메뉴 건너뛰기




Volumn 20, Issue 18, 2014, Pages 2955-2965

Brain circadian oscillators and redox regulation in mammals

Author keywords

[No Author keywords available]

Indexed keywords

CELL METABOLISM; CIRCADIAN RHYTHM; ENERGY; MAMMAL; MOLECULAR CLOCK; NERVE CELL; NERVE EXCITABILITY; NEUROMODULATION; NONHUMAN; OSCILLATION; OSCILLATOR; OXIDATION REDUCTION STATE; PRIORITY JOURNAL; REVIEW; SEASONAL VARIATION; SUPRACHIASMATIC NUCLEUS; ANIMAL; BRAIN; GENE EXPRESSION REGULATION; HUMAN; MOUSE; OXIDATION REDUCTION REACTION; PHYSIOLOGY; RAT;

EID: 84901607720     PISSN: 15230864     EISSN: 15577716     Source Type: Journal    
DOI: 10.1089/ars.2013.5598     Document Type: Review
Times cited : (15)

References (89)
  • 2
    • 0034941562 scopus 로고    scopus 로고
    • Stopping time: The genetics of fly and mouse circadian clocks
    • Allada R, Emery P, Takahashi JS, and Rosbash M. Stopping time: the genetics of fly and mouse circadian clocks. Annu Rev Neurosci 24: 1091-1119, 2001.
    • (2001) Annu Rev Neurosci , vol.24 , pp. 1091-1119
    • Allada, R.1    Emery, P.2    Takahashi, J.S.3    Rosbash, M.4
  • 3
    • 70249083369 scopus 로고    scopus 로고
    • Energy-efficient action potentials in hippocampal mossy fibers
    • Alle H, Roth A, and Geiger JR. Energy-efficient action potentials in hippocampal mossy fibers. Science 325: 1405-1408, 2009.
    • (2009) Science , vol.325 , pp. 1405-1408
    • Alle, H.1    Roth, A.2    Geiger, J.R.3
  • 4
    • 55949103543 scopus 로고    scopus 로고
    • Mitochondrial oscillations in physiology and pathophysiology
    • Aon MA, Cortassa S, and O'Rourke B. Mitochondrial oscillations in physiology and pathophysiology. Adv Exp Med Biol 641: 98-117, 2008.
    • (2008) Adv Exp Med Biol , vol.641 , pp. 98-117
    • Aon, M.A.1    Cortassa, S.2    O'Rourke, B.3
  • 5
    • 0032511229 scopus 로고    scopus 로고
    • A serum shock induces circadian gene expression in mammalian tissue culture cells
    • Balsalobre A, Damiola F, and Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93: 929-937, 1998.
    • (1998) Cell , vol.93 , pp. 929-937
    • Balsalobre, A.1    Damiola, F.2    Schibler, U.3
  • 6
    • 78649687209 scopus 로고    scopus 로고
    • Circadian integration of metabolism and energetics
    • Bass J and Takahashi JS. Circadian integration of metabolism and energetics. Science 330: 1349-1354, 2010.
    • (2010) Science , vol.330 , pp. 1349-1354
    • Bass, J.1    Takahashi, J.S.2
  • 7
    • 82955168362 scopus 로고    scopus 로고
    • Brain energy metabolism: Focus on astrocyte-neuron metabolic cooperation
    • Belanger M, Allaman I, and Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14: 724-738, 2011.
    • (2011) Cell Metab , vol.14 , pp. 724-738
    • Belanger, M.1    Allaman, I.2    Magistretti, P.J.3
  • 8
    • 70349855214 scopus 로고    scopus 로고
    • Daily electrical silencing in the mammalian circadian clock
    • Belle MD, Diekman CO, Forger DB, and Piggins HD. Daily electrical silencing in the mammalian circadian clock. Science 326: 281-284, 2009.
    • (2009) Science , vol.326 , pp. 281-284
    • Belle, M.D.1    Diekman, C.O.2    Forger, D.B.3    Piggins, H.D.4
  • 9
    • 0037039865 scopus 로고    scopus 로고
    • Phototransduction by retinal ganglion cells that set the circadian clock
    • Berson DM, Dunn FA, and Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295: 1070-1073, 2002.
    • (2002) Science , vol.295 , pp. 1070-1073
    • Berson, D.M.1    Dunn, F.A.2    Takao, M.3
  • 11
    • 34447626429 scopus 로고    scopus 로고
    • Electrophysiology of the suprachiasmatic circadian clock
    • Brown TM and Piggins HD. Electrophysiology of the suprachiasmatic circadian clock. Prog Neurobiol 82: 229-255, 2007.
