메뉴 건너뛰기




Volumn 38, Issue 4, 2016, Pages 394-405

Cross-talk between circadian clocks, sleep-wake cycles, and metabolic networks: Dispelling the darkness

Author keywords

Circadian rhythms; Metabolic networks; Non transcriptional oscillator; Peroxiredoxin; Redox regulation; Sleep wake cycle; Systems biology

Indexed keywords

BIOLOGICAL MARKER; MESSENGER RNA; PEROXIREDOXIN; PROTEOME; SIRTUIN; TRANSCRIPTION FACTOR CLOCK;

EID: 84961218318     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201500056     Document Type: Article
Times cited : (38)

References (129)
  • 1
    • 0033593306 scopus 로고    scopus 로고
    • Molecular bases for circadian clocks
    • Dunlap JC. 1999. Molecular bases for circadian clocks. Cell 96: 271-90.
    • (1999) Cell , vol.96 , pp. 271-290
    • Dunlap, J.C.1
  • 2
    • 21344470923 scopus 로고    scopus 로고
    • Circadian rhythms from multiple oscillators: lessons from diverse organisms
    • Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, et al. 2005. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6: 544-56.
    • (2005) Nat Rev Genet , vol.6 , pp. 544-556
    • Bell-Pedersen, D.1    Cassone, V.M.2    Earnest, D.J.3    Golden, S.S.4
  • 3
    • 27644580795 scopus 로고    scopus 로고
    • Clues to the functions of mammalian sleep
    • Siegel JM. 2005. Clues to the functions of mammalian sleep. Nature 437: 1264-71.
    • (2005) Nature , vol.437 , pp. 1264-1271
    • Siegel, J.M.1
  • 4
    • 0037137439 scopus 로고    scopus 로고
    • Electrophysiological correlates of rest and activity in Drosophila melanogaster
    • Nitz DA, van SB, Tononi G, Greenspan RJ. 2002. Electrophysiological correlates of rest and activity in Drosophila melanogaster. Curr Biol 12: 1934-40.
    • (2002) Curr Biol , vol.12 , pp. 1934-1940
    • Nitz, D.A.1    van, S.B.2    Tononi, G.3    Greenspan, R.J.4
  • 5
  • 6
    • 84868325661 scopus 로고    scopus 로고
    • Impaired insulin signaling in human adipocytes after experimental sleep restriction: a randomized, crossover study
    • Broussard JL, Ehrmann DA, Van CE, Tasali E, et al. 2012. Impaired insulin signaling in human adipocytes after experimental sleep restriction: a randomized, crossover study. Ann Intern Med 157: 549-57.
    • (2012) Ann Intern Med , vol.157 , pp. 549-557
    • Broussard, J.L.1    Ehrmann, D.A.2    Van, C.E.3    Tasali, E.4
  • 7
    • 27644457084 scopus 로고    scopus 로고
    • Hypothalamic regulation of sleep and circadian rhythms
    • Saper CB, Scammell TE, Lu J. 2005. Hypothalamic regulation of sleep and circadian rhythms. Nature 437: 1257-63.
    • (2005) Nature , vol.437 , pp. 1257-1263
    • Saper, C.B.1    Scammell, T.E.2    Lu, J.3
  • 8
    • 33846056883 scopus 로고    scopus 로고
    • Shift work sleep disorder: burden of illness and approaches to management
    • Schwartz JR, Roth T. 2006. Shift work sleep disorder: burden of illness and approaches to management. Drugs 66: 2357-70.
    • (2006) Drugs , vol.66 , pp. 2357-2370
    • Schwartz, J.R.1    Roth, T.2
  • 9
    • 72549118386 scopus 로고    scopus 로고
    • Healthy clocks, healthy body, healthy mind
    • Reddy AB, O'Neill JS. 2010. Healthy clocks, healthy body, healthy mind. Trends Cell Biol 20: 36-44.
    • (2010) Trends Cell Biol , vol.20 , pp. 36-44
    • Reddy, A.B.1    O'Neill, J.S.2
  • 10
    • 77949343027 scopus 로고    scopus 로고
    • The cardiomyocyte circadian clock: emerging roles in health and disease
    • Durgan DJ, Young ME. 2010. The cardiomyocyte circadian clock: emerging roles in health and disease. Circ Res 106: 647-58.
    • (2010) Circ Res , vol.106 , pp. 647-658
    • Durgan, D.J.1    Young, M.E.2
  • 11
    • 84932612652 scopus 로고    scopus 로고
    • Aligning work and circadian time in shift workers improves sleep and reduces circadian disruption
    • Vetter C, Fischer D, Matera JL, Roenneberg T. 2015. Aligning work and circadian time in shift workers improves sleep and reduces circadian disruption. Curr Biol 25: 907-11.
    • (2015) Curr Biol , vol.25 , pp. 907-911
    • Vetter, C.1    Fischer, D.2    Matera, J.L.3    Roenneberg, T.4
  • 12
    • 0042490526 scopus 로고    scopus 로고
    • A clockwork web: circadian timing in brain and periphery, in health and disease
    • Hastings MH, Reddy AB, Maywood ES. 2003. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4: 649-61.
    • (2003) Nat Rev Neurosci , vol.4 , pp. 649-661
    • Hastings, M.H.1    Reddy, A.B.2    Maywood, E.S.3
  • 13
    • 77954887739 scopus 로고    scopus 로고
    • Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease
    • Wulff K, Gatti S, Wettstein JG, Foster RG. 2010. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci 11: 589-99.
    • (2010) Nat Rev Neurosci , vol.11 , pp. 589-599
    • Wulff, K.1    Gatti, S.2    Wettstein, J.G.3    Foster, R.G.4
  • 14
    • 70450239457 scopus 로고    scopus 로고
    • Metabolism and cancer: the circadian clock connection
    • Sahar S, Sassone-Corsi P. 2009. Metabolism and cancer: the circadian clock connection. Nat Rev Cancer 9: 886-96.
    • (2009) Nat Rev Cancer , vol.9 , pp. 886-896
    • Sahar, S.1    Sassone-Corsi, P.2
  • 15
    • 84902161090 scopus 로고    scopus 로고
    • Metabolic and non-transcriptional circadian clocks: eukaryotes
    • Reddy AB, Rey G. 2014. Metabolic and non-transcriptional circadian clocks: eukaryotes. Annu Rev Biochem 83: 165-89.
