-
1
-
-
77958504804
-
Clocks not winding down: unravelling circadian networks
-
Zhang E.E., Kay S.A. Clocks not winding down: unravelling circadian networks. Nat. Rev. Mol. Cell Biol. 2010, 11:764-776.
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 764-776
-
-
Zhang, E.E.1
Kay, S.A.2
-
2
-
-
17244373578
-
Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro
-
Nakajima M., et al. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 2005, 308:414-415.
-
(2005)
Science
, vol.308
, pp. 414-415
-
-
Nakajima, M.1
-
3
-
-
12244296161
-
No transcription-translation feedback in circadian rhythm of KaiC phosphorylation
-
Tomita J., et al. No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 2005, 307:251-254.
-
(2005)
Science
, vol.307
, pp. 251-254
-
-
Tomita, J.1
-
4
-
-
79251566511
-
Circadian clocks in human red blood cells
-
O'Neill J.S., Reddy A.B. Circadian clocks in human red blood cells. Nature 2011, 469:498-503.
-
(2011)
Nature
, vol.469
, pp. 498-503
-
-
O'Neill, J.S.1
Reddy, A.B.2
-
5
-
-
79251539603
-
Circadian rhythms persist without transcription in a eukaryote
-
O'Neill J.S., et al. Circadian rhythms persist without transcription in a eukaryote. Nature 2011, 469:554-558.
-
(2011)
Nature
, vol.469
, pp. 554-558
-
-
O'Neill, J.S.1
-
6
-
-
84861452257
-
Peroxiredoxins are conserved markers of circadian rhythms
-
Edgar R.S., et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature 2012, 485:459-464.
-
(2012)
Nature
, vol.485
, pp. 459-464
-
-
Edgar, R.S.1
-
7
-
-
0037007625
-
Extensive and divergent circadian gene expression in liver and heart
-
Storch K.F., et al. Extensive and divergent circadian gene expression in liver and heart. Nature 2002, 417:78-83.
-
(2002)
Nature
, vol.417
, pp. 78-83
-
-
Storch, K.F.1
-
8
-
-
18444414586
-
Coordinated transcription of key pathways in the mouse by the circadian clock
-
Panda S., et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002, 109:307-320.
-
(2002)
Cell
, vol.109
, pp. 307-320
-
-
Panda, S.1
-
9
-
-
0036848612
-
Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior
-
Ceriani M.F., et al. Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior. J. Neurosci. 2002, 22:9305-9319.
-
(2002)
J. Neurosci.
, vol.22
, pp. 9305-9319
-
-
Ceriani, M.F.1
-
10
-
-
51749110466
-
Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development
-
Covington M.F., et al. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol. 2008, 9:R130.
-
(2008)
Genome Biol.
, vol.9
-
-
Covington, M.F.1
-
11
-
-
0034671791
-
Orchestrated transcription of key pathways in Arabidopsis by the circadian clock
-
Harmer S.L., et al. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 2000, 290:2110-2113.
-
(2000)
Science
, vol.290
, pp. 2110-2113
-
-
Harmer, S.L.1
-
12
-
-
77951935233
-
Orchestrated transcription of biological processes in the marine picoeukaryote Ostreococcus exposed to light/dark cycles
-
Monnier A., et al. Orchestrated transcription of biological processes in the marine picoeukaryote Ostreococcus exposed to light/dark cycles. BMC Genomics 2010, 11:192.
-
(2010)
BMC Genomics
, vol.11
, pp. 192
-
-
Monnier, A.1
-
13
-
-
76049087668
-
Oscillations in supercoiling drive circadian gene expression in cyanobacteria
-
Vijayan V., et al. Oscillations in supercoiling drive circadian gene expression in cyanobacteria. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:22564-22568.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 22564-22568
-
-
Vijayan, V.1
-
14
-
-
84860264490
-
Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta
-
Cho H., et al. Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta. Nature 2012, 485:123-127.
-
(2012)
Nature
, vol.485
, pp. 123-127
-
-
Cho, H.1
-
15
-
-
84859508042
-
Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator
-
Huang W., et al. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science 2012, 336:75-79.
