complex. Plant Cell 22:221-233. http://dx.doi.org/10.1105/tpc.109.071084.
    • (2010) Plant Cell , vol.22 , pp. 221-233
    • Livingston, A.K.1    Cruz, J.A.2    Kohzuma, K.3    Dhingra, A.4    Kramer, D.M.5
  • 10
    • 28044470077 scopus 로고    scopus 로고
    • Differential use of two cyclic electron flows around photosystem I for driving CO2- concentration mechanism in C4 photosynthesis
    • Takabayashi A, Kishine M, Asada K, Endo T, Sato F. 2005. Differential use of two cyclic electron flows around photosystem I for driving CO2- concentration mechanism in C4 photosynthesis. Proc Natl Acad Sci U S A 102:16898-16903. http://dx.doi.org/10.1073/pnas.0507095102.
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 16898-16903
    • Takabayashi, A.1    Kishine, M.2    Asada, K.3    Endo, T.4    Sato, F.5
  • 11
    • 80555122963 scopus 로고    scopus 로고
    • Mapping photoautotrophic metabolism with isotopically nonstationary 13C flux analysis
    • Young JD, Shastri AA, Stephanopoulos G, Morgan JA. 2011. Mapping photoautotrophic metabolism with isotopically nonstationary 13C flux analysis. Metab Eng 13:656-665. http://dx.doi.org/10.1016/j.ymben.2011 .08.002.
    • (2011) Metab Eng , vol.13 , pp. 656-665
    • Young, J.D.1    Shastri, A.A.2    Stephanopoulos, G.3    Morgan, J.A.4
  • 12
    • 84899969499 scopus 로고    scopus 로고
    • 13C-MFA delineates the photomixotrophic metabolism of Synechocystis sp. PCC 6803 under light- and carbon-sufficient conditions.
    • You L, Berla B, He L, Pakrasi HB, Tang YJ. 2014. 13C-MFA delineates the photomixotrophic metabolism of Synechocystis sp. PCC 6803 under light- and carbon-sufficient conditions. Biotechnol J 9:684-692. http://dx .doi.org/10.1002/biot.201300477.
    • (2014) Biotechnol J , vol.9 , pp. 684-692
    • You, L.1    Berla, B.2    He, L.3    Pakrasi, H.B.4    Tang, Y.J.5
  • 13
    • 0036663559 scopus 로고    scopus 로고
    • Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose
    • Yang C, Hua Q, Shimizu K. 2002. Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose. Metab Eng 4:202-216. http://dx.doi.org/10.1006/mben.2002.0226.
    • (2002) Metab Eng , vol.4 , pp. 202-216
    • Yang, C.1    Hua, Q.2    Shimizu, K.3
  • 14
    • 84918792766 scopus 로고    scopus 로고
    • The γ-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis s. PCC 6803.
    • Xiong W, Brune D, Vermaas WFJ. 2014. The γ-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp. PCC 6803. Mol Microbiol 93:786-796. http://dx.doi.org/10.1111/mmi.12699.
    • (2014) Mol Microbiol , vol.93 , pp. 786-796
    • Xiong, W.1    Brune, D.2    Vermaas, W.F.J.3
  • 15
    • 83755181765 scopus 로고    scopus 로고
    • The tricarboxylic acid cycle in cyanobacteria
    • Zhang S, Bryant DA. 2011. The tricarboxylic acid cycle in cyanobacteria. Science 334:1551-1553. http://dx.doi.org/10.1126/science.1210858.
    • (2011) Science , vol.334 , pp. 1551-1553
    • Zhang, S.1    Bryant, D.A.2
  • 17
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biol 11:R106. http://dx.doi.org/10.1186/gb-2010-11 -10-r106.
    • (2010) Genome Biol , vol.11
    • Anders, S.1    Huber, W.2
  • 18
    • 85045232729 scopus 로고    scopus 로고
    • RNA-seq based identification and mutant validation of gene targets related to ethanol resistance in cyanobacterial Synechocystis s. PCC 6803.
    • Wang J, Chen L, Huang S, Liu J, Ren X, Tian X, Qiao J, Zhang W. 2012. RNA-seq based identification and mutant validation of gene targets related to ethanol resistance in cyanobacterial Synechocystis sp. PCC 6803. Biotechnol Biofuels 5:89. http://dx.doi.org/10.1186/1754-6834-5-89.
    • (2012) Biotechnol Biofuels , vol.5 , pp. 89
    • Wang, J.1    Chen, L.2    Huang, S.3    Liu, J.4    Ren, X.5    Tian, X.6    Qiao, J.7    Zhang, W.8
  • 19
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139 -140. http://dx.doi.org/10.1093 /bioinformatics/btp616.