    • (2014) Annu Rev Biochem , vol.83 , pp. 165-189
    • Reddy, A.B.1    Rey, G.2
  • 16
    • 84887367483 scopus 로고    scopus 로고
    • Physiology. Rhythmic respiration
    • Rey G, Reddy AB. 2013. Physiology. Rhythmic respiration. Science 342: 570-1.
    • (2013) Science , vol.342 , pp. 570-571
    • Rey, G.1    Reddy, A.B.2
  • 17
    • 84885775321 scopus 로고    scopus 로고
    • Sleep drives metabolite clearance from the adult brain
    • Xie L, Kang H, Xu Q, Chen MJ, et al. 2013. Sleep drives metabolite clearance from the adult brain. Science 342: 373-7.
    • (2013) Science , vol.342 , pp. 373-377
    • Xie, L.1    Kang, H.2    Xu, Q.3    Chen, M.J.4
  • 18
    • 52149109334 scopus 로고    scopus 로고
    • The genetics of mammalian circadian order and disorder: implications for physiology and disease
    • Takahashi JS, Hong HK, Ko CH, McDearmon EL. 2008. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9: 764-75.
    • (2008) Nat Rev Genet , vol.9 , pp. 764-775
    • Takahashi, J.S.1    Hong, H.K.2    Ko, C.H.3    McDearmon, E.L.4
  • 20
    • 70449093653 scopus 로고    scopus 로고
    • Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism
    • Chen R, Schirmer A, Lee Y, Lee H, et al. 2009. Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Mol Cell 36: 417-30.
    • (2009) Mol Cell , vol.36 , pp. 417-430
    • Chen, R.1    Schirmer, A.2    Lee, Y.3    Lee, H.4
  • 21
    • 0032214514 scopus 로고    scopus 로고
    • Mammalian circadian autoregulatory loop: a timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1-induced transcription
    • Sangoram AM, Saez L, Antoch MP, Gekakis N, et al. 1998. Mammalian circadian autoregulatory loop: a timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1-induced transcription. Neuron 21: 1101-13.
    • (1998) Neuron , vol.21 , pp. 1101-1113
    • Sangoram, A.M.1    Saez, L.2    Antoch, M.P.3    Gekakis, N.4
  • 22
    • 0033597904 scopus 로고    scopus 로고
    • MCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop
    • Kume K, Zylka MJ, Sriram S, Shearman LP, et al. 1999. MCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98: 193-205.
    • (1999) Cell , vol.98 , pp. 193-205
    • Kume, K.1    Zylka, M.J.2    Sriram, S.3    Shearman, L.P.4
  • 23
    • 0037006795 scopus 로고    scopus 로고
    • Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus
    • Akhtar RA, Reddy AB, Maywood ES, Clayton JD, et al. 2002. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 12: 540-50.
    • (2002) Curr Biol , vol.12 , pp. 540-550
    • Akhtar, R.A.1    Reddy, A.B.2    Maywood, E.S.3    Clayton, J.D.4
  • 24
    • 18444414586 scopus 로고    scopus 로고
    • Coordinated transcription of key pathways in the mouse by the circadian clock
    • Panda S, Antoch MP, Miller BH, Su AI, et al. 2002. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109: 307-20.
    • (2002) Cell , vol.109 , pp. 307-320
    • Panda, S.1    Antoch, M.P.2    Miller, B.H.3    Su, A.I.4
  • 25
    • 0037007625 scopus 로고    scopus 로고
    • Extensive and divergent circadian gene expression in liver and heart
    • Storch KF, Lipan O, Leykin I, Viswanathan N, et al. 2002. Extensive and divergent circadian gene expression in liver and heart. Nature 417: 78-83.
    • (2002) Nature , vol.417 , pp. 78-83
    • Storch, K.F.1    Lipan, O.2    Leykin, I.3    Viswanathan, N.4
  • 26
    • 0036682099 scopus 로고    scopus 로고
    • A transcription factor response element for gene expression during circadian night
    • Ueda HR, Chen W, Adachi A, Wakamatsu H, et al. 2002. A transcription factor response element for gene expression during circadian night. Nature 418: 534-9.
    • (2002) Nature , vol.418 , pp. 534-539
    • Ueda, H.R.1    Chen, W.2    Adachi, A.3    Wakamatsu, H.4
  • 27
    • 13944254430 scopus 로고    scopus 로고
    • System-level identification of transcriptional circuits underlying mammalian circadian clocks
    • Ueda HR, Hayashi S, Chen W, Sano M, et al. 2005. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37: 187-92.
    • (2005) Nat Genet , vol.37 , pp. 187-192
    • Ueda, H.R.1    Hayashi, S.2    Chen, W.3    Sano, M.4
  • 28
    • 33744515807 scopus 로고    scopus 로고
    • Circadian orchestration of the hepatic proteome
    • Reddy AB, Karp NA, Maywood ES, Sage EA, et al. 2006. Circadian orchestration of the hepatic proteome. Curr Biol 16: 1107-15.
    • (2006) Curr Biol , vol.16 , pp. 1107-1115
    • Reddy, A.B.1    Karp, N.A.2    Maywood, E.S.3    Sage, E.A.4
  • 29
    • 84891940889 scopus 로고    scopus 로고
    • Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver
    • Mauvoisin D, Wang J, Jouffe C, Martin E, et al. 2014. Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. Proc Natl Acad Sci USA 111: 167-72.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 167-172
    • Mauvoisin, D.1    Wang, J.2    Jouffe, C.3    Martin, E.4
  • 30
    • 84893799587 scopus 로고    scopus 로고
    • In-vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism
    • Robles MS, Cox J, Mann M. 2014. In-vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism. PLoS Genet 10: e1004047.
    • (2014) PLoS Genet , vol.10 , pp. e1004047
    • Robles, M.S.1    Cox, J.2    Mann, M.3
  • 31
    • 17244373578 scopus 로고    scopus 로고
    • Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro
    • Nakajima M, Imai K, Ito H, Nishiwaki T, et al. 2005. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308: 414-5.
    • (2005) Science , vol.308 , pp. 414-415
    • Nakajima, M.1    Imai, K.2    Ito, H.3    Nishiwaki, T.4
  • 32
    • 12244296161 scopus 로고    scopus 로고
    • No transcription-translation feedback in circadian rhythm of KaiC phosphorylation
    • Tomita J, Nakajima M, Kondo T, Iwasaki H. 2005. No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 307: 251-4.