-
(2012)
Science
, vol.336
, pp. 75-79
-
-
Huang, W.1
-
16
-
-
84857383458
-
Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor
-
Gendron J.M., et al. Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:3167-3172.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 3167-3172
-
-
Gendron, J.M.1
-
17
-
-
33747369652
-
Circadian rhythms in Neurospora crassa and other filamentous fungi
-
Liu Y., Bell-Pedersen D. Circadian rhythms in Neurospora crassa and other filamentous fungi. Eukaryot. Cell 2006, 5:1184-1193.
-
(2006)
Eukaryot. Cell
, vol.5
, pp. 1184-1193
-
-
Liu, Y.1
Bell-Pedersen, D.2
-
18
-
-
32044466225
-
Phosphorylation-dependent maturation of Neurospora circadian clock protein from a nuclear repressor toward a cytoplasmic activator
-
Schafmeier T., et al. Phosphorylation-dependent maturation of Neurospora circadian clock protein from a nuclear repressor toward a cytoplasmic activator. Genes Dev. 2006, 20:297-306.
-
(2006)
Genes Dev.
, vol.20
, pp. 297-306
-
-
Schafmeier, T.1
-
19
-
-
70349330769
-
Post-translational modifications in circadian rhythms
-
Mehra A., et al. Post-translational modifications in circadian rhythms. Trends Biochem. Sci. 2009, 34:483-490.
-
(2009)
Trends Biochem. Sci.
, vol.34
, pp. 483-490
-
-
Mehra, A.1
-
20
-
-
52149109334
-
The genetics of mammalian circadian order and disorder: implications for physiology and disease
-
Takahashi J.S., et al. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat. Rev. Genet. 2008, 9:764-775.
-
(2008)
Nat. Rev. Genet.
, vol.9
, pp. 764-775
-
-
Takahashi, J.S.1
-
21
-
-
70349452319
-
CKIepsilon/delta-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock
-
Isojima Y., et al. CKIepsilon/delta-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:15744-15749.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 15744-15749
-
-
Isojima, Y.1
-
22
-
-
65549088967
-
A role for casein kinase 2 in the mechanism underlying circadian temperature compensation
-
Mehra A., et al. A role for casein kinase 2 in the mechanism underlying circadian temperature compensation. Cell 2009, 137:749-760.
-
(2009)
Cell
, vol.137
, pp. 749-760
-
-
Mehra, A.1
-
23
-
-
50849136513
-
Cellular circadian pacemaking and the role of cytosolic rhythms
-
Hastings M.H., et al. Cellular circadian pacemaking and the role of cytosolic rhythms. Curr. Biol. 2008, 18:R805-R815.
-
(2008)
Curr. Biol.
, vol.18
-
-
Hastings, M.H.1
-
24
-
-
3242740966
-
A nitrate-induced frq-less oscillator in Neurospora crassa
-
Christensen M.K., et al. A nitrate-induced frq-less oscillator in Neurospora crassa. J. Biol. Rhythms 2004, 19:280-286.
-
(2004)
J. Biol. Rhythms
, vol.19
, pp. 280-286
-
-
Christensen, M.K.1
-
25
-
-
33644603280
-
Transcriptional feedback oscillators: maybe, maybe not
-
Lakin-Thomas P.L. Transcriptional feedback oscillators: maybe, maybe not. J. Biol. Rhythms 2006, 21:83-92.
-
(2006)
J. Biol. Rhythms
, vol.21
, pp. 83-92
-
-
Lakin-Thomas, P.L.1
-
26
-
-
0344823908
-
Multiple oscillators regulate circadian gene expression in Neurospora
-
Correa A., et al. Multiple oscillators regulate circadian gene expression in Neurospora. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:13597-13602.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 13597-13602
-
-
Correa, A.1
-
27
-
-
0037134445
-
Genome-wide transcriptional orchestration of circadian rhythms in Drosophila
-
Ueda H.R., et al. Genome-wide transcriptional orchestration of circadian rhythms in Drosophila. J. Biol. Chem. 2002, 277:14048-14052.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 14048-14052
-
-
Ueda, H.R.1
-
28
-
-
0037047054
-
Influence of the period-dependent circadian clock on diurnal, circadian, and aperiodic gene expression in Drosophila melanogaster
-
Lin Y., et al. Influence of the period-dependent circadian clock on diurnal, circadian, and aperiodic gene expression in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:9562-9567.
