-
1
-
-
85031968901
-
In memory of Donald Nicholson
-
Azzi A. In memory of Donald Nicholson. IUBMB Life 2012, 648:659-660.
-
(2012)
IUBMB Life
, vol.648
, pp. 659-660
-
-
Azzi, A.1
-
2
-
-
84941236856
-
Effect of aging on muscle mitochondrial substrate utilization in humans
-
Petersen K.F., et al. Effect of aging on muscle mitochondrial substrate utilization in humans. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:11330-11334.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 11330-11334
-
-
Petersen, K.F.1
-
3
-
-
84872011926
-
Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells
-
Takubo K., et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 2013, 12:49-61.
-
(2013)
Cell Stem Cell
, vol.12
, pp. 49-61
-
-
Takubo, K.1
-
4
-
-
84872037830
-
Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation
-
Yu W-M., et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 2013, 12:62-74.
-
(2013)
Cell Stem Cell
, vol.12
, pp. 62-74
-
-
Yu, W.-M.1
-
5
-
-
84922430730
-
Regulation of substrate utilization by the mitochondrial pyruvate carrier
-
Vacanti N.M., et al. Regulation of substrate utilization by the mitochondrial pyruvate carrier. Mol. Cell 2014, 56:425-435.
-
(2014)
Mol. Cell
, vol.56
, pp. 425-435
-
-
Vacanti, N.M.1
-
6
-
-
84943449494
-
Hepatic mitochondrial pyruvate carrier 1 is required for efficient regulation of gluconeogenesis and whole-body glucose homeostasis
-
Gray L.R., et al. Hepatic mitochondrial pyruvate carrier 1 is required for efficient regulation of gluconeogenesis and whole-body glucose homeostasis. Cell Metab. 2015, 22:669-681.
-
(2015)
Cell Metab.
, vol.22
, pp. 669-681
-
-
Gray, L.R.1
-
7
-
-
84943455850
-
Loss of mitochondrial pyruvate carrier 2 in the liver leads to defects in gluconeogenesis and compensation via pyruvate-alanine cycling
-
McCommis K.S., et al. Loss of mitochondrial pyruvate carrier 2 in the liver leads to defects in gluconeogenesis and compensation via pyruvate-alanine cycling. Cell Metab. 2015, 22:682-694.
-
(2015)
Cell Metab.
, vol.22
, pp. 682-694
-
-
McCommis, K.S.1
-
8
-
-
0014702860
-
Increased glycolytic metabolism in cardiac hypertrophy and congestive failure
-
Bishop S.P., Altschuld R.A. Increased glycolytic metabolism in cardiac hypertrophy and congestive failure. Am. J. Physiol. 1970, 218:153-159.
-
(1970)
Am. J. Physiol.
, vol.218
, pp. 153-159
-
-
Bishop, S.P.1
Altschuld, R.A.2
-
9
-
-
84884550495
-
Hypoxic regulation of hand1 controls the fetal-neonatal switch in cardiac metabolism
-
Breckenridge R.A., et al. Hypoxic regulation of hand1 controls the fetal-neonatal switch in cardiac metabolism. PLoS Biol. 2013, 11:e1001666.
-
(2013)
PLoS Biol.
, vol.11
, pp. e1001666
-
-
Breckenridge, R.A.1
-
10
-
-
0033711215
-
Improved energy homeostasis of the heart in the metabolic state of exercise
-
Goodwin G.W., et al. Improved energy homeostasis of the heart in the metabolic state of exercise. Am. J. Physiol. Heart Circ. Physiol. 2000, 279:H1490-H1501.
-
(2000)
Am. J. Physiol. Heart Circ. Physiol.
, vol.279
, pp. H1490-H1501
-
-
Goodwin, G.W.1
-
11
-
-
84891350842
-
Failing mouse hearts utilize energy inefficiently and benefit from improved coupling of glycolysis and glucose oxidation
-
Masoud W.G.T., et al. Failing mouse hearts utilize energy inefficiently and benefit from improved coupling of glycolysis and glucose oxidation. Cardiovasc. Res. 2014, 101:30-38.
-
(2014)
Cardiovasc. Res.
, vol.101
, pp. 30-38
-
-
Masoud, W.G.T.1
-
12
-
-
84862867814
-
Availability of energetic substrates and exercise performance in heart failure with or without diabetes
-
Melenovsky V., et al. Availability of energetic substrates and exercise performance in heart failure with or without diabetes. Eur. J. Heart Fail. 2012, 14:754-763.