    • (2005) Science , vol.307 , pp. 251-254
    • Tomita, J.1    Nakajima, M.2    Kondo, T.3    Iwasaki, H.4
  • 33
    • 79251539603 scopus 로고    scopus 로고
    • Circadian rhythms persist without transcription in a eukaryote
    • O'Neill JS, van OG, Dixon LE, Troein C, et al. 2011. Circadian rhythms persist without transcription in a eukaryote. Nature 469: 554-8.
    • (2011) Nature , vol.469 , pp. 554-558
    • O'Neill, J.S.1    van, O.G.2    Dixon, L.E.3    Troein, C.4
  • 34
    • 79251566511 scopus 로고    scopus 로고
    • Circadian clocks in human red blood cells
    • O'Neill JS, Reddy AB. 2011. Circadian clocks in human red blood cells. Nature 469: 498-503.
    • (2011) Nature , vol.469 , pp. 498-503
    • O'Neill, J.S.1    Reddy, A.B.2
  • 35
    • 33644603280 scopus 로고    scopus 로고
    • Transcriptional feedback oscillators: maybe, maybe not
    • Lakin-Thomas PL. 2006. Transcriptional feedback oscillators: maybe, maybe not. J Biol Rhythms 21: 83-92.
    • (2006) J Biol Rhythms , vol.21 , pp. 83-92
    • Lakin-Thomas, P.L.1
  • 36
    • 84867905300 scopus 로고    scopus 로고
    • Non-transcriptional oscillators in circadian timekeeping
    • van OG, Millar AJ. 2012. Non-transcriptional oscillators in circadian timekeeping. Trends Biochem 37: 484-92.
    • (2012) Trends Biochem , vol.37 , pp. 484-492
    • van, O.G.1    Millar, A.J.2
  • 37
    • 77950528207 scopus 로고    scopus 로고
    • The KaiA protein of the cyanobacterial circadian oscillator is modulated by a redox-active cofactor
    • Wood TL, Bridwell-Rabb J, Kim YI, Gao T, et al. 2010. The KaiA protein of the cyanobacterial circadian oscillator is modulated by a redox-active cofactor. Proc Natl Acad Sci USA 107: 5804-9.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 5804-5809
    • Wood, T.L.1    Bridwell-Rabb, J.2    Kim, Y.I.3    Gao, T.4
  • 38
    • 77957054558 scopus 로고    scopus 로고
    • Intermolecular associations determine the dynamics of the circadian KaiABC oscillator
    • Qin X, Byrne M, Mori T, Zou P, et al. 2010. Intermolecular associations determine the dynamics of the circadian KaiABC oscillator. Proc Natl Acad Sci USA 107: 14805-10.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 14805-14810
    • Qin, X.1    Byrne, M.2    Mori, T.3    Zou, P.4
  • 39
    • 65949094583 scopus 로고    scopus 로고
    • The implications of multiple circadian clock origins
    • Rosbash M. 2009. The implications of multiple circadian clock origins. PLoS Biol 7: e62.
    • (2009) PLoS Biol , vol.7 , pp. e62
    • Rosbash, M.1
  • 40
    • 84861452257 scopus 로고    scopus 로고
    • Peroxiredoxins are conserved markers of circadian rhythms
    • Edgar RS, Green EW, Zhao Y, van OG, et al. 2012. Peroxiredoxins are conserved markers of circadian rhythms. Nature 485: 459-64.
    • (2012) Nature , vol.485 , pp. 459-464
    • Edgar, R.S.1    Green, E.W.2    Zhao, Y.3    van, O.G.4
  • 41
    • 8344281472 scopus 로고    scopus 로고
    • Divergence of function in the thioredoxin fold suprafamily: evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor
    • Copley SD, Novak WR, Babbitt PC. 2004. Divergence of function in the thioredoxin fold suprafamily: evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor. Biochemistry 43: 13981-95.
    • (2004) Biochemistry , vol.43 , pp. 13981-13995
    • Copley, S.D.1    Novak, W.R.2    Babbitt, P.C.3
  • 42
    • 64149085448 scopus 로고    scopus 로고
    • Typical 2-Cys peroxiredoxins-structures, mechanisms and functions
    • Hall A, Karplus PA, Poole LB. 2009. Typical 2-Cys peroxiredoxins-structures, mechanisms and functions. FEBS J 276: 2469-77.
    • (2009) FEBS J , vol.276 , pp. 2469-2477
    • Hall, A.1    Karplus, P.A.2    Poole, L.B.3
  • 43
    • 0242668686 scopus 로고    scopus 로고
    • Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling
    • Wood ZA, Poole LB, Karplus PA. 2003. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300: 650-3.
    • (2003) Science , vol.300 , pp. 650-653
    • Wood, Z.A.1    Poole, L.B.2    Karplus, P.A.3
  • 44
    • 78650078496 scopus 로고    scopus 로고
    • Quantitative reactivity profiling predicts functional cysteines in proteomes
    • Weerapana E, Wang C, Simon GM, Richter F, et al. 2010. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468: 790-5.
    • (2010) Nature , vol.468 , pp. 790-795
    • Weerapana, E.1    Wang, C.2    Simon, G.M.3    Richter, F.4
  • 45
    • 0035919479 scopus 로고    scopus 로고
    • Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors
    • Rutter J, Reick M, Wu LC, McKnight SL. 2001. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293: 510-4.
    • (2001) Science , vol.293 , pp. 510-514
    • Rutter, J.1    Reick, M.2    Wu, L.C.3    McKnight, S.L.4
  • 46
    • 84865080952 scopus 로고    scopus 로고
    • Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons
    • Wang TA, Yu YV, Govindaiah G, Ye X, et al. 2012. Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons. Science 337: 839-42.
    • (2012) Science , vol.337 , pp. 839-842
    • Wang, T.A.1    Yu, Y.V.2    Govindaiah, G.3    Ye, X.4
  • 47
    • 48349130341 scopus 로고    scopus 로고
    • Circadian regulation of response to oxidative stress in Drosophila melanogaster
    • Krishnan N, Davis AJ, Giebultowicz JM. 2008. Circadian regulation of response to oxidative stress in Drosophila melanogaster. Biochem Biophys Res Commun 374: 299-303.