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 9562-9567
-
-
Lin, Y.1
-
29
-
-
62549090648
-
The methamphetamine-sensitive circadian oscillator does not employ canonical clock genes
-
Mohawk J.A., et al. The methamphetamine-sensitive circadian oscillator does not employ canonical clock genes. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:3519-3524.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 3519-3524
-
-
Mohawk, J.A.1
-
30
-
-
37549018348
-
Ordered phosphorylation governs oscillation of a three-protein circadian clock
-
Rust M.J., et al. Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 2007, 318:809-812.
-
(2007)
Science
, vol.318
, pp. 809-812
-
-
Rust, M.J.1
-
31
-
-
0034602708
-
Nucleotide binding and autophosphorylation of the clock protein KaiC as a circadian timing process of cyanobacteria
-
Nishiwaki T., et al. Nucleotide binding and autophosphorylation of the clock protein KaiC as a circadian timing process of cyanobacteria. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:495-499.
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 495-499
-
-
Nishiwaki, T.1
-
32
-
-
77957054558
-
Intermolecular associations determine the dynamics of the circadian KaiABC oscillator
-
Qin X., et al. Intermolecular associations determine the dynamics of the circadian KaiABC oscillator. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:14805-14810.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 14805-14810
-
-
Qin, X.1
-
33
-
-
3042637775
-
Crystal structure of the C-terminal clock-oscillator domain of the cyanobacterial KaiA protein
-
Uzumaki T., et al. Crystal structure of the C-terminal clock-oscillator domain of the cyanobacterial KaiA protein. Nat. Struct. Mol. Biol. 2004, 11:623-631.
-
(2004)
Nat. Struct. Mol. Biol.
, vol.11
, pp. 623-631
-
-
Uzumaki, T.1
-
34
-
-
0037180437
-
Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: a potential clock input mechanism
-
Williams S.B., et al. Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: a potential clock input mechanism. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:15357-15362.
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 15357-15362
-
-
Williams, S.B.1
-
35
-
-
0038219594
-
Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC
-
Xu Y., et al. Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC. EMBO J. 2003, 22:2117-2126.
-
(2003)
EMBO J.
, vol.22
, pp. 2117-2126
-
-
Xu, Y.1
-
36
-
-
0037881861
-
KaiB functions as an attenuator of KaiC phosphorylation in the cyanobacterial circadian clock system
-
Kitayama Y., et al. KaiB functions as an attenuator of KaiC phosphorylation in the cyanobacterial circadian clock system. EMBO J. 2003, 22:2127-2134.
-
(2003)
EMBO J.
, vol.22
, pp. 2127-2134
-
-
Kitayama, Y.1
-
37
-
-
33645817722
-
The pseudo-receiver domain of CikA regulates the cyanobacterial circadian input pathway
-
Zhang X., et al. The pseudo-receiver domain of CikA regulates the cyanobacterial circadian input pathway. Mol. Microbiol. 2006, 60:658-668.
-
(2006)
Mol. Microbiol.
, vol.60
, pp. 658-668
-
-
Zhang, X.1
-
38
-
-
0034604449
-
CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock
-
Schmitz O., et al. CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. Science 2000, 289:765-768.
-
(2000)
Science
, vol.289
, pp. 765-768
-
-
Schmitz, O.1
-
39
-
-
77950528207
-
The KaiA protein of the cyanobacterial circadian oscillator is modulated by a redox-active cofactor
-
Wood T.L., et al. The KaiA protein of the cyanobacterial circadian oscillator is modulated by a redox-active cofactor. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:5804-5809.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 5804-5809
-
-
Wood, T.L.1
-
40
-
-
69549101750
-
Cyanobacterial daily life with Kai-based circadian and diurnal genome-wide transcriptional control in Synechococcus elongatus
-
Ito H., et al. Cyanobacterial daily life with Kai-based circadian and diurnal genome-wide transcriptional control in Synechococcus elongatus. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:14168-14173.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 14168-14173
-
-
Ito, H.1
-
41
-
-
36049042660
-
ATPase activity of KaiC determines the basic timing for circadian clock of cyanobacteria
-
Terauchi K., et al. ATPase activity of KaiC determines the basic timing for circadian clock of cyanobacteria. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:16377-16381.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 16377-16381
-
-
Terauchi, K.1
-
42
-
-
0034646509
-
A kaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria
-
Iwasaki H., et al. A kaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria. Cell 2000, 101:223-233.