    • (2007) Prog Neurobiol , vol.82 , pp. 229-255
    • Brown, T.M.1    Piggins, H.D.2
  • 13
    • 80052970658 scopus 로고    scopus 로고
    • Linking neural activity and molecular oscillations in the SCN
    • Colwell CS. Linking neural activity and molecular oscillations in the SCN. Nat Rev Neurosci 12: 553-569, 2011.
    • (2011) Nat Rev Neurosci , vol.12 , pp. 553-569
    • Colwell, C.S.1
  • 15
    • 0002973646 scopus 로고
    • Daily light sensitivity rhythm in a rodent
    • De Coursey PJ. Daily light sensitivity rhythm in a rodent. Science 131: 33-35, 1960.
    • (1960) Science , vol.131 , pp. 33-35
    • De Coursey, P.J.1
  • 18
    • 0036086130 scopus 로고    scopus 로고
    • Free radicals in the physiological control of cell function
    • Droge W. Free radicals in the physiological control of cell function. Physiol Rev 82: 47-95, 2002.
    • (2002) Physiol Rev , vol.82 , pp. 47-95
    • Droge, W.1
  • 20
    • 79951471283 scopus 로고    scopus 로고
    • The role(s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals
    • Figley CR and Stroman PW. The role(s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals. Eur J Neurosci 33: 577-588, 2011.
    • (2011) Eur J Neurosci , vol.33 , pp. 577-588
    • Figley, C.R.1    Stroman, P.W.2
  • 22
    • 0035991389 scopus 로고    scopus 로고
    • Signaling in the suprachiasmatic nucleus: Selectively responsive and integrative
    • Gillette MU and Mitchell JW. Signaling in the suprachiasmatic nucleus: selectively responsive and integrative. Cell Tissue Res 309: 99-107, 2002.
    • (2002) Cell Tissue Res , vol.309 , pp. 99-107
    • Gillette, M.U.1    Mitchell, J.W.2
  • 23
    • 0001114660 scopus 로고
    • The hypothalamic suprachiasmatic nuclei: Circadian patterns of vasopressin secretion and neuronal activity in vitro
    • Gillette MU and Reppert SM. The hypothalamic suprachiasmatic nuclei: circadian patterns of vasopressin secretion and neuronal activity in vitro. Brain Res Bull 19: 135-139, 1987.
    • (1987) Brain Res Bull , vol.19 , pp. 135-139
    • Gillette, M.U.1    Reppert, S.M.2
  • 24
    • 77955601937 scopus 로고    scopus 로고
    • Physiology of circadian entrainment
    • Golombek DA and Rosenstein RE. Physiology of circadian entrainment. Physiol Rev 90: 1063-1102, 2010.
    • (2010) Physiol Rev , vol.90 , pp. 1063-1102
    • Golombek, D.A.1    Rosenstein, R.E.2
  • 25
    • 50249100374 scopus 로고    scopus 로고
    • The meter of metabolism
    • Green CB, Takahashi JS, and Bass J. The meter of metabolism. Cell 134: 728-742, 2008.
    • (2008) Cell , vol.134 , pp. 728-742
    • Green, C.B.1    Takahashi, J.S.2    Bass, J.3
  • 26
    • 0020029696 scopus 로고
    • Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice
    • Green DJ and Gillette R. Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Res 245: 198-200, 1982.
    • (1982) Brain Res , vol.245 , pp. 198-200
    • Green, D.J.1    Gillette, R.2
  • 28
    • 50849136513 scopus 로고    scopus 로고
    • Cellular circadian pacemaking and the role of cytosolic rhythms
    • Hastings MH, Maywood ES, and O'Neill JS. Cellular circadian pacemaking and the role of cytosolic rhythms. Curr Biol 18: R805-R815, 2008.
    • (2008) Curr Biol , vol.18
    • Hastings, M.H.1    Maywood, E.S.2    O'Neill, J.S.3
  • 30
    • 0037039784 scopus 로고    scopus 로고
    • Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity
    • Hattar S, Liao HW, Takao M, Berson DM, and Yau KW. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295: 1065-1070, 2002.