    • (2008) Biochem Biophys Res Commun , vol.374 , pp. 299-303
    • Krishnan, N.1    Davis, A.J.2    Giebultowicz, J.M.3
  • 48
    • 84867644429 scopus 로고    scopus 로고
    • CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses
    • Lai AG, Doherty CJ, Mueller-Roeber B, Kay SA, et al. 2012. CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses. Proc Natl Acad Sci USA 109: 17129-34.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 17129-17134
    • Lai, A.G.1    Doherty, C.J.2    Mueller-Roeber, B.3    Kay, S.A.4
  • 49
    • 84893338187 scopus 로고    scopus 로고
    • Rethinking the clockwork: redox cycles and non-transcriptional control of circadian rhythms
    • Wu L, Reddy AB. 2014. Rethinking the clockwork: redox cycles and non-transcriptional control of circadian rhythms. Biochem Soc Trans 42: 1-0.
    • (2014) Biochem Soc Trans , vol.42 , pp. 1
    • Wu, L.1    Reddy, A.B.2
  • 50
    • 33751565112 scopus 로고    scopus 로고
    • Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice
    • McDearmon EL, Patel KN, Ko CH, Walisser JA, et al. 2006. Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice. Science 314: 1304-8.
    • (2006) Science , vol.314 , pp. 1304-1308
    • McDearmon, E.L.1    Patel, K.N.2    Ko, C.H.3    Walisser, J.A.4
  • 51
    • 62549090648 scopus 로고    scopus 로고
    • The methamphetamine-sensitive circadian oscillator does not employ canonical clock genes
    • Mohawk JA, Baer ML, Menaker M. 2009. The methamphetamine-sensitive circadian oscillator does not employ canonical clock genes. Proc Natl Acad Sci USA 106: 3519-24.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 3519-3524
    • Mohawk, J.A.1    Baer, M.L.2    Menaker, M.3
  • 52
    • 33845611615 scopus 로고    scopus 로고
    • Interplay of circadian clocks and metabolic rhythms
    • Wijnen H, Young MW. 2006. Interplay of circadian clocks and metabolic rhythms. Annu Rev Genet 40: 409-48.
    • (2006) Annu Rev Genet , vol.40 , pp. 409-448
    • Wijnen, H.1    Young, M.W.2
  • 53
    • 66149109671 scopus 로고    scopus 로고
    • Metabolism control by the circadian clock and vice versa
    • Eckel-Mahan K, Sassone-Corsi P. 2009. Metabolism control by the circadian clock and vice versa. Nat Struct Mol Biol 16: 462-7.
    • (2009) Nat Struct Mol Biol , vol.16 , pp. 462-467
    • Eckel-Mahan, K.1    Sassone-Corsi, P.2
  • 54
    • 84869036539 scopus 로고    scopus 로고
    • Circadian topology of metabolism
    • Bass J. 2012. Circadian topology of metabolism. Nature 491: 348-56.
    • (2012) Nature , vol.491 , pp. 348-356
    • Bass, J.1
  • 55
    • 84871445347 scopus 로고    scopus 로고
    • The circadian clock: a framework linking metabolism, epigenetics and neuronal function
    • Masri S, Sassone-Corsi P. 2013. The circadian clock: a framework linking metabolism, epigenetics and neuronal function. Nat Rev Neurosci 14: 69-75.
    • (2013) Nat Rev Neurosci , vol.14 , pp. 69-75
    • Masri, S.1    Sassone-Corsi, P.2
  • 56
    • 78649687209 scopus 로고    scopus 로고
    • Circadian integration of metabolism and energetics
    • Bass J, Takahashi JS. 2010. Circadian integration of metabolism and energetics. Science 330: 1349-54.
    • (2010) Science , vol.330 , pp. 1349-1354
    • Bass, J.1    Takahashi, J.S.2
  • 57
    • 0035997367 scopus 로고    scopus 로고
    • Metabolism and the control of circadian rhythms
    • Rutter J, Reick M, McKnight SL. 2002. Metabolism and the control of circadian rhythms. Annu Rev Biochem 71: 307-31.
    • (2002) Annu Rev Biochem , vol.71 , pp. 307-331
    • Rutter, J.1    Reick, M.2    McKnight, S.L.3
  • 58
    • 47549088250 scopus 로고    scopus 로고
    • The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
    • Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, et al. 2008. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134: 329-40.
    • (2008) Cell , vol.134 , pp. 329-340
    • Nakahata, Y.1    Kaluzova, M.2    Grimaldi, B.3    Sahar, S.4
  • 59
    • 47749140333 scopus 로고    scopus 로고
    • SIRT1 regulates circadian clock gene expression through PER2 deacetylation
    • Asher G, Gatfield D, Stratmann M, Reinke H, et al. 2008. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134: 317-28.
    • (2008) Cell , vol.134 , pp. 317-328
    • Asher, G.1    Gatfield, D.2    Stratmann, M.3    Reinke, H.4
  • 60
    • 65549118773 scopus 로고    scopus 로고
    • Circadian control of the NAD+ salvage pathway by CLOCK-SI RT1
    • Nakahata Y, Sahar S, Astarita G, Kaluzova M, et al. 2009. Circadian control of the NAD+ salvage pathway by CLOCK-SI RT1. Science 324: 654-7.
    • (2009) Science , vol.324 , pp. 654-657
    • Nakahata, Y.1    Sahar, S.2    Astarita, G.3    Kaluzova, M.4
  • 61
    • 84896842340 scopus 로고    scopus 로고
    • Circadian control of fatty acid elongation by SIRT1 protein-mediated deacetylation of acetyl-coenzyme A synthetase 1
    • Sahar S, Masubuchi S, Eckel-Mahan K, Vollmer S, et al. 2014. Circadian control of fatty acid elongation by SIRT1 protein-mediated deacetylation of acetyl-coenzyme A synthetase 1. J Biol Chem 289: 6091-7.
    • (2014) J Biol Chem , vol.289 , pp. 6091-6097
    • Sahar, S.1    Masubuchi, S.2    Eckel-Mahan, K.3    Vollmer, S.4
  • 62
    • 65549103855 scopus 로고    scopus 로고
    • Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
    • Ramsey KM, Yoshino J, Brace CS, Abrassart D, et al. 2009. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324: 651-4.
    • (2009) Science , vol.324 , pp. 651-654
    • Ramsey, K.M.1    Yoshino, J.2    Brace, C.S.3    Abrassart, D.4
  • 63
    • 77956627087 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding
    • Asher G, Reinke H, Altmeyer M, Gutierrez-Arcelus M, et al. 2010. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142: 943-53.
    • (2010) Cell , vol.142 , pp. 943-953
    • Asher, G.1    Reinke, H.2    Altmeyer, M.3    Gutierrez-Arcelus, M.4
  • 64
    • 84884248040 scopus 로고    scopus 로고
    • Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice
    • Peek CB, Affinati AH, Ramsey KM, Kuo HY, et al. 2013. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 342: 1243417.