-
(2000)
Cell
, vol.101
, pp. 223-233
-
-
Iwasaki, H.1
-
43
-
-
33747061828
-
A KaiC-associating SasA-RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria
-
Takai N., et al. A KaiC-associating SasA-RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:12109-12114.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 12109-12114
-
-
Takai, N.1
-
44
-
-
33846150032
-
LabA: a novel gene required for negative feedback regulation of the cyanobacterial circadian clock protein KaiC
-
Taniguchi Y., et al. labA: a novel gene required for negative feedback regulation of the cyanobacterial circadian clock protein KaiC. Genes Dev. 2007, 21:60-70.
-
(2007)
Genes Dev.
, vol.21
, pp. 60-70
-
-
Taniguchi, Y.1
-
45
-
-
80053082769
-
Circadian transcriptional regulation by the posttranslational oscillator without de novo clock gene expression in Synechococcus
-
Hosokawa N., et al. Circadian transcriptional regulation by the posttranslational oscillator without de novo clock gene expression in Synechococcus. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:15396-15401.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 15396-15401
-
-
Hosokawa, N.1
-
46
-
-
0029790052
-
Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24hours
-
Mori T., et al. Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24hours. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:10183-10188.
-
(1996)
Proc. Natl. Acad. Sci. U.S.A.
, vol.93
, pp. 10183-10188
-
-
Mori, T.1
-
47
-
-
76749111535
-
Elevated ATPase activity of KaiC applies a circadian checkpoint on cell division in Synechococcus elongatus
-
Dong G., et al. Elevated ATPase activity of KaiC applies a circadian checkpoint on cell division in Synechococcus elongatus. Cell 2010, 140:529-539.
-
(2010)
Cell
, vol.140
, pp. 529-539
-
-
Dong, G.1
-
48
-
-
64149085448
-
Typical 2-Cys peroxiredoxins - structures, mechanisms and functions
-
Hall A., et al. Typical 2-Cys peroxiredoxins - structures, mechanisms and functions. FEBS J. 2009, 276:2469-2477.
-
(2009)
FEBS J.
, vol.276
, pp. 2469-2477
-
-
Hall, A.1
-
49
-
-
33744515807
-
Circadian orchestration of the hepatic proteome
-
Reddy A.B., et al. Circadian orchestration of the hepatic proteome. Curr. Biol. 2006, 16:1107-1115.
-
(2006)
Curr. Biol.
, vol.16
, pp. 1107-1115
-
-
Reddy, A.B.1
-
50
-
-
67650873481
-
The continuing puzzle of the great oxidation event
-
Sessions A.L., et al. The continuing puzzle of the great oxidation event. Curr. Biol. 2009, 19:R567-R574.
-
(2009)
Curr. Biol.
, vol.19
-
-
Sessions, A.L.1
-
51
-
-
0035958593
-
Circadian clocks: running on redox
-
Merrow M., Roenneberg T. Circadian clocks: running on redox. Cell 2001, 106:141-143.
-
(2001)
Cell
, vol.106
, pp. 141-143
-
-
Merrow, M.1
Roenneberg, T.2
-
52
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Asher G., et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008, 134:317-328.
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
-
53
-
-
47549088250
-
+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008, 134:329-340.
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
-
54
-
-
0035997367
-
Metabolism and the control of circadian rhythms
-
Rutter J., et al. Metabolism and the control of circadian rhythms. Annu. Rev. Biochem. 2002, 71:307-331.
-
(2002)
Annu. Rev. Biochem.
, vol.71
, pp. 307-331
-
-
Rutter, J.1
-
55
-
-
77954703765
-
Coupling of a core post-translational pacemaker to a slave transcription/translation feedback loop in a circadian system
-
Qin X., et al. Coupling of a core post-translational pacemaker to a slave transcription/translation feedback loop in a circadian system. PLoS Biol. 2010, 8:e1000394.
-
(2010)
PLoS Biol.