-
(2012)
Eur. J. Heart Fail.
, vol.14
, pp. 754-763
-
-
Melenovsky, V.1
-
13
-
-
84860134902
-
Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury
-
Ussher J.R., et al. Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury. Cardiovasc. Res. 2012, 94:359-369.
-
(2012)
Cardiovasc. Res.
, vol.94
, pp. 359-369
-
-
Ussher, J.R.1
-
14
-
-
84883562084
-
Cardiac metabolism in heart failure: implications beyond ATP production
-
Doenst T., et al. Cardiac metabolism in heart failure: implications beyond ATP production. Circ. Res. 2013, 113:709-724.
-
(2013)
Circ. Res.
, vol.113
, pp. 709-724
-
-
Doenst, T.1
-
15
-
-
84955512160
-
Defective expression of the mitochondrial-tRNA modifying enzyme GTPBP3 triggers AMPK-mediated adaptive responses involving complex i assembly factors, uncoupling protein 2, and the mitochondrial pyruvate carrier
-
Martínez-Zamora A., et al. Defective expression of the mitochondrial-tRNA modifying enzyme GTPBP3 triggers AMPK-mediated adaptive responses involving complex i assembly factors, uncoupling protein 2, and the mitochondrial pyruvate carrier. PLoS ONE 2015, 10:e0144273.
-
(2015)
PLoS ONE
, vol.10
, pp. e0144273
-
-
Martínez-Zamora, A.1
-
16
-
-
84955487681
-
Analysis of mitochondrial proteins in the surviving myocardium after ischemia identifies mitochondrial pyruvate carrier expression as possible mediator of tissue viability
-
Fernandez-Caggiano M., et al. Analysis of mitochondrial proteins in the surviving myocardium after ischemia identifies mitochondrial pyruvate carrier expression as possible mediator of tissue viability. Mol. Cell Proteomics 2016, 15:246-255.
-
(2016)
Mol. Cell Proteomics
, vol.15
, pp. 246-255
-
-
Fernandez-Caggiano, M.1
-
17
-
-
0242553503
-
A note on the beneficial effect of the ingestion of cane sugar in certain forms of heart disease
-
Goulston A. A note on the beneficial effect of the ingestion of cane sugar in certain forms of heart disease. BMJ 1911, 1:615.
-
(1911)
BMJ
, vol.1
, pp. 615
-
-
Goulston, A.1
-
18
-
-
79952284127
-
Hallmarks of cancer: the next generation
-
Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.
-
(2011)
Cell
, vol.144
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
19
-
-
80052744948
-
SDH mutations in cancer
-
Bardella C., et al. SDH mutations in cancer. Biochim. Biophys. Acta 2011, 1807:1432-1443.
-
(2011)
Biochim. Biophys. Acta
, vol.1807
, pp. 1432-1443
-
-
Bardella, C.1
-
20
-
-
33746930794
-
Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer
-
King A., et al. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 2006, 25:4675-4682.
-
(2006)
Oncogene
, vol.25
, pp. 4675-4682
-
-
King, A.1
-
21
-
-
77952885778
-
Succinate dehydrogenase - assembly, regulation and role in human disease
-
Rutter J., et al. Succinate dehydrogenase - assembly, regulation and role in human disease. Mitochondrion 2010, 10:393-401.
-
(2010)
Mitochondrion
, vol.10
, pp. 393-401
-
-
Rutter, J.1
-
22
-
-
85006768050
-
The metabolism of tumors in the body
-
Warburg O., et al. The metabolism of tumors in the body. J. Gen. Physiol. 1927, 8:519-530.
-
(1927)
J. Gen. Physiol.
, vol.8
, pp. 519-530
-
-
Warburg, O.1
-
23
-
-
84863397848
-
The monocarboxylate transporter family - role and regulation
-
Halestrap A.P., Wilson M.C. The monocarboxylate transporter family - role and regulation. IUBMB Life 2012, 64:109-119.
-
(2012)
IUBMB Life
, vol.64
, pp. 109-119
-
-
Halestrap, A.P.1
Wilson, M.C.2
-
24
-
-
84855444042
-
The monocarboxylate transporter family - structure and functional characterization
-
Halestrap A.P. The monocarboxylate transporter family - structure and functional characterization. IUBMB Life 2012, 64:1-9.
