메뉴 건너뛰기




Volumn 37, Issue 11, 2012, Pages 484-492

Non-transcriptional oscillators in circadian timekeeping

Author keywords

Biological rhythms; Circadian clock; Coupled oscillators; Peroxiredoxin; Protein modification; Robustness

Indexed keywords

CASEIN KINASE I; CASEIN KINASE II; CRYPTOCHROME; CYSTEINE; KAINIC ACID; MEMBRANE PROTEIN; PER1 PROTEIN; PEROXIREDOXIN; PROTEIN KAIC; PROTEIN TIMELESS; SIRTUIN 1; THIOREDOXIN; TRANSCRIPTION FACTOR ARNTL; TRANSCRIPTION FACTOR CLOCK; UNCLASSIFIED DRUG;

EID: 84867905300     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2012.07.006     Document Type: Review
Times cited : (56)

References (100)
  • 1
    • 77958504804 scopus 로고    scopus 로고
    • Clocks not winding down: unravelling circadian networks
    • Zhang E.E., Kay S.A. Clocks not winding down: unravelling circadian networks. Nat. Rev. Mol. Cell Biol. 2010, 11:764-776.
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 764-776
    • Zhang, E.E.1    Kay, S.A.2
  • 2
    • 17244373578 scopus 로고    scopus 로고
    • Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro
    • Nakajima M., et al. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 2005, 308:414-415.
    • (2005) Science , vol.308 , pp. 414-415
    • Nakajima, M.1
  • 3
    • 12244296161 scopus 로고    scopus 로고
    • No transcription-translation feedback in circadian rhythm of KaiC phosphorylation
    • Tomita J., et al. No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 2005, 307:251-254.
    • (2005) Science , vol.307 , pp. 251-254
    • Tomita, J.1
  • 4
    • 79251566511 scopus 로고    scopus 로고
    • Circadian clocks in human red blood cells
    • O'Neill J.S., Reddy A.B. Circadian clocks in human red blood cells. Nature 2011, 469:498-503.
    • (2011) Nature , vol.469 , pp. 498-503
    • O'Neill, J.S.1    Reddy, A.B.2
  • 5
    • 79251539603 scopus 로고    scopus 로고
    • Circadian rhythms persist without transcription in a eukaryote
    • O'Neill J.S., et al. Circadian rhythms persist without transcription in a eukaryote. Nature 2011, 469:554-558.
    • (2011) Nature , vol.469 , pp. 554-558
    • O'Neill, J.S.1
  • 6
    • 84861452257 scopus 로고    scopus 로고
    • Peroxiredoxins are conserved markers of circadian rhythms
    • Edgar R.S., et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature 2012, 485:459-464.
    • (2012) Nature , vol.485 , pp. 459-464
    • Edgar, R.S.1
  • 7
    • 0037007625 scopus 로고    scopus 로고
    • Extensive and divergent circadian gene expression in liver and heart
    • Storch K.F., et al. Extensive and divergent circadian gene expression in liver and heart. Nature 2002, 417:78-83.
    • (2002) Nature , vol.417 , pp. 78-83
    • Storch, K.F.1
  • 8
    • 18444414586 scopus 로고    scopus 로고
    • Coordinated transcription of key pathways in the mouse by the circadian clock
    • Panda S., et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002, 109:307-320.
    • (2002) Cell , vol.109 , pp. 307-320
    • Panda, S.1
  • 9
    • 0036848612 scopus 로고    scopus 로고
    • Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior
    • Ceriani M.F., et al. Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior. J. Neurosci. 2002, 22:9305-9319.
    • (2002) J. Neurosci. , vol.22 , pp. 9305-9319
    • Ceriani, M.F.1
  • 10
    • 51749110466 scopus 로고    scopus 로고
    • Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development
    • Covington M.F., et al. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol. 2008, 9:R130.
    • (2008) Genome Biol. , vol.9
    • Covington, M.F.1
  • 11
    • 0034671791 scopus 로고    scopus 로고
    • Orchestrated transcription of key pathways in Arabidopsis by the circadian clock
    • Harmer S.L., et al. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 2000, 290:2110-2113.
    • (2000) Science , vol.290 , pp. 2110-2113
    • Harmer, S.L.1
  • 12
    • 77951935233 scopus 로고    scopus 로고
    • Orchestrated transcription of biological processes in the marine picoeukaryote Ostreococcus exposed to light/dark cycles
    • Monnier A., et al. Orchestrated transcription of biological processes in the marine picoeukaryote Ostreococcus exposed to light/dark cycles. BMC Genomics 2010, 11:192.