    • (2002) Science , vol.295 , pp. 1065-1070
    • Hattar, S.1    Liao, H.W.2    Takao, M.3    Berson, D.M.4    Yau, K.W.5
  • 31
    • 70350767221 scopus 로고    scopus 로고
    • The SCN-independent clocks, methamphetamine and food restriction
    • Honma K and Honma S. The SCN-independent clocks, methamphetamine and food restriction. Eur J Neurosci 30: 1707-1717, 2009.
    • (2009) Eur J Neurosci , vol.30 , pp. 1707-1717
    • Honma, K.1    Honma, S.2
  • 35
    • 0018713686 scopus 로고
    • Persistence of circadian rhythmicity in a mammalian hypothalamic "island" containing the suprachiasmatic nucleus
    • Inouye ST and Kawamura H. Persistence of circadian rhythmicity in a mammalian hypothalamic "island" containing the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 76: 5962-5966, 1979.
    • (1979) Proc Natl Acad Sci U S A , vol.76 , pp. 5962-5966
    • Inouye, S.T.1    Kawamura, H.2
  • 36
    • 79954508325 scopus 로고    scopus 로고
    • Circadian rhythm of metabolic oscillation in suprachiasmatic nucleus depends on the mitochondrial oxidation state, reflected by cytochrome C oxidase and lactate dehydrogenase
    • Isobe Y, Hida H, and Nishino H. Circadian rhythm of metabolic oscillation in suprachiasmatic nucleus depends on the mitochondrial oxidation state, reflected by cytochrome C oxidase and lactate dehydrogenase. J Neurosci Res 89: 929-935, 2011.
    • (2011) J Neurosci Res , vol.89 , pp. 929-935
    • Isobe, Y.1    Hida, H.2    Nishino, H.3
  • 38
    • 0037187636 scopus 로고    scopus 로고
    • Drosophila CLOCK protein is under posttranscriptional control and influences light-induced activity
    • Kim EY, Bae K, Ng FS, Glossop NR, Hardin PE, and Edery I. Drosophila CLOCK protein is under posttranscriptional control and influences light-induced activity. Neuron 34: 69-81, 2002.
    • (2002) Neuron , vol.34 , pp. 69-81
    • Kim, E.Y.1    Bae, K.2    Ng, F.S.3    Glossop, N.R.4    Hardin, P.E.5    Edery, I.6
  • 39
    • 0034042294 scopus 로고    scopus 로고
    • Molecular genetics of circadian rhythms in mammals
    • King DP and Takahashi JS. Molecular genetics of circadian rhythms in mammals. Annu Rev Neurosci 23: 713-742, 2000.
    • (2000) Annu Rev Neurosci , vol.23 , pp. 713-742
    • King, D.P.1    Takahashi, J.S.2
  • 42
    • 0023265407 scopus 로고
    • Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain
    • Lehman MN, Silver R, Gladstone WR, Kahn RM, Gibson M, and Bittman EL. Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J Neurosci 7: 1626-1638, 1987.
    • (1987) J Neurosci , vol.7 , pp. 1626-1638
    • Lehman, M.N.1    Silver, R.2    Gladstone, W.R.3    Kahn, R.M.4    Gibson, M.5    Bittman, E.L.6
  • 43
    • 4544362674 scopus 로고    scopus 로고
    • Mammalian circadian biology: Elucidating genome-wide levels of temporal organization
    • Lowrey PL and Takahashi JS. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 5: 407-441, 2004.
    • (2004) Annu Rev Genomics Hum Genet , vol.5 , pp. 407-441
    • Lowrey, P.L.1    Takahashi, J.S.2
  • 44
    • 80052899933 scopus 로고    scopus 로고
    • Genetics of circadian rhythms in mammalian model organisms
    • Lowrey PL and Takahashi JS. Genetics of circadian rhythms in mammalian model organisms. Adv Genet 74: 175-230, 2011.
    • (2011) Adv Genet , vol.74 , pp. 175-230
    • Lowrey, P.L.1    Takahashi, J.S.2
  • 45
    • 23844438843 scopus 로고    scopus 로고
    • A calcium flux is required for circadian rhythm generation in mammalian pacemaker neurons
    • Lundkvist GB, Kwak Y, Davis EK, Tei H, and Block GD. A calcium flux is required for circadian rhythm generation in mammalian pacemaker neurons. J Neurosci 25: 7682-7686, 2005.