-
(2012)
IUBMB Life
, vol.64
, pp. 1-9
-
-
Halestrap, A.P.1
-
25
-
-
84925969707
-
Metabolic pathways promoting cancer cell survival and growth
-
Boroughs L.K., DeBerardinis R.J. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 2015, 17:351-359.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 351-359
-
-
Boroughs, L.K.1
DeBerardinis, R.J.2
-
26
-
-
84947704464
-
Cancer's fuel choice: new flavors for a picky eater
-
DeNicola G.M., Cantley L.C. Cancer's fuel choice: new flavors for a picky eater. Mol. Cell 2015, 60:514-523.
-
(2015)
Mol. Cell
, vol.60
, pp. 514-523
-
-
DeNicola, G.M.1
Cantley, L.C.2
-
27
-
-
84906334150
-
The multifaceted regulation and functions of PKM2 in tumor progression
-
Li Z., et al. The multifaceted regulation and functions of PKM2 in tumor progression. Biochim. Biophys. Acta 2014, 1846:285-296.
-
(2014)
Biochim. Biophys. Acta
, vol.1846
, pp. 285-296
-
-
Li, Z.1
-
28
-
-
84907983333
-
Tissue-specific isoform switch and DNA hypomethylation of the pyruvate kinase PKM gene in human cancers
-
Desai S., et al. Tissue-specific isoform switch and DNA hypomethylation of the pyruvate kinase PKM gene in human cancers. Oncotarget 2013, 5:8202-8210.
-
(2013)
Oncotarget
, vol.5
, pp. 8202-8210
-
-
Desai, S.1
-
29
-
-
40749099894
-
Pyruvate kinase M2 is a phosphotyrosine-binding protein
-
Christofk H.R., et al. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 2008, 452:181-186.
-
(2008)
Nature
, vol.452
, pp. 181-186
-
-
Christofk, H.R.1
-
30
-
-
40749163248
-
The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth
-
Christofk H.R., et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008, 452:230-233.
-
(2008)
Nature
, vol.452
, pp. 230-233
-
-
Christofk, H.R.1
-
31
-
-
84879040174
-
Protein tyrosine phosphatase 1B regulates pyruvate kinase M2 tyrosine phosphorylation
-
Bettaieb A., et al. Protein tyrosine phosphatase 1B regulates pyruvate kinase M2 tyrosine phosphorylation. J. Biol. Chem. 2013, 288:17360-17371.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 17360-17371
-
-
Bettaieb, A.1
-
32
-
-
84866842363
-
Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis
-
Anastasiou D., et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat. Chem. Biol. 2012, 8:839-847.
-
(2012)
Nat. Chem. Biol.
, vol.8
, pp. 839-847
-
-
Anastasiou, D.1
-
33
-
-
84920447418
-
Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation
-
Lunt S.Y., et al. Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol. Cell 2015, 57:95-107.
-
(2015)
Mol. Cell
, vol.57
, pp. 95-107
-
-
Lunt, S.Y.1
-
34
-
-
84938232611
-
An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis
-
Birsoy K., et al. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 2015, 162:540-551.
-
(2015)
Cell
, vol.162
, pp. 540-551
-
-
Birsoy, K.1
-
35
-
-
84938234308
-
Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells
-
Sullivan L.B., et al. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 2015, 162:552-563.
-
(2015)
Cell
, vol.162
, pp. 552-563
-
-
Sullivan, L.B.1
-
36
-
-
84888433384
-
Lactate dehydrogenase a in cancer: a promising target for diagnosis and therapy
-
Miao P., et al. Lactate dehydrogenase a in cancer: a promising target for diagnosis and therapy. IUBMB Life 2013, 65:904-910.
-
(2013)
IUBMB Life
, vol.65
, pp. 904-910
-
-
Miao, P.1
-
37
-
-
76649126249
-
Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression
-
Le A., et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:2037-2042.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 2037-2042
-
-
Le, A.1
-
38
-
-
33744783432
-
Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance
-
Fantin V.R., et al. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 2006, 9:425-434.
-
(2006)
Cancer Cell
, vol.9
, pp. 425-434
-
-
Fantin, V.R.1
-
39
-
-
84900296103
-
Targeting lactate dehydrogenase-A inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor-initiating cells
-
Xie H., et al. Targeting lactate dehydrogenase-A inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor-initiating cells. Cell Metab. 2014, 19:795-809.
-
(2014)
Cell Metab.