    • (2010) BMC Genomics , vol.11 , pp. 192
    • Monnier, A.1
  • 13
    • 76049087668 scopus 로고    scopus 로고
    • Oscillations in supercoiling drive circadian gene expression in cyanobacteria
    • Vijayan V., et al. Oscillations in supercoiling drive circadian gene expression in cyanobacteria. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:22564-22568.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 22564-22568
    • Vijayan, V.1
  • 14
    • 84860264490 scopus 로고    scopus 로고
    • Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta
    • Cho H., et al. Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta. Nature 2012, 485:123-127.
    • (2012) Nature , vol.485 , pp. 123-127
    • Cho, H.1
  • 15
    • 84859508042 scopus 로고    scopus 로고
    • Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator
    • Huang W., et al. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science 2012, 336:75-79.
    • (2012) Science , vol.336 , pp. 75-79
    • Huang, W.1
  • 16
    • 84857383458 scopus 로고    scopus 로고
    • Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor
    • Gendron J.M., et al. Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:3167-3172.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 3167-3172
    • Gendron, J.M.1
  • 17
    • 33747369652 scopus 로고    scopus 로고
    • Circadian rhythms in Neurospora crassa and other filamentous fungi
    • Liu Y., Bell-Pedersen D. Circadian rhythms in Neurospora crassa and other filamentous fungi. Eukaryot. Cell 2006, 5:1184-1193.
    • (2006) Eukaryot. Cell , vol.5 , pp. 1184-1193
    • Liu, Y.1    Bell-Pedersen, D.2
  • 18
    • 32044466225 scopus 로고    scopus 로고
    • Phosphorylation-dependent maturation of Neurospora circadian clock protein from a nuclear repressor toward a cytoplasmic activator
    • Schafmeier T., et al. Phosphorylation-dependent maturation of Neurospora circadian clock protein from a nuclear repressor toward a cytoplasmic activator. Genes Dev. 2006, 20:297-306.
    • (2006) Genes Dev. , vol.20 , pp. 297-306
    • Schafmeier, T.1
  • 19
    • 70349330769 scopus 로고    scopus 로고
    • Post-translational modifications in circadian rhythms
    • Mehra A., et al. Post-translational modifications in circadian rhythms. Trends Biochem. Sci. 2009, 34:483-490.
    • (2009) Trends Biochem. Sci. , vol.34 , pp. 483-490
    • Mehra, A.1
  • 20
    • 52149109334 scopus 로고    scopus 로고
    • The genetics of mammalian circadian order and disorder: implications for physiology and disease
    • Takahashi J.S., et al. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat. Rev. Genet. 2008, 9:764-775.
    • (2008) Nat. Rev. Genet. , vol.9 , pp. 764-775
    • Takahashi, J.S.1
  • 21
    • 70349452319 scopus 로고    scopus 로고
    • CKIepsilon/delta-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock
    • Isojima Y., et al. CKIepsilon/delta-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:15744-15749.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 15744-15749
    • Isojima, Y.1
  • 22
    • 65549088967 scopus 로고    scopus 로고
    • A role for casein kinase 2 in the mechanism underlying circadian temperature compensation
    • Mehra A., et al. A role for casein kinase 2 in the mechanism underlying circadian temperature compensation. Cell 2009, 137:749-760.
    • (2009) Cell , vol.137 , pp. 749-760
    • Mehra, A.1
  • 23
    • 50849136513 scopus 로고    scopus 로고
    • Cellular circadian pacemaking and the role of cytosolic rhythms
    • Hastings M.H., et al. Cellular circadian pacemaking and the role of cytosolic rhythms. Curr. Biol. 2008, 18:R805-R815.
    • (2008) Curr. Biol. , vol.18
    • Hastings, M.H.1
  • 24
    • 3242740966 scopus 로고    scopus 로고
    • A nitrate-induced frq-less oscillator in Neurospora crassa
    • Christensen M.K., et al. A nitrate-induced frq-less oscillator in Neurospora crassa. J. Biol. Rhythms 2004, 19:280-286.
    • (2004) J. Biol. Rhythms , vol.19 , pp. 280-286
    • Christensen, M.K.1
  • 25
    • 33644603280 scopus 로고    scopus 로고
    • Transcriptional feedback oscillators: maybe, maybe not
    • Lakin-Thomas P.L. Transcriptional feedback oscillators: maybe, maybe not. J. Biol. Rhythms 2006, 21:83-92.