    • (2013) Science , vol.342 , pp. 1243417
    • Peek, C.B.1    Affinati, A.H.2    Ramsey, K.M.3    Kuo, H.Y.4
  • 65
    • 79551534130 scopus 로고    scopus 로고
    • Crosstalk between components of circadian and metabolic cycles in mammals
    • Asher G, Schibler U. 2011. Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 13: 125-37.
    • (2011) Cell Metab , vol.13 , pp. 125-137
    • Asher, G.1    Schibler, U.2
  • 66
    • 0013770047 scopus 로고
    • Oscillations of glycolytic intermediates in yeast cells
    • Ghosh A, Chance B. 1964. Oscillations of glycolytic intermediates in yeast cells. Biochem Biophys Res Commun 16: 174-81.
    • (1964) Biochem Biophys Res Commun , vol.16 , pp. 174-181
    • Ghosh, A.1    Chance, B.2
  • 67
    • 0034092437 scopus 로고    scopus 로고
    • How yeast cells synchronize their glycolytic oscillations: a perturbation analytic treatment
    • Bier M, Bakker BM, Westerhoff HV. 2000. How yeast cells synchronize their glycolytic oscillations: a perturbation analytic treatment. Biophys J 78: 1087-93.
    • (2000) Biophys J , vol.78 , pp. 1087-1093
    • Bier, M.1    Bakker, B.M.2    Westerhoff, H.V.3
  • 68
    • 84860729063 scopus 로고    scopus 로고
    • Oscillations in glycolysis in Saccharomyces cerevisiae: the role of autocatalysis and intracellular ATPase activity
    • Kloster A, Olsen LF. 2012. Oscillations in glycolysis in Saccharomyces cerevisiae: the role of autocatalysis and intracellular ATPase activity. Biophys Chem 165-166: 39-47.
    • (2012) Biophys Chem , vol.165-166 , pp. 39-47
    • Kloster, A.1    Olsen, L.F.2
  • 69
    • 77957821693 scopus 로고    scopus 로고
    • Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis
    • Zhang EE, Liu Y, Dentin R, Pongsawakul PY, et al. 2010. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med 16: 1152-6.
    • (2010) Nat Med , vol.16 , pp. 1152-1156
    • Zhang, E.E.1    Liu, Y.2    Dentin, R.3    Pongsawakul, P.Y.4
  • 70
    • 27944484846 scopus 로고    scopus 로고
    • Circadian rhythm of a TCA cycle enzyme is apparently regulated at the translational level in the dinoflagellate Lingulodinium polyedrum
    • Akimoto H, Kinumi T, Ohmiya Y. 2005. Circadian rhythm of a TCA cycle enzyme is apparently regulated at the translational level in the dinoflagellate Lingulodinium polyedrum. J Biol Rhythms 20: 479-89.
    • (2005) J Biol Rhythms , vol.20 , pp. 479-489
    • Akimoto, H.1    Kinumi, T.2    Ohmiya, Y.3
  • 71
    • 84924918487 scopus 로고    scopus 로고
    • Proteome-wide light/dark modulation of thiol oxidation in cyanobacteria revealed by quantitative site-specific redox proteomics
    • Guo J, Nguyen AY, Dai Z, Su D, et al. 2014. Proteome-wide light/dark modulation of thiol oxidation in cyanobacteria revealed by quantitative site-specific redox proteomics. Mol Cell Proteomics 13: 3270-85.
    • (2014) Mol Cell Proteomics , vol.13 , pp. 3270-3285
    • Guo, J.1    Nguyen, A.Y.2    Dai, Z.3    Su, D.4
  • 72
    • 84874479803 scopus 로고    scopus 로고
    • Circadian acetylome reveals regulation of mitochondrial metabolic pathways
    • Masri S, Patel VR, Eckel-Mahan KL, Peleg S, et al. 2013. Circadian acetylome reveals regulation of mitochondrial metabolic pathways. Proc Natl Acad Sci USA 110: 3339-44.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 3339-3344
    • Masri, S.1    Patel, V.R.2    Eckel-Mahan, K.L.3    Peleg, S.4
  • 75
    • 84919935807 scopus 로고    scopus 로고
    • Circadian variation of the human metabolome captured by real-time breath analysis
    • Martinez-Lozano SP, Tarokh L, Li X, Kohler M, et al. 2014. Circadian variation of the human metabolome captured by real-time breath analysis. PLoS ONE 9: e114422.
    • (2014) PLoS ONE , vol.9 , pp. e114422
    • Martinez-Lozano, S.P.1    Tarokh, L.2    Li, X.3    Kohler, M.4
  • 76
    • 0034724728 scopus 로고    scopus 로고
    • Resetting central and peripheral circadian oscillators in transgenic rats
    • Yamazaki S, Numano R, Abe M, Hida A, et al. 2000. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288: 682-5.
    • (2000) Science , vol.288 , pp. 682-685
    • Yamazaki, S.1    Numano, R.2    Abe, M.3    Hida, A.4
  • 77
    • 0035047945 scopus 로고    scopus 로고
    • Molecular analysis of mammalian circadian rhythms
    • Reppert SM, Weaver DR. 2001. Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol 63: 647-76.
    • (2001) Annu Rev Physiol , vol.63 , pp. 647-676
    • Reppert, S.M.1    Weaver, D.R.2
  • 78
    • 33750708917 scopus 로고    scopus 로고
    • Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback
    • Fuller PM, Gooley JJ, Saper CB. 2006. Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback. J Biol Rhythms 21: 482-93.
    • (2006) J Biol Rhythms , vol.21 , pp. 482-493
    • Fuller, P.M.1    Gooley, J.J.2    Saper, C.B.3
  • 79
    • 0141430955 scopus 로고    scopus 로고
    • Sleep states alter activity of suprachiasmatic nucleus neurons
    • Deboer T, Vansteensel MJ, Detari L, Meijer JH. 2003. Sleep states alter activity of suprachiasmatic nucleus neurons. Nat Neurosci 6: 1086-90.
    • (2003) Nat Neurosci , vol.6 , pp. 1086-1090
    • Deboer, T.1    Vansteensel, M.J.2    Detari, L.3    Meijer, J.H.4
  • 80
    • 0020368354 scopus 로고
    • A two process model of sleep regulation
    • Borbely AA. 1982. A two process model of sleep regulation. Hum Neurobiol 1: 195-204.