, vol.19
, pp. 795-809
-
-
Xie, H.1
-
40
-
-
84867097473
-
Knockdown of lactate dehydrogenase A suppresses tumor growth and metastasis of human hepatocellular carcinoma
-
Sheng S.L., et al. Knockdown of lactate dehydrogenase A suppresses tumor growth and metastasis of human hepatocellular carcinoma. FEBS J. 2012, 279:3898-3910.
-
(2012)
FEBS J.
, vol.279
, pp. 3898-3910
-
-
Sheng, S.L.1
-
41
-
-
84939248200
-
Lactate dehydrogenase A negatively regulated by miRNAs promotes aerobic glycolysis and is increased in colorectal cancer
-
Wang J., et al. Lactate dehydrogenase A negatively regulated by miRNAs promotes aerobic glycolysis and is increased in colorectal cancer. Oncotarget 2015, 6:19456-19468.
-
(2015)
Oncotarget
, vol.6
, pp. 19456-19468
-
-
Wang, J.1
-
42
-
-
84900462660
-
Monocarboxylate transporter 4 facilitates cell proliferation and migration and is associated with poor prognosis in oral squamous cell carcinoma patients
-
Zhu J., et al. Monocarboxylate transporter 4 facilitates cell proliferation and migration and is associated with poor prognosis in oral squamous cell carcinoma patients. PLoS ONE 2014, 9:e87904.
-
(2014)
PLoS ONE
, vol.9
, pp. e87904
-
-
Zhu, J.1
-
43
-
-
84858710602
-
Using the 'reverse Warburg effect' to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers
-
Witkiewicz A.K., et al. Using the 'reverse Warburg effect' to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle 2012, 11:1108-1117.
-
(2012)
Cell Cycle
, vol.11
, pp. 1108-1117
-
-
Witkiewicz, A.K.1
-
44
-
-
84855370259
-
Prognostic significance of monocarboxylate transporter 4 expression in patients with colorectal cancer
-
Nakayama Y. Prognostic significance of monocarboxylate transporter 4 expression in patients with colorectal cancer. Exp. Ther. Med. 2012, 3:25-30.
-
(2012)
Exp. Ther. Med.
, vol.3
, pp. 25-30
-
-
Nakayama, Y.1
-
45
-
-
84919863195
-
MCT4 defines a glycolytic subtype of pancreatic cancer with poor prognosis and unique metabolic dependencies
-
Baek G., et al. MCT4 defines a glycolytic subtype of pancreatic cancer with poor prognosis and unique metabolic dependencies. Cell Rep. 2014, 9:2233-2249.
-
(2014)
Cell Rep.
, vol.9
, pp. 2233-2249
-
-
Baek, G.1
-
46
-
-
77957234813
-
Co-expression of CD147 (EMMPRIN), CD44v3-10, MDR1 and monocarboxylate transporters is associated with prostate cancer drug resistance and progression
-
Hao J., et al. Co-expression of CD147 (EMMPRIN), CD44v3-10, MDR1 and monocarboxylate transporters is associated with prostate cancer drug resistance and progression. Br. J. Cancer 2010, 103:1008-1018.
-
(2010)
Br. J. Cancer
, vol.103
, pp. 1008-1018
-
-
Hao, J.1
-
47
-
-
84863553135
-
Identification and functional expression of the mitochondrial pyruvate carrier
-
Herzig S., et al. Identification and functional expression of the mitochondrial pyruvate carrier. Science 2012, 337:93-96.
-
(2012)
Science
, vol.337
, pp. 93-96
-
-
Herzig, S.1
-
48
-
-
84863552418
-
A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans
-
Bricker D.K., et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 2012, 337:96-100.
-
(2012)
Science
, vol.337
, pp. 96-100
-
-
Bricker, D.K.1
-
49
-
-
84922445353
-
A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth
-
Schell J.C., et al. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol. Cell 2014, 56:400-413.
-
(2014)
Mol. Cell
, vol.56
, pp. 400-413
-
-
Schell, J.C.1
-
50
-
-
84949626501
-
Sirt3 binds to and deacetylates mitochondrial pyruvate carrier 1 to enhance its activity
-
Liang L., et al. Sirt3 binds to and deacetylates mitochondrial pyruvate carrier 1 to enhance its activity. Biochem. Biophys. Res. Commun. 2015, 468:807-812.
-
(2015)
Biochem. Biophys. Res. Commun.
, vol.468
, pp. 807-812
-
-
Liang, L.1
-
51
-
-
84878679199
-
A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence
-
Kaplon J., et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 2013, 498:109-112.