    • (2006) J. Biol. Rhythms , vol.21 , pp. 83-92
    • Lakin-Thomas, P.L.1
  • 26
    • 0344823908 scopus 로고    scopus 로고
    • Multiple oscillators regulate circadian gene expression in Neurospora
    • Correa A., et al. Multiple oscillators regulate circadian gene expression in Neurospora. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:13597-13602.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 13597-13602
    • Correa, A.1
  • 27
    • 0037134445 scopus 로고    scopus 로고
    • Genome-wide transcriptional orchestration of circadian rhythms in Drosophila
    • Ueda H.R., et al. Genome-wide transcriptional orchestration of circadian rhythms in Drosophila. J. Biol. Chem. 2002, 277:14048-14052.
    • (2002) J. Biol. Chem. , vol.277 , pp. 14048-14052
    • Ueda, H.R.1
  • 28
    • 0037047054 scopus 로고    scopus 로고
    • Influence of the period-dependent circadian clock on diurnal, circadian, and aperiodic gene expression in Drosophila melanogaster
    • Lin Y., et al. Influence of the period-dependent circadian clock on diurnal, circadian, and aperiodic gene expression in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:9562-9567.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 9562-9567
    • Lin, Y.1
  • 29
    • 62549090648 scopus 로고    scopus 로고
    • The methamphetamine-sensitive circadian oscillator does not employ canonical clock genes
    • Mohawk J.A., et al. The methamphetamine-sensitive circadian oscillator does not employ canonical clock genes. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:3519-3524.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 3519-3524
    • Mohawk, J.A.1
  • 30
    • 37549018348 scopus 로고    scopus 로고
    • Ordered phosphorylation governs oscillation of a three-protein circadian clock
    • Rust M.J., et al. Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 2007, 318:809-812.
    • (2007) Science , vol.318 , pp. 809-812
    • Rust, M.J.1
  • 31
    • 0034602708 scopus 로고    scopus 로고
    • Nucleotide binding and autophosphorylation of the clock protein KaiC as a circadian timing process of cyanobacteria
    • Nishiwaki T., et al. Nucleotide binding and autophosphorylation of the clock protein KaiC as a circadian timing process of cyanobacteria. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:495-499.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 495-499
    • Nishiwaki, T.1
  • 32
    • 77957054558 scopus 로고    scopus 로고
    • Intermolecular associations determine the dynamics of the circadian KaiABC oscillator
    • Qin X., et al. Intermolecular associations determine the dynamics of the circadian KaiABC oscillator. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:14805-14810.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 14805-14810
    • Qin, X.1
  • 33
    • 3042637775 scopus 로고    scopus 로고
    • Crystal structure of the C-terminal clock-oscillator domain of the cyanobacterial KaiA protein
    • Uzumaki T., et al. Crystal structure of the C-terminal clock-oscillator domain of the cyanobacterial KaiA protein. Nat. Struct. Mol. Biol. 2004, 11:623-631.
    • (2004) Nat. Struct. Mol. Biol. , vol.11 , pp. 623-631
    • Uzumaki, T.1
  • 34
    • 0037180437 scopus 로고    scopus 로고
    • Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: a potential clock input mechanism
    • Williams S.B., et al. Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: a potential clock input mechanism. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:15357-15362.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 15357-15362
    • Williams, S.B.1
  • 35
    • 0038219594 scopus 로고    scopus 로고
    • Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC
    • Xu Y., et al. Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC. EMBO J. 2003, 22:2117-2126.
    • (2003) EMBO J. , vol.22 , pp. 2117-2126
    • Xu, Y.1
  • 36
    • 0037881861 scopus 로고    scopus 로고
    • KaiB functions as an attenuator of KaiC phosphorylation in the cyanobacterial circadian clock system
    • Kitayama Y., et al. KaiB functions as an attenuator of KaiC phosphorylation in the cyanobacterial circadian clock system. EMBO J. 2003, 22:2127-2134.
    • (2003) EMBO J. , vol.22 , pp. 2127-2134
    • Kitayama, Y.1
  • 37
    • 33645817722 scopus 로고    scopus 로고
    • The pseudo-receiver domain of CikA regulates the cyanobacterial circadian input pathway
    • Zhang X., et al. The pseudo-receiver domain of CikA regulates the cyanobacterial circadian input pathway. Mol. Microbiol. 2006, 60:658-668.
    • (2006) Mol. Microbiol. , vol.60 , pp. 658-668
    • Zhang, X.1
  • 38
    • 0034604449 scopus 로고    scopus 로고
    • CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock
    • Schmitz O., et al. CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. Science 2000, 289:765-768.