    • (2010) Bioinformatics , vol.26 , pp. 139 -140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 20
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson M, Oshlack A. 2010. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25. http: //dx.doi.org/10.1186/gb-2010-11-3-r25.
    • (2010) Genome Biol , vol.11 , pp. R25
    • Robinson, M.1    Oshlack, A.2
  • 21
    • 84857010419 scopus 로고    scopus 로고
    • Metabolic pathway confirmation and discovery through 13C-labeling of proteinogenic amino acids
    • You L, Page L, Feng X, Berla B, Pakrasi HB, Tang YJ. 2012. Metabolic pathway confirmation and discovery through 13C-labeling of proteinogenic amino acids. J Vis Exp 2012:e3583. http://dx.doi.org/10.3791/3583.
    • (2012) J Vis Exp , vol.2012
    • You, L.1    Page, L.2    Feng, X.3    Berla, B.4    Pakrasi, H.B.5    Tang, Y.J.6
  • 22
    • 0842343470 scopus 로고    scopus 로고
    • New tools for mass isotopomer data evaluation in 13C flux analysis: mass isotope correction, data consistency checking, and precursor relationships
    • Wahl SA, Dauner M, Wiechert W. 2004. New tools for mass isotopomer data evaluation in 13C flux analysis: mass isotope correction, data consistency checking, and precursor relationships. Biotechnol Bioeng 85:259-268. http://dx.doi.org/10.1002/bit.10909.
    • (2004) Biotechnol Bioeng , vol.85 , pp. 259-268
    • Wahl, S.A.1    Dauner, M.2    Wiechert, W.3
  • 23
    • 35348941242 scopus 로고    scopus 로고
    • Accurate assessmentofaminoacid mass isotopomer distributions for metabolicfluxanalysis
    • Antoniewicz MR, Kelleher JK, Stephanopoulos G. 2007. Accurate assessmentofaminoacid mass isotopomer distributions for metabolicfluxanalysis. Anal Chem 79:7554-7559. http://dx.doi.org/10.1021/ac0708893.
    • (2007) Anal Chem , vol.79 , pp. 7554-7559
    • Antoniewicz, M.R.1    Kelleher, J.K.2    Stephanopoulos, G.3
  • 24
    • 84868275739 scopus 로고    scopus 로고
    • Reconstruction and comparison of the metabolic potential of cyanobacteria Cyanothece s. ATCC 51142 and Synechocystis sp. PCC 6803.
    • Saha R, Verseput AT, Berla BM, Mueller TJ, Pakrasi HB, Maranas CD. 2012. Reconstruction and comparison of the metabolic potential of cyanobacteria Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803. PLoS One 7:e48285. http://dx.doi.org/10.1371/journal.pone.0048285.
    • (2012) PLoS One , vol.7
    • Saha, R.1    Verseput, A.T.2    Berla, B.M.3    Mueller, T.J.4    Pakrasi, H.B.5    Maranas, C.D.6
  • 25
    • 0017090085 scopus 로고
    • Photosystem II regulation of macromolecule synthesis in the blue-green alga Aphanocapsa 6714.
    • Pelroy RA, Kirk MR, Bassham JA. 1976. Photosystem II regulation of macromolecule synthesis in the blue-green alga Aphanocapsa 6714. J Bacteriol 128:623-632.
    • (1976) J Bacteriol , vol.128 , pp. 623-632
    • Pelroy, R.A.1    Kirk, M.R.2    Bassham, J.A.3
  • 26
    • 0034847930 scopus 로고    scopus 로고
    • Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis
    • Dauner M, Bailey JE, Sauer U. 2001. Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. Biotechnol Bioeng 76:144-156. http://dx.doi.org/10.1002/bit.1154.
    • (2001) Biotechnol Bioeng , vol.76 , pp. 144-156
    • Dauner, M.1    Bailey, J.E.2    Sauer, U.3
  • 27
    • 33845679072 scopus 로고    scopus 로고
    • Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions
    • Antoniewicz MR, Kelleher JK, Stephanopoulos G. 2007. Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9:68-86. http://dx.doi.org/10.1016/j.ymben.2006.09 .001.
    • (2007) Metab Eng , vol.9 , pp. 68-86
    • Antoniewicz, M.R.1    Kelleher, J.K.2    Stephanopoulos, G.3
  • 28
    • 0037422210 scopus 로고    scopus 로고
    • Metabolic flux analysis of Escherichia coli K12 grown on 13C-labeled acetate and glucose using GC-MS and powerful flux calculation method
    • Zhao J, Shimizu K. 2003. Metabolic flux analysis of Escherichia coli K12 grown on 13C-labeled acetate and glucose using GC-MS and powerful flux calculation method. J Biotechnol 101:101-117. http://dx.doi.org/10.1016 /S0168-1656(02)00316-4.