    • (2005) J Neurosci , vol.25 , pp. 7682-7686
    • Lundkvist, G.B.1    Kwak, Y.2    Davis, E.K.3    Tei, H.4    Block, G.D.5
  • 49
    • 0031564666 scopus 로고    scopus 로고
    • Multiunit activity recordings in the suprachiasmatic nuclei: In vivo versus in vitro models
    • Meijer JH, Schaap J, Watanabe K, and Albus H. Multiunit activity recordings in the suprachiasmatic nuclei: In vivo versus in vitro models. Brain Res 753: 322-327, 1997.
    • (1997) Brain Res , vol.753 , pp. 322-327
    • Meijer, J.H.1    Schaap, J.2    Watanabe, K.3    Albus, H.4
  • 51
    • 0037123779 scopus 로고    scopus 로고
    • Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock
    • Nitabach MN, Blau J, and Holmes TC. Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock. Cell 109: 485-495, 2002.
    • (2002) Cell , vol.109 , pp. 485-495
    • Nitabach, M.N.1    Blau, J.2    Holmes, T.C.3
  • 53
    • 44249094901 scopus 로고    scopus 로고
    • CAMP-dependent signaling as a core component of the mammalian circadian pacemaker
    • O'Neill JS, Maywood ES, Chesham JE, Takahashi JS, and Hastings MH. cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320: 949-953, 2008.
    • (2008) Science , vol.320 , pp. 949-953
    • O'Neill, J.S.1    Maywood, E.S.2    Chesham, J.E.3    Takahashi, J.S.4    Hastings, M.H.5
  • 54
    • 79251566511 scopus 로고    scopus 로고
    • Circadian clocks in human red blood cells
    • O'Neill JS and Reddy AB. Circadian clocks in human red blood cells. Nature 469: 498-503, 2011.
    • (2011) Nature , vol.469 , pp. 498-503
    • O'Neill, J.S.1    Reddy, A.B.2
  • 56
    • 0035991387 scopus 로고    scopus 로고
    • Molecular machinery of the circadian clock in mammals
    • Okamura H, Yamaguchi S, and Yagita K. Molecular machinery of the circadian clock in mammals. Cell Tissue Res 309: 47-56, 2002.
    • (2002) Cell Tissue Res , vol.309 , pp. 47-56
    • Okamura, H.1    Yamaguchi, S.2    Yagita, K.3
  • 57
    • 79955036368 scopus 로고    scopus 로고
    • Oxidation of NADPHon Kvbeta1 inhibits ball-and-chain type inactivation by restraining the chain
    • Pan Y, Weng J, Levin EJ, and Zhou M. Oxidation of NADPHon Kvbeta1 inhibits ball-and-chain type inactivation by restraining the chain. Proc Natl Acad Sci U S A 108: 5885-5890, 2011.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 5885-5890
    • Pan, Y.1    Weng, J.2    Levin, E.J.3    Zhou, M.4
  • 59
    • 0037178787 scopus 로고    scopus 로고
    • The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator
    • Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, and Schibler U. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110: 251-260, 2002.
    • (2002) Cell , vol.110 , pp. 251-260
    • Preitner, N.1    Damiola, F.2    Lopez-Molina, L.3    Zakany, J.4    Duboule, D.5    Albrecht, U.6    Schibler, U.7
  • 60
    • 0026349216 scopus 로고
    • Cyclic changes in cAMP concentration and phosphodiesterase activity in a mammalian circadian clock studied in vitro
    • Prosser RA and Gillette MU. Cyclic changes in cAMP concentration and phosphodiesterase activity in a mammalian circadian clock studied in vitro. Brain Res 568: 185-192, 1991.
    • (1991) Brain Res , vol.568 , pp. 185-192
    • Prosser, R.A.1    Gillette, M.U.2
  • 61
    • 0025021084 scopus 로고
    • Transplanted suprachiasmatic nucleus determines circadian period
    • Ralph MR, Foster RG, Davis FC, and Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science 247: 975-978, 1990.
    • (1990) Science , vol.247 , pp. 975-978
    • Ralph, M.R.1    Foster, R.G.2    Davis, F.C.3    Menaker, M.4
  • 62
    • 0034194081 scopus 로고    scopus 로고
    • Ascorbate regulation and its neuroprotective role in the brain
    • Rice ME. Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci 23: 209-216, 2000.
    • (2000) Trends Neurosci , vol.23 , pp. 209-216
    • Rice, M.E.1
  • 63
    • 75649127967 scopus 로고    scopus 로고
    • Identification of RACK1 and protein kinase Calpha as integral components of the mammalian circadian clock
    • Robles MS, Boyault C, Knutti D, Padmanabhan K, and Weitz CJ. Identification of RACK1 and protein kinase Calpha as integral components of the mammalian circadian clock. Science 327: 463-466, 2010.