    • (2000) Science , vol.289 , pp. 765-768
    • Schmitz, O.1
  • 39
    • 77950528207 scopus 로고    scopus 로고
    • The KaiA protein of the cyanobacterial circadian oscillator is modulated by a redox-active cofactor
    • Wood T.L., et al. The KaiA protein of the cyanobacterial circadian oscillator is modulated by a redox-active cofactor. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:5804-5809.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 5804-5809
    • Wood, T.L.1
  • 40
    • 69549101750 scopus 로고    scopus 로고
    • Cyanobacterial daily life with Kai-based circadian and diurnal genome-wide transcriptional control in Synechococcus elongatus
    • Ito H., et al. Cyanobacterial daily life with Kai-based circadian and diurnal genome-wide transcriptional control in Synechococcus elongatus. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:14168-14173.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 14168-14173
    • Ito, H.1
  • 41
    • 36049042660 scopus 로고    scopus 로고
    • ATPase activity of KaiC determines the basic timing for circadian clock of cyanobacteria
    • Terauchi K., et al. ATPase activity of KaiC determines the basic timing for circadian clock of cyanobacteria. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:16377-16381.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 16377-16381
    • Terauchi, K.1
  • 42
    • 0034646509 scopus 로고    scopus 로고
    • A kaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria
    • Iwasaki H., et al. A kaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria. Cell 2000, 101:223-233.
    • (2000) Cell , vol.101 , pp. 223-233
    • Iwasaki, H.1
  • 43
    • 33747061828 scopus 로고    scopus 로고
    • A KaiC-associating SasA-RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria
    • Takai N., et al. A KaiC-associating SasA-RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:12109-12114.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 12109-12114
    • Takai, N.1
  • 44
    • 33846150032 scopus 로고    scopus 로고
    • LabA: a novel gene required for negative feedback regulation of the cyanobacterial circadian clock protein KaiC
    • Taniguchi Y., et al. labA: a novel gene required for negative feedback regulation of the cyanobacterial circadian clock protein KaiC. Genes Dev. 2007, 21:60-70.
    • (2007) Genes Dev. , vol.21 , pp. 60-70
    • Taniguchi, Y.1
  • 45
    • 80053082769 scopus 로고    scopus 로고
    • Circadian transcriptional regulation by the posttranslational oscillator without de novo clock gene expression in Synechococcus
    • Hosokawa N., et al. Circadian transcriptional regulation by the posttranslational oscillator without de novo clock gene expression in Synechococcus. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:15396-15401.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 15396-15401
    • Hosokawa, N.1
  • 46
    • 0029790052 scopus 로고    scopus 로고
    • Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24hours
    • Mori T., et al. Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24hours. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:10183-10188.
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , pp. 10183-10188
    • Mori, T.1
  • 47
    • 76749111535 scopus 로고    scopus 로고
    • Elevated ATPase activity of KaiC applies a circadian checkpoint on cell division in Synechococcus elongatus
    • Dong G., et al. Elevated ATPase activity of KaiC applies a circadian checkpoint on cell division in Synechococcus elongatus. Cell 2010, 140:529-539.
    • (2010) Cell , vol.140 , pp. 529-539
    • Dong, G.1
  • 48
    • 64149085448 scopus 로고    scopus 로고
    • Typical 2-Cys peroxiredoxins - structures, mechanisms and functions
    • Hall A., et al. Typical 2-Cys peroxiredoxins - structures, mechanisms and functions. FEBS J. 2009, 276:2469-2477.
    • (2009) FEBS J. , vol.276 , pp. 2469-2477
    • Hall, A.1
  • 49
    • 33744515807 scopus 로고    scopus 로고
    • Circadian orchestration of the hepatic proteome
    • Reddy A.B., et al. Circadian orchestration of the hepatic proteome. Curr. Biol. 2006, 16:1107-1115.
    • (2006) Curr. Biol. , vol.16 , pp. 1107-1115
    • Reddy, A.B.1
  • 50
    • 67650873481 scopus 로고    scopus 로고
    • The continuing puzzle of the great oxidation event
    • Sessions A.L., et al. The continuing puzzle of the great oxidation event. Curr. Biol. 2009, 19:R567-R574.
    • (2009) Curr. Biol. , vol.19
    • Sessions, A.L.1
  • 51
    • 0035958593 scopus 로고    scopus 로고
    • Circadian clocks: running on redox
    • Merrow M., Roenneberg T. Circadian clocks: running on redox. Cell 2001, 106:141-143.
    • (2001) Cell , vol.106 , pp. 141-143
    • Merrow, M.1    Roenneberg, T.2
  • 52
    • 47749140333 scopus 로고    scopus 로고
    • SIRT1 regulates circadian clock gene expression through PER2 deacetylation
    • Asher G., et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008, 134:317-328.
    • (2008) Cell , vol.134 , pp. 317-328
    • Asher, G.1
  • 53
    • 47549088250 scopus 로고    scopus 로고
    • +-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
    • +-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008, 134:329-340.