    • (1982) Hum Neurobiol , vol.1 , pp. 195-204
    • Borbely, A.A.1
  • 81
    • 65549129703 scopus 로고    scopus 로고
    • Circadian clock genes and sleep homeostasis
    • Franken P, Dijk DJ. 2009. Circadian clock genes and sleep homeostasis. Eur J Neurosci 29: 1820-9.
    • (2009) Eur J Neurosci , vol.29 , pp. 1820-1829
    • Franken, P.1    Dijk, D.J.2
  • 82
    • 84884351554 scopus 로고    scopus 로고
    • A role for clock genes in sleep homeostasis
    • Franken P. 2013. A role for clock genes in sleep homeostasis. Curr Opin Neurobiol 23: 864-72.
    • (2013) Curr Opin Neurobiol , vol.23 , pp. 864-872
    • Franken, P.1
  • 83
    • 0037118054 scopus 로고    scopus 로고
    • Stress response genes protect against lethal effects of sleep deprivation in Drosophila
    • Shaw PJ, Tononi G, Greenspan RJ, Robinson DF. 2002. Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 417: 287-91.
    • (2002) Nature , vol.417 , pp. 287-291
    • Shaw, P.J.1    Tononi, G.2    Greenspan, R.J.3    Robinson, D.F.4
  • 84
    • 49049110545 scopus 로고    scopus 로고
    • Sleep deprivation effects on circadian clock gene expression in the cerebral cortex parallel electroencephalographic differences among mouse strains
    • Wisor JP, Pasumarthi RK, Gerashchenko D, Thompson CL, et al. 2008. Sleep deprivation effects on circadian clock gene expression in the cerebral cortex parallel electroencephalographic differences among mouse strains. J Neurosci 28: 7193-201.
    • (2008) J Neurosci , vol.28 , pp. 7193-7201
    • Wisor, J.P.1    Pasumarthi, R.K.2    Gerashchenko, D.3    Thompson, C.L.4
  • 87
    • 80053482614 scopus 로고    scopus 로고
    • Going local: insights from EEG and stereo-EEG studies of the human sleep-wake cycle
    • Ferrara M, De GL. 2011. Going local: insights from EEG and stereo-EEG studies of the human sleep-wake cycle. Curr Top Med Chem 11: 2423-37.
    • (2011) Curr Top Med Chem , vol.11 , pp. 2423-2437
    • Ferrara, M.1    De, G.L.2
  • 90
    • 84865708287 scopus 로고    scopus 로고
    • Key electrophysiological, molecular, and metabolic signatures of sleep and wakefulness revealed in primary cortical cultures
    • Hinard V, Mikhail C, Pradervand S, Curie T, et al. 2012. Key electrophysiological, molecular, and metabolic signatures of sleep and wakefulness revealed in primary cortical cultures. J Neurosci 32: 12506-17.
    • (2012) J Neurosci , vol.32 , pp. 12506-12517
    • Hinard, V.1    Mikhail, C.2    Pradervand, S.3    Curie, T.4
  • 91
    • 0347948474 scopus 로고    scopus 로고
    • Extensive and divergent effects of sleep and wakefulness on brain gene expression
    • Cirelli C, Gutierrez CM, Tononi G. 2004. Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41: 35-43.
    • (2004) Neuron , vol.41 , pp. 35-43
    • Cirelli, C.1    Gutierrez, C.M.2    Tononi, G.3
  • 92
    • 84880439493 scopus 로고    scopus 로고
    • Proteomic approaches in circadian biology
    • Robles MS, Mann M. 2013. Proteomic approaches in circadian biology. Handb Exp Pharmacol 2013: 389-407.
    • (2013) Handb Exp Pharmacol , vol.2013 , pp. 389-407
    • Robles, M.S.1    Mann, M.2
  • 93
    • 34347380174 scopus 로고    scopus 로고
    • Proteomic analysis of day-night variations in protein levels in the rat pineal gland
    • Moller M, Sparre T, Bache N, Roepstorff P, et al. 2007. Proteomic analysis of day-night variations in protein levels in the rat pineal gland. Proteomics 7: 2009-18.
    • (2007) Proteomics , vol.7 , pp. 2009-2018
    • Moller, M.1    Sparre, T.2    Bache, N.3    Roepstorff, P.4
  • 94
    • 71649093603 scopus 로고    scopus 로고
    • Proteomic analysis reveals the role of synaptic vesicle cycling in sustaining the suprachiasmatic circadian clock
    • Deery MJ, Maywood ES, Chesham JE, Sladek M, et al. 2009. Proteomic analysis reveals the role of synaptic vesicle cycling in sustaining the suprachiasmatic circadian clock. Curr Biol 19: 2031-6.
    • (2009) Curr Biol , vol.19 , pp. 2031-2036
    • Deery, M.J.1    Maywood, E.S.2    Chesham, J.E.3    Sladek, M.4
  • 95
    • 33644524918 scopus 로고    scopus 로고
    • Mass spectrometry-based proteomics turns quantitative
    • Ong SE, Mann M. 2005. Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1: 252-62.
    • (2005) Nat Chem Biol , vol.1 , pp. 252-262
    • Ong, S.E.1    Mann, M.2
  • 96
    • 84873368613 scopus 로고    scopus 로고
    • Quantitative peptidomics for discovery of circadian-related peptides from the rat suprachiasmatic nucleus
    • Lee JE, Zamdborg L, Southey BR, Atkin N, Jr., et al. 2013. Quantitative peptidomics for discovery of circadian-related peptides from the rat suprachiasmatic nucleus. J Proteome Res 12: 585-93.
    • (2013) J Proteome Res , vol.12 , pp. 585-593
    • Lee, J.E.1    Zamdborg, L.2    Southey, B.R.3    Atkin, N.4
  • 97
    • 76649132991 scopus 로고    scopus 로고
    • Endogenous peptide discovery of the rat circadian clock: a focused study of the suprachiasmatic nucleus by ultrahigh performance tandem mass spectrometry
    • Lee JE, Atkins N, Jr., Hatcher NG, Zamdborg L, et al. 2010. Endogenous peptide discovery of the rat circadian clock: a focused study of the suprachiasmatic nucleus by ultrahigh performance tandem mass spectrometry. Mol Cell Proteomics 9: 285-97.