-
(2013)
Nature
, vol.498
, pp. 109-112
-
-
Kaplon, J.1
-
52
-
-
84872548105
-
PDK1 inhibition is a novel therapeutic target in multiple myeloma
-
Fujiwara S., et al. PDK1 inhibition is a novel therapeutic target in multiple myeloma. Br. J. Cancer 2013, 108:170-178.
-
(2013)
Br. J. Cancer
, vol.108
, pp. 170-178
-
-
Fujiwara, S.1
-
53
-
-
84255162057
-
Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism
-
Hitosugi T., et al. Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism. Mol. Cell 2011, 44:864-877.
-
(2011)
Mol. Cell
, vol.44
, pp. 864-877
-
-
Hitosugi, T.1
-
54
-
-
84919936304
-
Acetate dependence of tumors
-
Comerford S.A., et al. Acetate dependence of tumors. Cell 2014, 159:1591-1602.
-
(2014)
Cell
, vol.159
, pp. 1591-1602
-
-
Comerford, S.A.1
-
55
-
-
84947648620
-
Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress
-
Schug Z.T., et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 2015, 27:57-71.
-
(2015)
Cancer Cell
, vol.27
, pp. 57-71
-
-
Schug, Z.T.1
-
56
-
-
84919903877
-
Acetate is a bioenergetic substrate for human glioblastoma and brain metastases
-
Mashimo T., et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 2014, 159:1603-1614.
-
(2014)
Cell
, vol.159
, pp. 1603-1614
-
-
Mashimo, T.1
-
57
-
-
0014712806
-
Diisopropylammonium dichloroacetate (DIPA) and sodium dichloracetate (DCA): effect on glucose and fat metabolism in normal and diabetic tissue
-
Stacpoole P.W., Felts J.M. Diisopropylammonium dichloroacetate (DIPA) and sodium dichloracetate (DCA): effect on glucose and fat metabolism in normal and diabetic tissue. Metab. Clin. Exp. 1970, 19:71-78.
-
(1970)
Metab. Clin. Exp.
, vol.19
, pp. 71-78
-
-
Stacpoole, P.W.1
Felts, J.M.2
-
58
-
-
0016285850
-
Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids
-
Whitehouse S., et al. Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids. Biochem. J. 1974, 141:761-774.
-
(1974)
Biochem. J.
, vol.141
, pp. 761-774
-
-
Whitehouse, S.1
-
59
-
-
33846002728
-
+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth
-
+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 2007, 11:37-51.
-
(2007)
Cancer Cell
, vol.11
, pp. 37-51
-
-
Bonnet, S.1
-
60
-
-
84878655372
-
Case report: sodium dichloroacetate (DCA) inhibition of the 'Warburg effect' in a human cancer patient: complete response in non-Hodgkin's lymphoma after disease progression with rituximab-CHOP
-
Strum S.B., et al. Case report: sodium dichloroacetate (DCA) inhibition of the 'Warburg effect' in a human cancer patient: complete response in non-Hodgkin's lymphoma after disease progression with rituximab-CHOP. J. Bioenerg. Biomembr. 2012, 45:307-315.
-
(2012)
J. Bioenerg. Biomembr.
, vol.45
, pp. 307-315
-
-
Strum, S.B.1
-
61
-
-
77957170568
-
In vitro cytotoxicity of combinations of dichloroacetate with anticancer platinum compounds
-
Olszewski U., et al. In vitro cytotoxicity of combinations of dichloroacetate with anticancer platinum compounds. Clin. Pharmacol. 2010, 2:177-183.
-
(2010)
Clin. Pharmacol.
, vol.2
, pp. 177-183
-
-
Olszewski, U.1
-
62
-
-
84896706932
-
Dichloroacetate should be considered with platinum-based chemotherapy in hypoxic tumors rather than as a single agent in advanced non-small cell lung cancer
-
Garon E.B., et al. Dichloroacetate should be considered with platinum-based chemotherapy in hypoxic tumors rather than as a single agent in advanced non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 2014, 140:443-452.
-
(2014)
J. Cancer Res. Clin. Oncol.
, vol.140
, pp. 443-452
-
-
Garon, E.B.1
-
63
-
-
85031968850
-
Activation of mitochondrial oxidation by PDK2 inhibition reverses cisplatin resistance in head and neck cancer
-
Roh J-L., et al. Activation of mitochondrial oxidation by PDK2 inhibition reverses cisplatin resistance in head and neck cancer. Cancer Lett. 2015.