, vol.8
-
-
Qin, X.1
-
56
-
-
79957491160
-
Proteasome function is required for biological timing throughout the twenty-four hour cycle
-
van Ooijen G., et al. Proteasome function is required for biological timing throughout the twenty-four hour cycle. Curr. Biol. 2011, 21:869-875.
-
(2011)
Curr. Biol.
, vol.21
, pp. 869-875
-
-
van Ooijen, G.1
-
57
-
-
78649873439
-
Coupling governs entrainment range of circadian clocks
-
Abraham U., et al. Coupling governs entrainment range of circadian clocks. Mol. Syst. Biol. 2010, 6:438.
-
(2010)
Mol. Syst. Biol.
, vol.6
, pp. 438
-
-
Abraham, U.1
-
58
-
-
0035919479
-
Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors
-
Rutter J., et al. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 2001, 293:510-514.
-
(2001)
Science
, vol.293
, pp. 510-514
-
-
Rutter, J.1
-
59
-
-
0033389661
-
Circadian systems and metabolism
-
Roenneberg T., Merrow M. Circadian systems and metabolism. J. Biol. Rhythms 1999, 14:449-459.
-
(1999)
J. Biol. Rhythms
, vol.14
, pp. 449-459
-
-
Roenneberg, T.1
Merrow, M.2
-
60
-
-
70450173299
-
Weather and seasons together demand complex biological clocks
-
Troein C., et al. Weather and seasons together demand complex biological clocks. Curr. Biol. 2009, 19:1961-1964.
-
(2009)
Curr. Biol.
, vol.19
, pp. 1961-1964
-
-
Troein, C.1
-
61
-
-
46849090495
-
Robust, tunable biological oscillations from interlinked positive and negative feedback loops
-
Tsai T.Y., et al. Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 2008, 321:126-129.
-
(2008)
Science
, vol.321
, pp. 126-129
-
-
Tsai, T.Y.1
-
62
-
-
33747111430
-
Design principles underlying circadian clocks
-
Rand D.A., et al. Design principles underlying circadian clocks. J. R. Soc. Interface 2004, 1:119-130.
-
(2004)
J. R. Soc. Interface
, vol.1
, pp. 119-130
-
-
Rand, D.A.1
-
63
-
-
49549094042
-
Sloppiness, robustness, and evolvability in systems biology
-
Daniels B.C., et al. Sloppiness, robustness, and evolvability in systems biology. Curr. Opin. Biotechnol. 2008, 19:389-395.
-
(2008)
Curr. Opin. Biotechnol.
, vol.19
, pp. 389-395
-
-
Daniels, B.C.1
-
64
-
-
46249083801
-
Mapping global sensitivity of cellular network dynamics: sensitivity heat maps and a global summation law
-
Rand D.A. Mapping global sensitivity of cellular network dynamics: sensitivity heat maps and a global summation law. J. R. Soc. Interface 2008, 5(Suppl. 1):S59-S69.
-
(2008)
J. R. Soc. Interface
, vol.5
, Issue.SUPPL. 1
-
-
Rand, D.A.1
-
65
-
-
30444453830
-
Uncovering the design principles of circadian clocks: mathematical analysis of flexibility and evolutionary goals
-
Rand D.A., et al. Uncovering the design principles of circadian clocks: mathematical analysis of flexibility and evolutionary goals. J. Theor. Biol. 2006, 238:616-635.
-
(2006)
J. Theor. Biol.
, vol.238
, pp. 616-635
-
-
Rand, D.A.1
-
66
-
-
77955381783
-
Robustness from flexibility in the fungal circadian clock
-
Akman O.E., et al. Robustness from flexibility in the fungal circadian clock. BMC Syst. Biol. 2010, 4:88.
-
(2010)
BMC Syst. Biol.
, vol.4
, pp. 88
-
-
Akman, O.E.1
-
67
-
-
79954991675
-
Multiple light inputs to a simple clock circuit allow complex biological rhythms
-
Troein C., et al. Multiple light inputs to a simple clock circuit allow complex biological rhythms. Plant J. 2011, 66:375-385.
-
(2011)
Plant J.
, vol.66
, pp. 375-385
-
-
Troein, C.1
-
68
-
-
41849144808
-
Modeling the effects of cell cycle M-phase transcriptional inhibition on circadian oscillation
-
Kang B., et al. Modeling the effects of cell cycle M-phase transcriptional inhibition on circadian oscillation. PLoS Comput. Biol. 2008, 4:e1000019.