    • (2008) Cell , vol.134 , pp. 329-340
    • Nakahata, Y.1
  • 54
    • 0035997367 scopus 로고    scopus 로고
    • Metabolism and the control of circadian rhythms
    • Rutter J., et al. Metabolism and the control of circadian rhythms. Annu. Rev. Biochem. 2002, 71:307-331.
    • (2002) Annu. Rev. Biochem. , vol.71 , pp. 307-331
    • Rutter, J.1
  • 55
    • 77954703765 scopus 로고    scopus 로고
    • Coupling of a core post-translational pacemaker to a slave transcription/translation feedback loop in a circadian system
    • Qin X., et al. Coupling of a core post-translational pacemaker to a slave transcription/translation feedback loop in a circadian system. PLoS Biol. 2010, 8:e1000394.
    • (2010) PLoS Biol. , vol.8
    • Qin, X.1
  • 56
    • 79957491160 scopus 로고    scopus 로고
    • Proteasome function is required for biological timing throughout the twenty-four hour cycle
    • van Ooijen G., et al. Proteasome function is required for biological timing throughout the twenty-four hour cycle. Curr. Biol. 2011, 21:869-875.
    • (2011) Curr. Biol. , vol.21 , pp. 869-875
    • van Ooijen, G.1
  • 57
    • 78649873439 scopus 로고    scopus 로고
    • Coupling governs entrainment range of circadian clocks
    • Abraham U., et al. Coupling governs entrainment range of circadian clocks. Mol. Syst. Biol. 2010, 6:438.
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 438
    • Abraham, U.1
  • 58
    • 0035919479 scopus 로고    scopus 로고
    • Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors
    • Rutter J., et al. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 2001, 293:510-514.
    • (2001) Science , vol.293 , pp. 510-514
    • Rutter, J.1
  • 59
    • 0033389661 scopus 로고    scopus 로고
    • Circadian systems and metabolism
    • Roenneberg T., Merrow M. Circadian systems and metabolism. J. Biol. Rhythms 1999, 14:449-459.
    • (1999) J. Biol. Rhythms , vol.14 , pp. 449-459
    • Roenneberg, T.1    Merrow, M.2
  • 60
    • 70450173299 scopus 로고    scopus 로고
    • Weather and seasons together demand complex biological clocks
    • Troein C., et al. Weather and seasons together demand complex biological clocks. Curr. Biol. 2009, 19:1961-1964.
    • (2009) Curr. Biol. , vol.19 , pp. 1961-1964
    • Troein, C.1
  • 61
    • 46849090495 scopus 로고    scopus 로고
    • Robust, tunable biological oscillations from interlinked positive and negative feedback loops
    • Tsai T.Y., et al. Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 2008, 321:126-129.
    • (2008) Science , vol.321 , pp. 126-129
    • Tsai, T.Y.1
  • 62
    • 33747111430 scopus 로고    scopus 로고
    • Design principles underlying circadian clocks
    • Rand D.A., et al. Design principles underlying circadian clocks. J. R. Soc. Interface 2004, 1:119-130.
    • (2004) J. R. Soc. Interface , vol.1 , pp. 119-130
    • Rand, D.A.1
  • 63
    • 49549094042 scopus 로고    scopus 로고
    • Sloppiness, robustness, and evolvability in systems biology
    • Daniels B.C., et al. Sloppiness, robustness, and evolvability in systems biology. Curr. Opin. Biotechnol. 2008, 19:389-395.
    • (2008) Curr. Opin. Biotechnol. , vol.19 , pp. 389-395
    • Daniels, B.C.1
  • 64
    • 46249083801 scopus 로고    scopus 로고
    • Mapping global sensitivity of cellular network dynamics: sensitivity heat maps and a global summation law
    • Rand D.A. Mapping global sensitivity of cellular network dynamics: sensitivity heat maps and a global summation law. J. R. Soc. Interface 2008, 5(Suppl. 1):S59-S69.
    • (2008) J. R. Soc. Interface , vol.5 , Issue.SUPPL. 1
    • Rand, D.A.1
  • 65
    • 30444453830 scopus 로고    scopus 로고
    • Uncovering the design principles of circadian clocks: mathematical analysis of flexibility and evolutionary goals
    • Rand D.A., et al. Uncovering the design principles of circadian clocks: mathematical analysis of flexibility and evolutionary goals. J. Theor. Biol. 2006, 238:616-635.
    • (2006) J. Theor. Biol. , vol.238 , pp. 616-635
    • Rand, D.A.1
  • 66
    • 77955381783 scopus 로고    scopus 로고
    • Robustness from flexibility in the fungal circadian clock
    • Akman O.E., et al. Robustness from flexibility in the fungal circadian clock. BMC Syst. Biol. 2010, 4:88.