-
(2015)
Cancer Lett.
-
-
Roh, J.-L.1
-
64
-
-
84962275538
-
Inhibition of the pentose phosphate pathway by dichloroacetate unravels a missing link between aerobic glycolysis and cancer cell proliferation
-
Published online November 2, 2015
-
De Preter G., et al. Inhibition of the pentose phosphate pathway by dichloroacetate unravels a missing link between aerobic glycolysis and cancer cell proliferation. Oncotarget 2015, 5. Published online November 2, 2015. 10.18632/oncotarget.6272.
-
(2015)
Oncotarget
, vol.5
-
-
De Preter, G.1
-
65
-
-
84922005457
-
Dichloroacetate affects proliferation but not survival of human colorectal cancer cells
-
Delaney L.M., et al. Dichloroacetate affects proliferation but not survival of human colorectal cancer cells. Apoptosis 2015, 20:63-74.
-
(2015)
Apoptosis
, vol.20
, pp. 63-74
-
-
Delaney, L.M.1
-
66
-
-
84921260111
-
Pyruvate dehydrogenase kinase expression and metabolic changes following dichloroacetate exposure in anoxic human colorectal cancer cells
-
Ho N., Coomber B.L. Pyruvate dehydrogenase kinase expression and metabolic changes following dichloroacetate exposure in anoxic human colorectal cancer cells. Exp. Cell Res. 2015, 331:73-81.
-
(2015)
Exp. Cell Res.
, vol.331
, pp. 73-81
-
-
Ho, N.1
Coomber, B.L.2
-
67
-
-
77956231630
-
Sodium dichloroacetate (DCA) reduces apoptosis in colorectal tumor hypoxia
-
Shahrzad S., et al. Sodium dichloroacetate (DCA) reduces apoptosis in colorectal tumor hypoxia. Cancer Lett. 2010, 297:75-83.
-
(2010)
Cancer Lett.
, vol.297
, pp. 75-83
-
-
Shahrzad, S.1
-
68
-
-
84959492726
-
DCA promotes progression of neuroblastoma tumors in nude mice
-
Feuerecker B., et al. DCA promotes progression of neuroblastoma tumors in nude mice. Am. J. Cancer Res. 2015, 5:812-820.
-
(2015)
Am. J. Cancer Res.
, vol.5
, pp. 812-820
-
-
Feuerecker, B.1
-
69
-
-
6844257519
-
Physical map of the D6S149-D6S193 region on chromosome 6Q27 and its involvement in benign surface epithelial ovarian tumours
-
Tibiletti M.G., et al. Physical map of the D6S149-D6S193 region on chromosome 6Q27 and its involvement in benign surface epithelial ovarian tumours. Oncogene 1998, 16:1639-1642.
-
(1998)
Oncogene
, vol.16
, pp. 1639-1642
-
-
Tibiletti, M.G.1
-
70
-
-
84922468705
-
Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport
-
Yang C., et al. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol. Cell 2014, 56:414-424.
-
(2014)
Mol. Cell
, vol.56
, pp. 414-424
-
-
Yang, C.1
-
71
-
-
75549083303
-
Tumor heterogeneity: causes and consequences
-
Marusyk A., Polyak K. Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta 2010, 1805:105-117.
-
(2010)
Biochim. Biophys. Acta
, vol.1805
, pp. 105-117
-
-
Marusyk, A.1
Polyak, K.2
-
72
-
-
84941955458
-
Intratumoral heterogeneity: from diversity comes resistance
-
Pribluda A., et al. Intratumoral heterogeneity: from diversity comes resistance. Clin. Cancer Res. 2015, 21:2916-2923.
-
(2015)
Clin. Cancer Res.
, vol.21
, pp. 2916-2923
-
-
Pribluda, A.1
-
73
-
-
84857485231
-
Intratumoral heterogeneity in the self-renewal and tumorigenic differentiation of ovarian cancer
-
Abelson S., et al. Intratumoral heterogeneity in the self-renewal and tumorigenic differentiation of ovarian cancer. Stem Cells 2012, 30:415-424.
-
(2012)
Stem Cells
, vol.30
, pp. 415-424
-
-
Abelson, S.1
-
74
-
-
84927959720
-
Prognostic implication of intratumoral metabolic heterogeneity in invasive ductal carcinoma of the breast
-
Son S.H., et al. Prognostic implication of intratumoral metabolic heterogeneity in invasive ductal carcinoma of the breast. BMC Cancer 2014, 14:585.