-
(2008)
PLoS Comput. Biol.
, vol.4
-
-
Kang, B.1
-
69
-
-
34250637942
-
An allosteric model of circadian KaiC phosphorylation
-
van Zon J.S., et al. An allosteric model of circadian KaiC phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:7420-7425.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 7420-7425
-
-
van Zon, J.S.1
-
70
-
-
78651071941
-
Robust circadian clocks from coupled protein-modification and transcription-translation cycles
-
Zwicker D., et al. Robust circadian clocks from coupled protein-modification and transcription-translation cycles. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:22540-22545.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 22540-22545
-
-
Zwicker, D.1
-
71
-
-
0035088750
-
Independence of circadian timing from cell division in cyanobacteria
-
Mori T., Johnson C.H. Independence of circadian timing from cell division in cyanobacteria. J. Bacteriol. 2001, 183:2439-2444.
-
(2001)
J. Bacteriol.
, vol.183
, pp. 2439-2444
-
-
Mori, T.1
Johnson, C.H.2
-
72
-
-
65549169528
-
Quantitative proteomics reveals a dynamic interactome and phase-specific phosphorylation in the Neurospora circadian clock
-
Baker C.L., et al. Quantitative proteomics reveals a dynamic interactome and phase-specific phosphorylation in the Neurospora circadian clock. Mol. Cell 2009, 34:354-363.
-
(2009)
Mol. Cell
, vol.34
, pp. 354-363
-
-
Baker, C.L.1
-
73
-
-
70349136696
-
Phosphorylation modulates rapid nucleocytoplasmic shuttling and cytoplasmic accumulation of Neurospora clock protein FRQ on a circadian time scale
-
Diernfellner A.C., et al. Phosphorylation modulates rapid nucleocytoplasmic shuttling and cytoplasmic accumulation of Neurospora clock protein FRQ on a circadian time scale. Genes Dev. 2009, 23:2192-2200.
-
(2009)
Genes Dev.
, vol.23
, pp. 2192-2200
-
-
Diernfellner, A.C.1
-
74
-
-
80052227822
-
A new twist on clock protein phosphorylation: a conformational change leads to protein degradation
-
Menet J.S., Rosbash M. A new twist on clock protein phosphorylation: a conformational change leads to protein degradation. Mol. Cell 2011, 43:695-697.
-
(2011)
Mol. Cell
, vol.43
, pp. 695-697
-
-
Menet, J.S.1
Rosbash, M.2
-
75
-
-
83455225642
-
A global circadian repressor controls antiphasic expression of metabolic genes in Neurospora
-
Sancar G., et al. A global circadian repressor controls antiphasic expression of metabolic genes in Neurospora. Mol. Cell 2011, 44:687-697.
-
(2011)
Mol. Cell
, vol.44
, pp. 687-697
-
-
Sancar, G.1
-
76
-
-
79961004102
-
Kinetics of doubletime kinase-dependent degradation of the Drosophila period protein
-
Syed S., et al. Kinetics of doubletime kinase-dependent degradation of the Drosophila period protein. J. Biol. Chem. 2011, 286:27654-27662.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 27654-27662
-
-
Syed, S.1
-
77
-
-
79955540602
-
NEMO/NLK phosphorylates PERIOD to initiate a time-delay phosphorylation circuit that sets circadian clock speed
-
Chiu J.C., et al. NEMO/NLK phosphorylates PERIOD to initiate a time-delay phosphorylation circuit that sets circadian clock speed. Cell 2011, 145:357-370.
-
(2011)
Cell
, vol.145
, pp. 357-370
-
-
Chiu, J.C.1
-
78
-
-
79955544537
-
NEMO kinase contributes to core period determination by slowing the pace of the Drosophila circadian oscillator
-
Yu W., et al. NEMO kinase contributes to core period determination by slowing the pace of the Drosophila circadian oscillator. Curr. Biol. 2011, 21:756-761.
-
(2011)
Curr. Biol.