    • (2010) Science , vol.327 , pp. 463-466
    • Robles, M.S.1    Boyault, C.2    Knutti, D.3    Padmanabhan, K.4    Weitz, C.J.5
  • 64
    • 0037418219 scopus 로고    scopus 로고
    • The network of time: Understanding the molecular circadian system
    • Roenneberg T and Merrow M. The network of time: understanding the molecular circadian system. Curr Biol 13: R198-R207, 2003.
    • (2003) Curr Biol , vol.13
    • Roenneberg, T.1    Merrow, M.2
  • 65
    • 65949094583 scopus 로고    scopus 로고
    • The implications of multiple circadian clock origins
    • Rosbash M. The implications of multiple circadian clock origins. PLoS Biol 7: e62, 2009.
    • (2009) PLoS Biol , vol.7
    • Rosbash, M.1
  • 66
    • 0035997367 scopus 로고    scopus 로고
    • Metabolism and the control of circadian rhythms
    • Rutter J, Reick M, and McKnight SL. Metabolism and the control of circadian rhythms. Annu Rev Biochem 71: 307-331, 2002.
    • (2002) Annu Rev Biochem , vol.71 , pp. 307-331
    • Rutter, J.1    Reick, M.2    McKnight, S.L.3
  • 67
    • 0035919479 scopus 로고    scopus 로고
    • Regulation of CLOCK and NPAS2 DNA binding by the redox state of NAD cofactors
    • Rutter J, Reick M, Wu LC, and McKnight SL. Regulation of CLOCK and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293: 510-514, 2001.
    • (2001) Science , vol.293 , pp. 510-514
    • Rutter, J.1    Reick, M.2    Wu, L.C.3    McKnight, S.L.4
  • 68
    • 33845648094 scopus 로고    scopus 로고
    • Redox regulation of neuronal survival mediated by electrophilic compounds
    • Satoh T and Lipton SA. Redox regulation of neuronal survival mediated by electrophilic compounds. Trends Neurosci 30: 37-45, 2007.
    • (2007) Trends Neurosci , vol.30 , pp. 37-45
    • Satoh, T.1    Lipton, S.A.2
  • 69
    • 0017623128 scopus 로고
    • 14C-labeled deoxyglucose uptake as a functional marker
    • 14C-labeled deoxyglucose uptake as a functional marker. Science 197: 1089-1091, 1977.
    • (1977) Science , vol.197 , pp. 1089-1091
    • Schwartz, W.J.1    Gainer, H.2
  • 70
    • 0036192927 scopus 로고    scopus 로고
    • Restoration of circadian behavioural rhythms in a Period null Drosophila mutant (Per01) by mammalian period homologues mPer1 and mPer2
    • Shigeyoshi Y, Meyer-Bernstein E, Yagita K, Fu W, Chen Y, Takumi T, Schotland P, Sehgal A, and Okamura H. Restoration of circadian behavioural rhythms in a Period null Drosophila mutant (Per01) by mammalian period homologues mPer1 and mPer2. Genes Cells 7: 163-171, 2002.
    • (2002) Genes Cells , vol.7 , pp. 163-171
    • Shigeyoshi, Y.1    Meyer-Bernstein, E.2    Yagita, K.3    Fu, W.4    Chen, Y.5    Takumi, T.6    Schotland, P.7    Sehgal, A.8    Okamura, H.9
  • 71
    • 84857388082 scopus 로고    scopus 로고
    • The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity
    • Silver AC, Arjona A, Walker WE, and Fikrig E. The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity. Immunity 36: 251-261, 2012.
    • (2012) Immunity , vol.36 , pp. 251-261
    • Silver, A.C.1    Arjona, A.2    Walker, W.E.3    Fikrig, E.4
  • 72
    • 0035910387 scopus 로고    scopus 로고
    • Entrainment of the circadian clock in the liver by feeding
    • Stokkan KA, Yamazaki S, Tei H, Sakaki Y, and Menaker M. Entrainment of the circadian clock in the liver by feeding. Science 291: 490-493, 2001.
    • (2001) Science , vol.291 , pp. 490-493
    • Stokkan, K.A.1    Yamazaki, S.2    Tei, H.3    Sakaki, Y.4    Menaker, M.5
  • 73
    • 4143147421 scopus 로고    scopus 로고
    • Protein kinase G type II is required for night-to-day progression of the mammalian circadian clock
    • Tischkau SA, Mitchell JW, Pace LA, Barnes JW, Barnes JA, and Gillette MU. Protein kinase G type II is required for night-to-day progression of the mammalian circadian clock. Neuron 43: 539-549, 2004.