    • (2010) BMC Syst. Biol. , vol.4 , pp. 88
    • Akman, O.E.1
  • 67
    • 79954991675 scopus 로고    scopus 로고
    • Multiple light inputs to a simple clock circuit allow complex biological rhythms
    • Troein C., et al. Multiple light inputs to a simple clock circuit allow complex biological rhythms. Plant J. 2011, 66:375-385.
    • (2011) Plant J. , vol.66 , pp. 375-385
    • Troein, C.1
  • 68
    • 41849144808 scopus 로고    scopus 로고
    • Modeling the effects of cell cycle M-phase transcriptional inhibition on circadian oscillation
    • Kang B., et al. Modeling the effects of cell cycle M-phase transcriptional inhibition on circadian oscillation. PLoS Comput. Biol. 2008, 4:e1000019.
    • (2008) PLoS Comput. Biol. , vol.4
    • Kang, B.1
  • 69
    • 34250637942 scopus 로고    scopus 로고
    • An allosteric model of circadian KaiC phosphorylation
    • van Zon J.S., et al. An allosteric model of circadian KaiC phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:7420-7425.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 7420-7425
    • van Zon, J.S.1
  • 70
    • 78651071941 scopus 로고    scopus 로고
    • Robust circadian clocks from coupled protein-modification and transcription-translation cycles
    • Zwicker D., et al. Robust circadian clocks from coupled protein-modification and transcription-translation cycles. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:22540-22545.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 22540-22545
    • Zwicker, D.1
  • 71
    • 0035088750 scopus 로고    scopus 로고
    • Independence of circadian timing from cell division in cyanobacteria
    • Mori T., Johnson C.H. Independence of circadian timing from cell division in cyanobacteria. J. Bacteriol. 2001, 183:2439-2444.
    • (2001) J. Bacteriol. , vol.183 , pp. 2439-2444
    • Mori, T.1    Johnson, C.H.2
  • 72
    • 65549169528 scopus 로고    scopus 로고
    • Quantitative proteomics reveals a dynamic interactome and phase-specific phosphorylation in the Neurospora circadian clock
    • Baker C.L., et al. Quantitative proteomics reveals a dynamic interactome and phase-specific phosphorylation in the Neurospora circadian clock. Mol. Cell 2009, 34:354-363.
    • (2009) Mol. Cell , vol.34 , pp. 354-363
    • Baker, C.L.1
  • 73
    • 70349136696 scopus 로고    scopus 로고
    • Phosphorylation modulates rapid nucleocytoplasmic shuttling and cytoplasmic accumulation of Neurospora clock protein FRQ on a circadian time scale
    • Diernfellner A.C., et al. Phosphorylation modulates rapid nucleocytoplasmic shuttling and cytoplasmic accumulation of Neurospora clock protein FRQ on a circadian time scale. Genes Dev. 2009, 23:2192-2200.
    • (2009) Genes Dev. , vol.23 , pp. 2192-2200
    • Diernfellner, A.C.1
  • 74
    • 80052227822 scopus 로고    scopus 로고
    • A new twist on clock protein phosphorylation: a conformational change leads to protein degradation
    • Menet J.S., Rosbash M. A new twist on clock protein phosphorylation: a conformational change leads to protein degradation. Mol. Cell 2011, 43:695-697.
    • (2011) Mol. Cell , vol.43 , pp. 695-697
    • Menet, J.S.1    Rosbash, M.2
  • 75
    • 83455225642 scopus 로고    scopus 로고
    • A global circadian repressor controls antiphasic expression of metabolic genes in Neurospora
    • Sancar G., et al. A global circadian repressor controls antiphasic expression of metabolic genes in Neurospora. Mol. Cell 2011, 44:687-697.
    • (2011) Mol. Cell , vol.44 , pp. 687-697
    • Sancar, G.1
  • 76
    • 79961004102 scopus 로고    scopus 로고
    • Kinetics of doubletime kinase-dependent degradation of the Drosophila period protein
    • Syed S., et al. Kinetics of doubletime kinase-dependent degradation of the Drosophila period protein. J. Biol. Chem. 2011, 286:27654-27662.
    • (2011) J. Biol. Chem. , vol.286 , pp. 27654-27662
    • Syed, S.1
  • 77
    • 79955540602 scopus 로고    scopus 로고
    • NEMO/NLK phosphorylates PERIOD to initiate a time-delay phosphorylation circuit that sets circadian clock speed
    • Chiu J.C., et al. NEMO/NLK phosphorylates PERIOD to initiate a time-delay phosphorylation circuit that sets circadian clock speed. Cell 2011, 145:357-370.