, vol.21
, pp. 756-761
-
-
Yu, W.1
-
79
-
-
58849156810
-
Ribosomal s6 kinase cooperates with casein kinase 2 to modulate the Drosophila circadian molecular oscillator
-
Akten B., et al. Ribosomal s6 kinase cooperates with casein kinase 2 to modulate the Drosophila circadian molecular oscillator. J. Neurosci. 2009, 29:466-475.
-
(2009)
J. Neurosci.
, vol.29
, pp. 466-475
-
-
Akten, B.1
-
80
-
-
84863230299
-
A role for O-GlcNAcylation in setting circadian clock speed
-
Kim E.Y., et al. A role for O-GlcNAcylation in setting circadian clock speed. Genes Dev. 2012, 26:490-502.
-
(2012)
Genes Dev.
, vol.26
, pp. 490-502
-
-
Kim, E.Y.1
-
81
-
-
70350128135
-
AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
-
Lamia K.A., et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 2009, 326:437-440.
-
(2009)
Science
, vol.326
, pp. 437-440
-
-
Lamia, K.A.1
-
82
-
-
75649127967
-
Identification of RACK1 and protein kinase Calpha as integral components of the mammalian circadian clock
-
Robles M.S., et al. Identification of RACK1 and protein kinase Calpha as integral components of the mammalian circadian clock. Science 2010, 327:463-466.
-
(2010)
Science
, vol.327
, pp. 463-466
-
-
Robles, M.S.1
-
83
-
-
77949363859
-
DYRK1A and glycogen synthase kinase 3beta, a dual-kinase mechanism directing proteasomal degradation of CRY2 for circadian timekeeping
-
Kurabayashi N., et al. DYRK1A and glycogen synthase kinase 3beta, a dual-kinase mechanism directing proteasomal degradation of CRY2 for circadian timekeeping. Mol. Cell. Biol. 2010, 30:1757-1768.
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 1757-1768
-
-
Kurabayashi, N.1
-
84
-
-
80455140318
-
A role for protein kinase casein Kinase2 alpha-subunits in the Arabidopsis circadian clock
-
Lu S.X., et al. A role for protein kinase casein Kinase2 alpha-subunits in the Arabidopsis circadian clock. Plant Physiol. 2011, 157:1537-1545.
-
(2011)
Plant Physiol.
, vol.157
, pp. 1537-1545
-
-
Lu, S.X.1
-
85
-
-
34548513770
-
Altered oscillator function affects clock resonance and is responsible for the reduced day-length sensitivity of CKB4 overexpressing plants
-
Portoles S., Mas P. Altered oscillator function affects clock resonance and is responsible for the reduced day-length sensitivity of CKB4 overexpressing plants. Plant J. 2007, 51:966-977.
-
(2007)
Plant J.
, vol.51
, pp. 966-977
-
-
Portoles, S.1
Mas, P.2
-
86
-
-
78649714225
-
The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis
-
Portoles S., Mas P. The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis. PLoS Genet. 2010, 6:e1001201.
-
(2010)
PLoS Genet.
, vol.6
-
-
Portoles, S.1
Mas, P.2
-
87
-
-
80052228191
-
Interaction of Arabidopsis DET1 with CCA1 and LHY in mediating transcriptional repression in the plant circadian clock
-
Lau O.S., et al. Interaction of Arabidopsis DET1 with CCA1 and LHY in mediating transcriptional repression in the plant circadian clock. Mol. Cell 2011, 43:703-712.
-
(2011)
Mol. Cell
, vol.43
, pp. 703-712
-
-
Lau, O.S.1
-
88
-
-
49249122160
-
CUL1 regulates TOC1 protein stability in the Arabidopsis circadian clock
-
Harmon F., et al. CUL1 regulates TOC1 protein stability in the Arabidopsis circadian clock. Plant J. 2008, 55:568-579.
-
(2008)
Plant J.
, vol.55
, pp. 568-579
-
-
Harmon, F.1
-
89
-
-
0007765997
-
Persistence of a photosynthetic rhythm in enucleated Acetabularia
-
Sweeney B.M., Haxo F.T. Persistence of a photosynthetic rhythm in enucleated Acetabularia. Science 1961, 134:1361-1363.