    • (2004) Neuron , vol.43 , pp. 539-549
    • Tischkau, S.A.1    Mitchell, J.W.2    Pace, L.A.3    Barnes, J.W.4    Barnes, J.A.5    Gillette, M.U.6
  • 76
    • 79957491160 scopus 로고    scopus 로고
    • Proteasome function is required for biological timing throughout the twenty-four hour cycle
    • van Ooijen G, Dixon LE, Troein C, and Millar AJ. Proteasome function is required for biological timing throughout the twenty-four hour cycle. Curr Biol 21: 869-875, 2011.
    • (2011) Curr Biol , vol.21 , pp. 869-875
    • Van Ooijen, G.1    Dixon, L.E.2    Troein, C.3    Millar, A.J.4
  • 78
    • 0033822171 scopus 로고    scopus 로고
    • Circadian rhythm genetics: From flies to mice to humans
    • Wager-Smith K and Kay SA. Circadian rhythm genetics: from flies to mice to humans. Nat Genet 26: 23-27, 2000.
    • (2000) Nat Genet , vol.26 , pp. 23-27
    • Wager-Smith, K.1    Kay, S.A.2
  • 80
    • 70350747446 scopus 로고    scopus 로고
    • Bidirectional interactions between the circadian and reward systems: Is restricted food access a unique zeitgeber?
    • Webb IC, Baltazar RM, Lehman MN, and Coolen LM. Bidirectional interactions between the circadian and reward systems: is restricted food access a unique zeitgeber? Eur J Neurosci 30: 1739-1748, 2009.
    • (2009) Eur J Neurosci , vol.30 , pp. 1739-1748
    • Webb, I.C.1    Baltazar, R.M.2    Lehman, M.N.3    Coolen, L.M.4
  • 81
    • 0028904194 scopus 로고
    • Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms
    • Welsh DK, Logothetis DE, Meister M, and Reppert SM. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14: 697-706, 1995.
    • (1995) Neuron , vol.14 , pp. 697-706
    • Welsh, D.K.1    Logothetis, D.E.2    Meister, M.3    Reppert, S.M.4
  • 82
    • 0028063297 scopus 로고
    • Circadian rhythms of adenosine triphosphate contents in the suprachiasmatic nucleus, anterior hypothalamic area and caudate putamen of the rat-negative correlation with electrical activity
    • Yamazaki S, Ishida Y, and Inouye S. Circadian rhythms of adenosine triphosphate contents in the suprachiasmatic nucleus, anterior hypothalamic area and caudate putamen of the rat-negative correlation with electrical activity. Brain Res 664: 237-240, 1994.
    • (1994) Brain Res , vol.664 , pp. 237-240
    • Yamazaki, S.1    Ishida, Y.2    Inouye, S.3
  • 85
    • 0035102288 scopus 로고    scopus 로고
    • Role of molecular oscillations in generating behavioral rhythms in Drosophila
    • Yang Z and Sehgal A. Role of molecular oscillations in generating behavioral rhythms in Drosophila. Neuron 29: 453-467, 2001.
    • (2001) Neuron , vol.29 , pp. 453-467
    • Yang, Z.1    Sehgal, A.2
  • 87
    • 77954835174 scopus 로고    scopus 로고
    • Nuclear receptor Rev-erbalpha: A heme receptor that coordinates circadian rhythm and metabolism
    • Yin L, Wu N, and Lazar MA. Nuclear receptor Rev-erbalpha: a heme receptor that coordinates circadian rhythm and metabolism. Nucl Recept Signal 8: e001, 2010.
    • (2010) Nucl Recept Signal , vol.8
    • Yin, L.1    Wu, N.2    Lazar, M.A.3
  • 89
    • 84896698650 scopus 로고    scopus 로고
    • Diversity of human clock genotypes and consequences
    • edited by Gillette MU. London: Academic Press
    • Zhang L, Ptáček LJ, and Fu YH. Diversity of human clock genotypes and consequences. In: Chronobiology: Biological Timing in Health and Disease, edited by Gillette MU. London: Academic Press. 119: pp. 51-81, 2013.
    • (2013) Chronobiology: Biological Timing in Health and Disease , vol.119 , pp. 51-81
    • Zhang, L.1    Ptáček, L.J.2    Fu, Y.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.