    • (2010) Mol Cell Proteomics , vol.9 , pp. 285-297
    • Lee, J.E.1    Atkins, N.2    Hatcher, N.G.3    Zamdborg, L.4
  • 98
    • 47349121336 scopus 로고    scopus 로고
    • Effects of coffee bean aroma on the rat brain stressed by sleep deprivation: a selected transcript- and 2D gel-based proteome analysis
    • Seo HS, Hirano M, Shibato J, Rakwal R, et al. 2008. Effects of coffee bean aroma on the rat brain stressed by sleep deprivation: a selected transcript- and 2D gel-based proteome analysis. J Agric Food Chem 56: 4665-73.
    • (2008) J Agric Food Chem , vol.56 , pp. 4665-4673
    • Seo, H.S.1    Hirano, M.2    Shibato, J.3    Rakwal, R.4
  • 99
    • 36448982880 scopus 로고    scopus 로고
    • Proteomic analysis of the effects and interactions of sleep deprivation and aging in mouse cerebral cortex
    • Pawlyk AC, Ferber M, Shah A, Pack AI, et al. 2007. Proteomic analysis of the effects and interactions of sleep deprivation and aging in mouse cerebral cortex. J Neurochem 103: 2301-13.
    • (2007) J Neurochem , vol.103 , pp. 2301-2313
    • Pawlyk, A.C.1    Ferber, M.2    Shah, A.3    Pack, A.I.4
  • 100
    • 84956675608 scopus 로고    scopus 로고
    • Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames
    • Janich P, Arpat AB, Castelo-Szekely V, Lopes M, et al. 2015. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames. Genome Res 25: 1848-59.
    • (2015) Genome Res , vol.25 , pp. 1848-1859
    • Janich, P.1    Arpat, A.B.2    Castelo-Szekely, V.3    Lopes, M.4
  • 101
    • 84956598215 scopus 로고    scopus 로고
    • Ribosome profiling reveals an important role for translational control in circadian gene expression
    • Jang C, Lahens NF, Hogenesch JB, Sehgal A. 2015. Ribosome profiling reveals an important role for translational control in circadian gene expression. Genome Res 25: 1836-47.
    • (2015) Genome Res , vol.25 , pp. 1836-1847
    • Jang, C.1    Lahens, N.F.2    Hogenesch, J.B.3    Sehgal, A.4
  • 102
    • 84936968103 scopus 로고    scopus 로고
    • Redox rhythm reinforces the circadian clock to gate immune response
    • Zhou M, Wang W, Karapetyan S, Mwimba M, et al. 2015. Redox rhythm reinforces the circadian clock to gate immune response. Nature 523: 472-6.
    • (2015) Nature , vol.523 , pp. 472-476
    • Zhou, M.1    Wang, W.2    Karapetyan, S.3    Mwimba, M.4
  • 103
    • 82555185702 scopus 로고    scopus 로고
    • Cross-talk between the cellular redox state and the circadian system in Neurospora
    • Yoshida Y, Iigusa H, Wang N, Hasunuma K. 2011. Cross-talk between the cellular redox state and the circadian system in Neurospora. PLoS ONE 6: e28227.
    • (2011) PLoS ONE , vol.6 , pp. e28227
    • Yoshida, Y.1    Iigusa, H.2    Wang, N.3    Hasunuma, K.4
  • 104
    • 84901607720 scopus 로고    scopus 로고
    • Brain circadian oscillators and redox regulation in mammals
    • Gillette MU, Wang TA. 2014. Brain circadian oscillators and redox regulation in mammals. Antioxid Redox Signal 20: 2955-65.
    • (2014) Antioxid Redox Signal , vol.20 , pp. 2955-2965
    • Gillette, M.U.1    Wang, T.A.2
  • 105
    • 0037338365 scopus 로고    scopus 로고
    • Proteomic analysis of post-translational modifications
    • Mann M, Jensen ON. 2003. Proteomic analysis of post-translational modifications. Nat Biotechnol 21: 255-61.
    • (2003) Nat Biotechnol , vol.21 , pp. 255-261
    • Mann, M.1    Jensen, O.N.2
  • 106
    • 33646591926 scopus 로고    scopus 로고
    • Balance between DBT/CKIepsilon kinase and protein phosphatase activities regulate phosphorylation and stability of Drosophila CLOCK protein
    • Kim EY, Edery I. 2006. Balance between DBT/CKIepsilon kinase and protein phosphatase activities regulate phosphorylation and stability of Drosophila CLOCK protein. Proc Natl Acad Sci USA 103: 6178-83.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 6178-6183
    • Kim, E.Y.1    Edery, I.2
  • 107
    • 84874772651 scopus 로고    scopus 로고
    • FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes
    • Hirano A, Yumimoto K, Tsunematsu R, Matsumoto M, et al. 2013. FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 152: 1106-18.
    • (2013) Cell , vol.152 , pp. 1106-1118
    • Hirano, A.1    Yumimoto, K.2    Tsunematsu, R.3    Matsumoto, M.4
  • 108
    • 23944470712 scopus 로고    scopus 로고
    • Circadian clock control by SUMOylation of BM AL1
    • Cardone L, Hirayama J, Giordano F, Tamaru T, et al. 2005. Circadian clock control by SUMOylation of BM AL1. Science 309: 1390-4.
    • (2005) Science , vol.309 , pp. 1390-1394
    • Cardone, L.1    Hirayama, J.2    Giordano, F.3    Tamaru, T.4
  • 110
    • 84864442776 scopus 로고    scopus 로고
    • CircadiOmics: integrating circadian genomics, transcriptomics, proteomics, and metabolomics
    • Patel VR, Eckel-Mahan K, Sassone-Corsi P, Baldi P. 2012. CircadiOmics: integrating circadian genomics, transcriptomics, proteomics, and metabolomics. Nat Methods 9: 772-3.
    • (2012) Nat Methods , vol.9 , pp. 772-773
    • Patel, V.R.1    Eckel-Mahan, K.2    Sassone-Corsi, P.3    Baldi, P.4
  • 111
    • 84909592563 scopus 로고    scopus 로고
    • A circadian gene expression atlas in mammals: implications for biology and medicine
    • Zhang R, Lahens NF, Ballance HI, Hughes ME, et al. 2014. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci USA 111: 16219-24.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 16219-16224
    • Zhang, R.1    Lahens, N.F.2    Ballance, H.I.3    Hughes, M.E.4
  • 113
    • 0028935939 scopus 로고
    • Restoration of brain energy metabolism as the function of sleep
    • Benington JH, Heller HC. 1995. Restoration of brain energy metabolism as the function of sleep. Prog Neurobiol 45: 347-60.