-
(2014)
BMC Cancer
, vol.14
, pp. 585
-
-
Son, S.H.1
-
75
-
-
57449097020
-
Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice
-
Sonveaux P., et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 2008, 118:3930-3942.
-
(2008)
J. Clin. Invest.
, vol.118
, pp. 3930-3942
-
-
Sonveaux, P.1
-
76
-
-
84910097093
-
Glucose-lactate metabolic cooperation in cancer: insights from a spatial mathematical model and implications for targeted therapy
-
McGillen J.B., et al. Glucose-lactate metabolic cooperation in cancer: insights from a spatial mathematical model and implications for targeted therapy. J. Theor. Biol. 2014, 361:190-203.
-
(2014)
J. Theor. Biol.
, vol.361
, pp. 190-203
-
-
McGillen, J.B.1
-
77
-
-
84897544161
-
Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth
-
Martinez-Outschoorn U.E., et al. Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin. Cancer Biol. 2014, 25:47-60.
-
(2014)
Semin. Cancer Biol.
, vol.25
, pp. 47-60
-
-
Martinez-Outschoorn, U.E.1
-
78
-
-
84867112200
-
Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay
-
Fiaschi T., et al. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res. 2012, 72:5130-5140.
-
(2012)
Cancer Res.
, vol.72
, pp. 5130-5140
-
-
Fiaschi, T.1
-
79
-
-
84920616812
-
PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis
-
LeBleu V.S., et al. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 2014, 16:992-1003.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 992-1003
-
-
LeBleu, V.S.1
-
80
-
-
84908270276
-
Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial-mesenchymal transition
-
Hamabe A., et al. Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial-mesenchymal transition. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:15526-15531.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 15526-15531
-
-
Hamabe, A.1
-
81
-
-
84896929687
-
Metabolic requirements for the maintenance of self-renewing stem cells
-
Ito K., Suda T. Metabolic requirements for the maintenance of self-renewing stem cells. Nat. Rev. Mol. Cell Biol. 2014, 15:243-256.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 243-256
-
-
Ito, K.1
Suda, T.2
-
82
-
-
80053916176
-
Metabolic regulation of hematopoietic stem cells in the hypoxic niche
-
Suda T., et al. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 2011, 9:298-310.
-
(2011)
Cell Stem Cell
, vol.9
, pp. 298-310
-
-
Suda, T.1
-
83
-
-
84907457584
-
Redox and metabolic regulation of stem/progenitor cells and their niche
-
Ushio-Fukai M., Rehman J. Redox and metabolic regulation of stem/progenitor cells and their niche. Antioxid. Redox Signal. 2014, 21:1587-1590.
-
(2014)
Antioxid. Redox Signal.
, vol.21
, pp. 1587-1590
-
-
Ushio-Fukai, M.1
Rehman, J.2
-
84
-
-
84942843640
-
Differentiate or die: 3-bromopyruvate and pluripotency in mouse embryonic stem cells
-
Rodrigues A.S., et al. Differentiate or die: 3-bromopyruvate and pluripotency in mouse embryonic stem cells. PLoS ONE 2015, 10:e0135617.
-
(2015)
PLoS ONE
, vol.10
, pp. e0135617
-
-
Rodrigues, A.S.1
-
85
-
-
84881056831
-
MYC, metabolism, cell growth, and tumorigenesis
-
Dang C.V. MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb. Perspect. Med. 2013, 3:1-15.
-
(2013)
Cold Spring Harb. Perspect. Med.
, vol.3
, pp. 1-15
-
-
Dang, C.V.1
-
86
-
-
8644219660
-
C-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation
-
Wilson A., et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 2004, 18:2747-2763.
-
(2004)
Genes Dev.
, vol.18
, pp. 2747-2763
-
-
Wilson, A.1
-
87
-
-
77954142510
-
Myc maintains embryonic stem cell pluripotency and self-renewal
-
Varlakhanova N.V., et al. Myc maintains embryonic stem cell pluripotency and self-renewal. Differentiation 2010, 80:9-19.
-
(2010)
Differentiation
, vol.80
, pp. 9-19
-
-
Varlakhanova, N.V.1
-
88
-
-
0033587146
-
The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis
-
Maxwell P.H., et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999, 399:271-275.