    • (2003) J Biotechnol , vol.101 , pp. 101-117
    • Zhao, J.1    Shimizu, K.2
  • 29
    • 84922136821 scopus 로고    scopus 로고
    • Integrated metabolic flux and omics analysis of Synechocystis sp. PCC 6803 under mixotrophic and photoheterotrophic conditions.
    • Nakajima T, Kajihata S, Yoshikawa K, Matsuda F, Furusawa C, Hirasawa T, Shimizu H. 2014. Integrated metabolic flux and omics analysis of Synechocystis sp. PCC 6803 under mixotrophic and photoheterotrophic conditions. Plant Cell Physiol 55:1605-1612. http://dx.doi.org/10.1093 /pcp/pcu091.
    • (2014) Plant Cell Physiol , vol.55 , pp. 1605-1612
    • Nakajima, T.1    Kajihata, S.2    Yoshikawa, K.3    Matsuda, F.4    Furusawa, C.5    Hirasawa, T.6    Shimizu, H.7
  • 30
    • 28844474830 scopus 로고    scopus 로고
    • Flux balance analysis of photoautotrophic metabolism
    • Shastri A, Morgan J. 2005. Flux balance analysis of photoautotrophic metabolism. Biotechnol Prog 21:1617-1626. http://dx.doi.org/10.1021 /bp050246d.
    • (2005) Biotechnol Prog , vol.21 , pp. 1617-1626
    • Shastri, A.1    Morgan, J.2
  • 31
    • 79957609529 scopus 로고    scopus 로고
    • Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps
    • Castruita M, Casero D, Karpowicz SJ, Kropat J, Vieler A, Hsieh SI, Yan W, Cokus S, Loo JA, Benning C. 2011. Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps. Plant Cell 23:1273-1292. http://dx.doi.org/10.1105 /tpc.111.084400.
    • (2011) Plant Cell , vol.23 , pp. 1273-1292
    • Castruita, M.1    Casero, D.2    Karpowicz, S.J.3    Kropat, J.4    Vieler, A.5    Hsieh, S.I.6    Yan, W.7    Cokus, S.8    Loo, J.A.9    Benning, C.10
  • 32
    • 84877103996 scopus 로고    scopus 로고
    • Integrated transcriptomic and metabolomic analysis of the central metabolism of Synechocystis sp. PCC 6803 under different trophic conditions.
    • Yoshikawa K, Hirasawa T, Ogawa K, Hidaka Y, Nakajima T, Furusawa C, Shimizu H. 2013. Integrated transcriptomic and metabolomic analysis of the central metabolism of Synechocystis sp. PCC 6803 under different trophic conditions. Biotechnol J 8:571-580. http://dx.doi.org/10.1002 /biot.201200235.
    • (2013) Biotechnol J , vol.8 , pp. 571-580
    • Yoshikawa, K.1    Hirasawa, T.2    Ogawa, K.3    Hidaka, Y.4    Nakajima, T.5    Furusawa, C.6    Shimizu, H.7
  • 33
    • 0015514357 scopus 로고
    • Photorespiration and nitrogenase activity in the blue-green alga, Anabaena cylindrica
    • Lex M, Silvester WB, Stewart WDP. 1972. Photorespiration and nitrogenase activity in the blue-green alga, Anabaena cylindrica. Proc R Soc Lond B Biol Sci 180:87-102. http://dx.doi.org/10.1098/rspb.1972.0007.
    • (1972) Proc R Soc Lond B Biol Sci , vol.180 , pp. 87-102
    • Lex, M.1    Silvester, W.B.2    Stewart, W.D.P.3
  • 34
    • 77955388615 scopus 로고    scopus 로고
    • Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria
    • McKinlay JB, Harwood CS. 2010. Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proc Natl Acad Sci U S A 107:11669-11675. http://dx.doi.org/10.1073/pnas.1006175107.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 11669-11675
    • McKinlay, J.B.1    Harwood, C.S.2
  • 35
    • 10644266747 scopus 로고    scopus 로고
    • Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds
    • Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y. 2004. Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432:779-782. http://dx.doi.org/10.1038/nature03145.
    • (2004) Nature , vol.432 , pp. 779-782
    • Schwender, J.1    Goffman, F.2    Ohlrogge, J.B.3    Shachar-Hill, Y.4
  • 36
    • 0344443759 scopus 로고    scopus 로고
    • A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli
    • Fischer E, Sauer U. 2003. A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli. J Biol Chem 278:46446- 46451. http://dx.doi.org/10.1074/jbc.M307968200.