    • (1995) Prog Neurobiol , vol.45 , pp. 347-360
    • Benington, J.H.1    Heller, H.C.2
  • 114
    • 53049092757 scopus 로고    scopus 로고
    • Metabolic consequences of sleep and sleep loss
    • Van CE, Spiegel K, Tasali E, Leproult R. 2008. Metabolic consequences of sleep and sleep loss. Sleep Med 9: S23-8.
    • (2008) Sleep Med , vol.9 , pp. S23-S28
    • Van, C.E.1    Spiegel, K.2    Tasali, E.3    Leproult, R.4
  • 115
    • 78049437320 scopus 로고    scopus 로고
    • PER2 controls lipid metabolism by direct regulation of PPARgamma
    • Grimaldi B, Bellet MM, Katada S, Astarita G, et al. 2010. PER2 controls lipid metabolism by direct regulation of PPARgamma. Cell Metab 12: 509-20.
    • (2010) Cell Metab , vol.12 , pp. 509-520
    • Grimaldi, B.1    Bellet, M.M.2    Katada, S.3    Astarita, G.4
  • 116
    • 0033560863 scopus 로고    scopus 로고
    • Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms
    • Van der Horst GT, Muijtjens M, Kobayashi K, Takano R, et al. 1999. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398: 627-30.
    • (1999) Nature , vol.398 , pp. 627-630
    • Van der Horst, G.T.1    Muijtjens, M.2    Kobayashi, K.3    Takano, R.4
  • 117
    • 37849007576 scopus 로고    scopus 로고
    • Regulation of poly(ADP-ribose) polymerase-1 (PARP-1) gene expression through the post-translational modification of Sp1: a nuclear target protein of PARP-1
    • Zaniolo K, Desnoyers S, Leclerc S, Guerin SL. 2007. Regulation of poly(ADP-ribose) polymerase-1 (PARP-1) gene expression through the post-translational modification of Sp1: a nuclear target protein of PARP-1. BMC Mol Biol 8: 96.
    • (2007) BMC Mol Biol , vol.8 , pp. 96
    • Zaniolo, K.1    Desnoyers, S.2    Leclerc, S.3    Guerin, S.L.4
  • 118
    • 33745931074 scopus 로고    scopus 로고
    • Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
    • Hallows WC, Lee S, Denu JM. 2006. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci USA 103: 10230-5.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 10230-10235
    • Hallows, W.C.1    Lee, S.2    Denu, J.M.3
  • 119
    • 70350128135 scopus 로고    scopus 로고
    • AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
    • Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, et al. 2009. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326: 437-40.
    • (2009) Science , vol.326 , pp. 437-440
    • Lamia, K.A.1    Sachdeva, U.M.2    DiTacchio, L.3    Williams, E.C.4
  • 120
    • 34249275727 scopus 로고    scopus 로고
    • Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism
    • Liu C, Li S, Liu T, Borjigin J, et al. 2007. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447: 477-81.
    • (2007) Nature , vol.447 , pp. 477-481
    • Liu, C.1    Li, S.2    Liu, T.3    Borjigin, J.4
  • 121
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
    • Rodgers JT, Lerin C, Haas W, Gygi SP, et al. 2005. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434: 113-8.
    • (2005) Nature , vol.434 , pp. 113-118
    • Rodgers, J.T.1    Lerin, C.2    Haas, W.3    Gygi, S.P.4
  • 122
    • 3343024625 scopus 로고    scopus 로고
    • Reciprocal regulation of haem biosynthesis and the circadian clock in mammals
    • Kaasik K, Lee CC. 2004. Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature 430: 467-71.
    • (2004) Nature , vol.430 , pp. 467-471
    • Kaasik, K.1    Lee, C.C.2
  • 123
    • 38949209515 scopus 로고    scopus 로고
    • Differential display of DNA-binding proteins reveals heat-shock factor 1 as a circadian transcription factor
    • Reinke H, Saini C, Fleury-Olela F, Dibner C, et al. 2008. Differential display of DNA-binding proteins reveals heat-shock factor 1 as a circadian transcription factor. Genes Dev 22: 331-45.
    • (2008) Genes Dev , vol.22 , pp. 331-345
    • Reinke, H.1    Saini, C.2    Fleury-Olela, F.3    Dibner, C.4
  • 124
    • 44249094901 scopus 로고    scopus 로고
    • CAMP-dependent signaling as a core component of the mammalian circadian pacemaker
    • O'Neill JS, Maywood ES, Chesham JE, Takahashi JS, et al. 2008. CAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320: 949-53.
    • (2008) Science , vol.320 , pp. 949-953
    • O'Neill, J.S.1    Maywood, E.S.2    Chesham, J.E.3    Takahashi, J.S.4
  • 125
    • 78650090920 scopus 로고    scopus 로고
    • CREB influences timing and entrainment of the SCN circadian clock
    • Lee B, Li A, Hansen KF, Cao R, et al. 2010. CREB influences timing and entrainment of the SCN circadian clock. J Biol Rhythms 25: 410-20.
    • (2010) J Biol Rhythms , vol.25 , pp. 410-420
    • Lee, B.1    Li, A.2    Hansen, K.F.3    Cao, R.4
  • 126
    • 12144290563 scopus 로고    scopus 로고
    • Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
    • Brunet A, Sweeney LB, Sturgill JF, Chua KF, et al. 2004. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303: 2011-5.
    • (2004) Science , vol.303 , pp. 2011-2015
    • Brunet, A.1    Sweeney, L.B.2    Sturgill, J.F.3    Chua, K.F.4
  • 127
    • 20144365700 scopus 로고    scopus 로고
    • Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes
    • Frescas D, Valenti L, Accili D. 2005. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem 280: 20589-95.
    • (2005) J Biol Chem , vol.280 , pp. 20589-20595
    • Frescas, D.1    Valenti, L.2    Accili, D.3
  • 128
    • 4143142003 scopus 로고    scopus 로고
    • A functional genomics strategy reveals Rora as a component of the mammalian circadian clock
    • Sato TK, Panda S, Miraglia LJ, Reyes TM, et al. 2004. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43: 527-37.
    • (2004) Neuron , vol.43 , pp. 527-537
    • Sato, T.K.1    Panda, S.2    Miraglia, L.J.3    Reyes, T.M.4
  • 129
    • 76749139528 scopus 로고    scopus 로고
    • The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors
    • Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, Albrecht U. 2010. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev 24: 345-57.
    • (2010) Genes Dev , vol.24 , pp. 345-357
    • Schmutz, I.1    Ripperger, J.A.2    Baeriswyl-Aebischer, S.3    Albrecht, U.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.