    • (2011) Cell , vol.145 , pp. 357-370
    • Chiu, J.C.1
  • 78
    • 79955544537 scopus 로고    scopus 로고
    • NEMO kinase contributes to core period determination by slowing the pace of the Drosophila circadian oscillator
    • Yu W., et al. NEMO kinase contributes to core period determination by slowing the pace of the Drosophila circadian oscillator. Curr. Biol. 2011, 21:756-761.
    • (2011) Curr. Biol. , vol.21 , pp. 756-761
    • Yu, W.1
  • 79
    • 58849156810 scopus 로고    scopus 로고
    • Ribosomal s6 kinase cooperates with casein kinase 2 to modulate the Drosophila circadian molecular oscillator
    • Akten B., et al. Ribosomal s6 kinase cooperates with casein kinase 2 to modulate the Drosophila circadian molecular oscillator. J. Neurosci. 2009, 29:466-475.
    • (2009) J. Neurosci. , vol.29 , pp. 466-475
    • Akten, B.1
  • 80
    • 84863230299 scopus 로고    scopus 로고
    • A role for O-GlcNAcylation in setting circadian clock speed
    • Kim E.Y., et al. A role for O-GlcNAcylation in setting circadian clock speed. Genes Dev. 2012, 26:490-502.
    • (2012) Genes Dev. , vol.26 , pp. 490-502
    • Kim, E.Y.1
  • 81
    • 70350128135 scopus 로고    scopus 로고
    • AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
    • Lamia K.A., et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 2009, 326:437-440.
    • (2009) Science , vol.326 , pp. 437-440
    • Lamia, K.A.1
  • 82
    • 75649127967 scopus 로고    scopus 로고
    • Identification of RACK1 and protein kinase Calpha as integral components of the mammalian circadian clock
    • Robles M.S., et al. Identification of RACK1 and protein kinase Calpha as integral components of the mammalian circadian clock. Science 2010, 327:463-466.
    • (2010) Science , vol.327 , pp. 463-466
    • Robles, M.S.1
  • 83
    • 77949363859 scopus 로고    scopus 로고
    • DYRK1A and glycogen synthase kinase 3beta, a dual-kinase mechanism directing proteasomal degradation of CRY2 for circadian timekeeping
    • Kurabayashi N., et al. DYRK1A and glycogen synthase kinase 3beta, a dual-kinase mechanism directing proteasomal degradation of CRY2 for circadian timekeeping. Mol. Cell. Biol. 2010, 30:1757-1768.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 1757-1768
    • Kurabayashi, N.1
  • 84
    • 80455140318 scopus 로고    scopus 로고
    • A role for protein kinase casein Kinase2 alpha-subunits in the Arabidopsis circadian clock
    • Lu S.X., et al. A role for protein kinase casein Kinase2 alpha-subunits in the Arabidopsis circadian clock. Plant Physiol. 2011, 157:1537-1545.
    • (2011) Plant Physiol. , vol.157 , pp. 1537-1545
    • Lu, S.X.1
  • 85
    • 34548513770 scopus 로고    scopus 로고
    • Altered oscillator function affects clock resonance and is responsible for the reduced day-length sensitivity of CKB4 overexpressing plants
    • Portoles S., Mas P. Altered oscillator function affects clock resonance and is responsible for the reduced day-length sensitivity of CKB4 overexpressing plants. Plant J. 2007, 51:966-977.
    • (2007) Plant J. , vol.51 , pp. 966-977
    • Portoles, S.1    Mas, P.2
  • 86
    • 78649714225 scopus 로고    scopus 로고
    • The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis
    • Portoles S., Mas P. The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis. PLoS Genet. 2010, 6:e1001201.
    • (2010) PLoS Genet. , vol.6
    • Portoles, S.1    Mas, P.2
  • 87
    • 80052228191 scopus 로고    scopus 로고
    • Interaction of Arabidopsis DET1 with CCA1 and LHY in mediating transcriptional repression in the plant circadian clock
    • Lau O.S., et al. Interaction of Arabidopsis DET1 with CCA1 and LHY in mediating transcriptional repression in the plant circadian clock. Mol. Cell 2011, 43:703-712.
    • (2011) Mol. Cell , vol.43 , pp. 703-712
    • Lau, O.S.1
  • 88
    • 49249122160 scopus 로고    scopus 로고
    • CUL1 regulates TOC1 protein stability in the Arabidopsis circadian clock
    • Harmon F., et al. CUL1 regulates TOC1 protein stability in the Arabidopsis circadian clock. Plant J. 2008, 55:568-579.
    • (2008) Plant J. , vol.55 , pp. 568-579
    • Harmon, F.1
  • 89
    • 0007765997 scopus 로고
    • Persistence of a photosynthetic rhythm in enucleated Acetabularia
    • Sweeney B.M., Haxo F.T. Persistence of a photosynthetic rhythm in enucleated Acetabularia. Science 1961, 134:1361-1363.