-
(1999)
Nature
, vol.399
, pp. 271-275
-
-
Maxwell, P.H.1
-
89
-
-
0035834409
-
A conserved family of prolyl-4-hydroxylases that modify HIF
-
Bruick R.K., McKnight S.L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001, 294:1337-1340.
-
(2001)
Science
, vol.294
, pp. 1337-1340
-
-
Bruick, R.K.1
McKnight, S.L.2
-
90
-
-
0035937715
-
Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia
-
Chen C., et al. Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J. Biol. Chem. 2001, 276:9519-9525.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 9519-9525
-
-
Chen, C.1
-
91
-
-
0031016301
-
Induction of hypoxia-inducible factor-1, erythropoietin, vascular endothelial growth factor, and glucose transporter-1 by hypoxia: evidence against a regulatory role for Src kinase
-
Gleadle J.M., Ratcliffe P.J. Induction of hypoxia-inducible factor-1, erythropoietin, vascular endothelial growth factor, and glucose transporter-1 by hypoxia: evidence against a regulatory role for Src kinase. Blood 1997, 89:503-509.
-
(1997)
Blood
, vol.89
, pp. 503-509
-
-
Gleadle, J.M.1
Ratcliffe, P.J.2
-
92
-
-
0035900767
-
Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions
-
Mathupala S.P., et al. Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J. Biol. Chem. 2001, 276:43407-43412.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 43407-43412
-
-
Mathupala, S.P.1
-
93
-
-
15444342958
-
2 homeostasis by hypoxia-inducible factor 1 alpha
-
2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998, 12:149-162.
-
(1998)
Genes Dev.
, vol.12
, pp. 149-162
-
-
Iyer, N.V.1
-
94
-
-
0030460724
-
Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1
-
Semenza G.L., et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 1996, 271:32529-32537.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 32529-32537
-
-
Semenza, G.L.1
-
95
-
-
33646917296
-
The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism
-
Ullah M.S., et al. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J. Biol. Chem. 2006, 281:9030-9037.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 9030-9037
-
-
Ullah, M.S.1
-
96
-
-
84892547584
-
Oxygen tension controls the expression of the monocarboxylate transporter MCT4 in cultured mouse cortical astrocytes via a hypoxia-inducible factor-1α-mediated transcriptional regulation
-
Rosafio K., Pellerin L. Oxygen tension controls the expression of the monocarboxylate transporter MCT4 in cultured mouse cortical astrocytes via a hypoxia-inducible factor-1α-mediated transcriptional regulation. Glia 2014, 62:477-490.
-
(2014)
Glia
, vol.62
, pp. 477-490
-
-
Rosafio, K.1
Pellerin, L.2
-
97
-
-
33644614520
-
HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia
-
Kim J-W., et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006, 3:177-185.
-
(2006)
Cell Metab.
, vol.3
, pp. 177-185
-
-
Kim, J.-W.1
-
98
-
-
33644622570
-
HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption
-
Papandreou I., et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006, 3:187-197.
-
(2006)
Cell Metab.
, vol.3
, pp. 187-197
-
-
Papandreou, I.1
-
99
-
-
50149097983
-
Hypoxia, HIF1 and glucose metabolism in the solid tumour
-
Denko N.C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer 2008, 8:705-713.
-
(2008)
Nat. Rev. Cancer
, vol.8
, pp. 705-713
-
-
Denko, N.C.1
-
100
-
-
84655161946
-
HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression
-
Keith B., et al. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 2012, 12:9-22.
-
(2012)
Nat. Rev. Cancer
, vol.12
, pp. 9-22
-
-
Keith, B.1
-
101
-
-
84883501150
-
HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations
-
Semenza G.L. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Invest. 2013, 123:3664-3671.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 3664-3671
-
-
Semenza, G.L.1
-
102
-
-
84906719808
-
Hypoxic regulation of metabolism offers new opportunities for anticancer therapy
-
Denko N.C. Hypoxic regulation of metabolism offers new opportunities for anticancer therapy. Expert Rev. Anticancer Ther. 2014, 14:979-981.
-
(2014)
Expert Rev. Anticancer Ther.
, vol.14
, pp. 979-981
-
-
Denko, N.C.1
-
103
-
-
84947202428
-
HIF-1α pathway: role, regulation and intervention for cancer therapy
-
Masoud G.N., Li W. HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm. Sin. B 2015, 5:378-389.
-
(2015)
Acta Pharm. Sin. B
, vol.5
, pp. 378-389
-
-
Masoud, G.N.1
Li, W.2
|