-
(1961)
Science
, vol.134
, pp. 1361-1363
-
-
Sweeney, B.M.1
Haxo, F.T.2
-
90
-
-
0026167774
-
A re-examination of the role of the nucleus in generating the circadian rhythm in Acetabularia
-
Woolum J.C. A re-examination of the role of the nucleus in generating the circadian rhythm in Acetabularia. J. Biol. Rhythms 1991, 6:129-136.
-
(1991)
J. Biol. Rhythms
, vol.6
, pp. 129-136
-
-
Woolum, J.C.1
-
91
-
-
0039209611
-
Endogenous circadian rhythm in cytoplasm of Acetabularia: influence of the nucleus
-
Schweiger E., et al. Endogenous circadian rhythm in cytoplasm of Acetabularia: influence of the nucleus. Science 1964, 146:658-659.
-
(1964)
Science
, vol.146
, pp. 658-659
-
-
Schweiger, E.1
-
92
-
-
0013899471
-
A circadian rhythm of mating type reversals in Paramecium multimicronucleatum, syngen 2, and its genetic control
-
Barnett A. A circadian rhythm of mating type reversals in Paramecium multimicronucleatum, syngen 2, and its genetic control. J. Cell. Physiol. 1966, 67:239-270.
-
(1966)
J. Cell. Physiol.
, vol.67
, pp. 239-270
-
-
Barnett, A.1
-
93
-
-
0030035254
-
Circadian clocks in prokaryotes
-
Johnson C.H., et al. Circadian clocks in prokaryotes. Mol. Microbiol. 1996, 21:5-11.
-
(1996)
Mol. Microbiol.
, vol.21
, pp. 5-11
-
-
Johnson, C.H.1
-
94
-
-
0031032072
-
Circadian rhythms in rapidly dividing cyanobacteria
-
Kondo T., et al. Circadian rhythms in rapidly dividing cyanobacteria. Science 1997, 275:224-227.
-
(1997)
Science
, vol.275
, pp. 224-227
-
-
Kondo, T.1
-
95
-
-
0017196098
-
2+-dependent ATPase activity in human red blood cell membranes in vitro
-
2+-dependent ATPase activity in human red blood cell membranes in vitro. Biochem. Biophys. Res. Commun. 1976, 71:1269-1272.
-
(1976)
Biochem. Biophys. Res. Commun.
, vol.71
, pp. 1269-1272
-
-
Cornelius, G.1
Rensing, L.2
-
96
-
-
10444290712
-
Membrane electrical excitability is necessary for the free-running larval Drosophila circadian clock
-
Nitabach M.N., et al. Membrane electrical excitability is necessary for the free-running larval Drosophila circadian clock. J. Neurobiol. 2005, 62:1-13.
-
(2005)
J. Neurobiol.
, vol.62
, pp. 1-13
-
-
Nitabach, M.N.1
-
97
-
-
16844382553
-
Membranes, ions, and clocks: testing the Njus-Sulzman-Hastings model of the circadian oscillator
-
Nitabach M.N., et al. Membranes, ions, and clocks: testing the Njus-Sulzman-Hastings model of the circadian oscillator. Methods Enzymol. 2005, 393:682-693.
-
(2005)
Methods Enzymol.
, vol.393
, pp. 682-693
-
-
Nitabach, M.N.1
-
98
-
-
0037123779
-
Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock
-
Nitabach M.N., et al. Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock. Cell 2002, 109:485-495.
-
(2002)
Cell
, vol.109
, pp. 485-495
-
-
Nitabach, M.N.1
-
99
-
-
0026496703
-
Stopping the circadian pacemaker with inhibitors of protein synthesis
-
Khalsa S.B., et al. Stopping the circadian pacemaker with inhibitors of protein synthesis. Proc. Natl. Acad. Sci. U.S.A. 1992, 89:10862-10866.
-
(1992)
Proc. Natl. Acad. Sci. U.S.A.
, vol.89
, pp. 10862-10866
-
-
Khalsa, S.B.1
-
100
-
-
0029839113
-
Evidence for a central role of transcription in the timing mechanism of a circadian clock
-
Khalsa S.B., et al. Evidence for a central role of transcription in the timing mechanism of a circadian clock. Am. J. Physiol. 1996, 271:C1646-C1651.
-
(1996)
Am. J. Physiol.
, vol.271
-
-
Khalsa, S.B.1
|