    • (1961) Science , vol.134 , pp. 1361-1363
    • Sweeney, B.M.1    Haxo, F.T.2
  • 90
    • 0026167774 scopus 로고
    • A re-examination of the role of the nucleus in generating the circadian rhythm in Acetabularia
    • Woolum J.C. A re-examination of the role of the nucleus in generating the circadian rhythm in Acetabularia. J. Biol. Rhythms 1991, 6:129-136.
    • (1991) J. Biol. Rhythms , vol.6 , pp. 129-136
    • Woolum, J.C.1
  • 91
    • 0039209611 scopus 로고
    • Endogenous circadian rhythm in cytoplasm of Acetabularia: influence of the nucleus
    • Schweiger E., et al. Endogenous circadian rhythm in cytoplasm of Acetabularia: influence of the nucleus. Science 1964, 146:658-659.
    • (1964) Science , vol.146 , pp. 658-659
    • Schweiger, E.1
  • 92
    • 0013899471 scopus 로고
    • A circadian rhythm of mating type reversals in Paramecium multimicronucleatum, syngen 2, and its genetic control
    • Barnett A. A circadian rhythm of mating type reversals in Paramecium multimicronucleatum, syngen 2, and its genetic control. J. Cell. Physiol. 1966, 67:239-270.
    • (1966) J. Cell. Physiol. , vol.67 , pp. 239-270
    • Barnett, A.1
  • 93
    • 0030035254 scopus 로고    scopus 로고
    • Circadian clocks in prokaryotes
    • Johnson C.H., et al. Circadian clocks in prokaryotes. Mol. Microbiol. 1996, 21:5-11.
    • (1996) Mol. Microbiol. , vol.21 , pp. 5-11
    • Johnson, C.H.1
  • 94
    • 0031032072 scopus 로고    scopus 로고
    • Circadian rhythms in rapidly dividing cyanobacteria
    • Kondo T., et al. Circadian rhythms in rapidly dividing cyanobacteria. Science 1997, 275:224-227.
    • (1997) Science , vol.275 , pp. 224-227
    • Kondo, T.1
  • 95
    • 0017196098 scopus 로고
    • 2+-dependent ATPase activity in human red blood cell membranes in vitro
    • 2+-dependent ATPase activity in human red blood cell membranes in vitro. Biochem. Biophys. Res. Commun. 1976, 71:1269-1272.
    • (1976) Biochem. Biophys. Res. Commun. , vol.71 , pp. 1269-1272
    • Cornelius, G.1    Rensing, L.2
  • 96
    • 10444290712 scopus 로고    scopus 로고
    • Membrane electrical excitability is necessary for the free-running larval Drosophila circadian clock
    • Nitabach M.N., et al. Membrane electrical excitability is necessary for the free-running larval Drosophila circadian clock. J. Neurobiol. 2005, 62:1-13.
    • (2005) J. Neurobiol. , vol.62 , pp. 1-13
    • Nitabach, M.N.1
  • 97
    • 16844382553 scopus 로고    scopus 로고
    • Membranes, ions, and clocks: testing the Njus-Sulzman-Hastings model of the circadian oscillator
    • Nitabach M.N., et al. Membranes, ions, and clocks: testing the Njus-Sulzman-Hastings model of the circadian oscillator. Methods Enzymol. 2005, 393:682-693.
    • (2005) Methods Enzymol. , vol.393 , pp. 682-693
    • Nitabach, M.N.1
  • 98
    • 0037123779 scopus 로고    scopus 로고
    • Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock
    • Nitabach M.N., et al. Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock. Cell 2002, 109:485-495.
    • (2002) Cell , vol.109 , pp. 485-495
    • Nitabach, M.N.1
  • 99
    • 0026496703 scopus 로고
    • Stopping the circadian pacemaker with inhibitors of protein synthesis
    • Khalsa S.B., et al. Stopping the circadian pacemaker with inhibitors of protein synthesis. Proc. Natl. Acad. Sci. U.S.A. 1992, 89:10862-10866.
    • (1992) Proc. Natl. Acad. Sci. U.S.A. , vol.89 , pp. 10862-10866
    • Khalsa, S.B.1
  • 100
    • 0029839113 scopus 로고    scopus 로고
    • Evidence for a central role of transcription in the timing mechanism of a circadian clock
    • Khalsa S.B., et al. Evidence for a central role of transcription in the timing mechanism of a circadian clock. Am. J. Physiol. 1996, 271:C1646-C1651.
    • (1996) Am. J. Physiol. , vol.271
    • Khalsa, S.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.