    • (2003) J Biol Chem , vol.278 , pp. 46446- 46451
    • Fischer, E.1    Sauer, U.2
  • 37
    • 9244227595 scopus 로고    scopus 로고
    • The malic enzyme is required for optimal photoautotrophic growth of Synechocystis sp. strain PCC 6803 under continuous light but not under a diurnal light regimen.
    • Bricker TM, Zhang S, Laborde SM, Mayer PR, Frankel LK, Moroney JV. 2004. The malic enzyme is required for optimal photoautotrophic growth of Synechocystis sp. strain PCC 6803 under continuous light but not under a diurnal light regimen. J Bacteriol 186:8144-8148. http://dx .doi.org/10.1128/JB.186.23.8144-8148.2004.
    • (2004) J Bacteriol , vol.186 , pp. 8144-8148
    • Bricker, T.M.1    Zhang, S.2    Laborde, S.M.3    Mayer, P.R.4    Frankel, L.K.5    Moroney, J.V.6
  • 38
    • 77957187653 scopus 로고
    • Electron donation from cyclic and respiratory flows to the photosynthetic intersystem chain is mediated by pyridine nucleotide dehydrogenase in the cyanobacterium Synechocystis PCC 6803.
    • Mi H, Endo T, Schreiber U, Ogawa T, Asada K. 1992. Electron donation from cyclic and respiratory flows to the photosynthetic intersystem chain is mediated by pyridine nucleotide dehydrogenase in the cyanobacterium Synechocystis PCC 6803. Plant Cell Physiol 33:1233-1237.
    • (1992) Plant Cell Physiol , vol.33 , pp. 1233-1237
    • Mi, H.1    Endo, T.2    Schreiber, U.3    Ogawa, T.4    Asada, K.5
  • 39
    • 0032490115 scopus 로고    scopus 로고
    • Procaryotic complex I (NDH-1), an overview
    • Yagi T, Yano T, Di Bernardo S, Matsuno-Yagi A. 1998. Procaryotic complex I (NDH-1), an overview. Biochim Biophys Acta 1364:125-133. http://dx.doi.org/10.1016/S0005-2728(98)00023-1.
    • (1998) Biochim Biophys Acta , vol.1364 , pp. 125-133
    • Yagi, T.1    Yano, T.2    Di Bernardo, S.3    Matsuno-Yagi, A.4
  • 40
    • 0032988011 scopus 로고    scopus 로고
    • Type 2 NADH dehydrogenases in the cyanobacterium Synechocystis sp. strain PCC 6803 are involved in regulation rather than respiration.
    • Howitt CA, Udall PK, Vermaas WFJ. 1999. Type 2 NADH dehydrogenases in the cyanobacterium Synechocystis sp. strain PCC 6803 are involved in regulation rather than respiration. J Bacteriol 181:3994-4003.
    • (1999) J Bacteriol , vol.181 , pp. 3994-4003
    • Howitt, C.A.1    Udall, P.K.2    Vermaas, W.F.J.3
  • 41
    • 0028814979 scopus 로고
    • Thylakoid membrane-bound, NADPH-specific pyridine nucleotide dehydrogenase complex mediates cyclic electron transport in the cyanobacterium Synechocystis sp. PCC 6803.
    • Mi H, Endo T, Ogawa T, Asada K. 1995. Thylakoid membrane-bound, NADPH-specific pyridine nucleotide dehydrogenase complex mediates cyclic electron transport in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 36:661-668.
    • (1995) Plant Cell Physiol , vol.36 , pp. 661-668
    • Mi, H.1    Endo, T.2    Ogawa, T.3    Asada, K.4
  • 42
    • 0033978251 scopus 로고    scopus 로고
    • Succinate:quinol oxidoreductases in the cyanobacterium Synechocystis sp. strain PCC 6803: presence and function in metabolism and electron transport.
    • Cooley JW, Howitt CA, Vermaas WFJ. 2000. Succinate:quinol oxidoreductases in the cyanobacterium Synechocystis sp. strain PCC 6803: presence and function in metabolism and electron transport. J Bacteriol 182:714-722. http://dx.doi.org/10.1128/JB.182.3.714-722.2000.
    • (2000) J Bacteriol , vol.182 , pp. 714-722
    • Cooley, J.W.1    Howitt, C.A.2    Vermaas, W.F.J.3
  • 43
    • 77957729177 scopus 로고    scopus 로고
    • Early evolution of Photosynthesis
    • Blankenship RE. 2010. Early evolution of Photosynthesis. Plant Physiol 154:434-438. http://dx.doi.org/10.1104/pp.110.161687.
    • (2010) Plant Physiol , vol.154 , pp. 434-438
    • Blankenship, R.E.1
  • 44


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.