메뉴 건너뛰기




Volumn 41, Issue 3, 2016, Pages 219-230

Pyruvate and Metabolic Flexibility: Illuminating a Path Toward Selective Cancer Therapies

Author keywords

Cancer; Metabolic flexibility; Metabolic heterogeneity; Metabolism; Pyruvate; Stem cells

Indexed keywords

ADENOSINE TRIPHOSPHATE; CISPLATIN; DICHLOROACETIC ACID; GLUTAMATE DEHYDROGENASE; GLUTAMINASE; HYPOXIA INDUCIBLE FACTOR; LACTATE DEHYDROGENASE; MONOCARBOXYLATE TRANSPORTER; PLATINUM COMPLEX; PYRUVATE DEHYDROGENASE; PYRUVATE KINASE; PYRUVIC ACID;

EID: 84959467603     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2016.01.002     Document Type: Review
Times cited : (109)

References (103)
  • 1
    • 85031968901 scopus 로고    scopus 로고
    • In memory of Donald Nicholson
    • Azzi A. In memory of Donald Nicholson. IUBMB Life 2012, 648:659-660.
    • (2012) IUBMB Life , vol.648 , pp. 659-660
    • Azzi, A.1
  • 2
    • 84941236856 scopus 로고    scopus 로고
    • Effect of aging on muscle mitochondrial substrate utilization in humans
    • Petersen K.F., et al. Effect of aging on muscle mitochondrial substrate utilization in humans. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:11330-11334.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 11330-11334
    • Petersen, K.F.1
  • 3
    • 84872011926 scopus 로고    scopus 로고
    • Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells
    • Takubo K., et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 2013, 12:49-61.
    • (2013) Cell Stem Cell , vol.12 , pp. 49-61
    • Takubo, K.1
  • 4
    • 84872037830 scopus 로고    scopus 로고
    • Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation
    • Yu W-M., et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 2013, 12:62-74.
    • (2013) Cell Stem Cell , vol.12 , pp. 62-74
    • Yu, W.-M.1
  • 5
    • 84922430730 scopus 로고    scopus 로고
    • Regulation of substrate utilization by the mitochondrial pyruvate carrier
    • Vacanti N.M., et al. Regulation of substrate utilization by the mitochondrial pyruvate carrier. Mol. Cell 2014, 56:425-435.
    • (2014) Mol. Cell , vol.56 , pp. 425-435
    • Vacanti, N.M.1
  • 6
    • 84943449494 scopus 로고    scopus 로고
    • Hepatic mitochondrial pyruvate carrier 1 is required for efficient regulation of gluconeogenesis and whole-body glucose homeostasis
    • Gray L.R., et al. Hepatic mitochondrial pyruvate carrier 1 is required for efficient regulation of gluconeogenesis and whole-body glucose homeostasis. Cell Metab. 2015, 22:669-681.
    • (2015) Cell Metab. , vol.22 , pp. 669-681
    • Gray, L.R.1
  • 7
    • 84943455850 scopus 로고    scopus 로고
    • Loss of mitochondrial pyruvate carrier 2 in the liver leads to defects in gluconeogenesis and compensation via pyruvate-alanine cycling
    • McCommis K.S., et al. Loss of mitochondrial pyruvate carrier 2 in the liver leads to defects in gluconeogenesis and compensation via pyruvate-alanine cycling. Cell Metab. 2015, 22:682-694.
    • (2015) Cell Metab. , vol.22 , pp. 682-694
    • McCommis, K.S.1
  • 8
    • 0014702860 scopus 로고
    • Increased glycolytic metabolism in cardiac hypertrophy and congestive failure
    • Bishop S.P., Altschuld R.A. Increased glycolytic metabolism in cardiac hypertrophy and congestive failure. Am. J. Physiol. 1970, 218:153-159.
    • (1970) Am. J. Physiol. , vol.218 , pp. 153-159
    • Bishop, S.P.1    Altschuld, R.A.2
  • 9
    • 84884550495 scopus 로고    scopus 로고
    • Hypoxic regulation of hand1 controls the fetal-neonatal switch in cardiac metabolism
    • Breckenridge R.A., et al. Hypoxic regulation of hand1 controls the fetal-neonatal switch in cardiac metabolism. PLoS Biol. 2013, 11:e1001666.
    • (2013) PLoS Biol. , vol.11 , pp. e1001666
    • Breckenridge, R.A.1
  • 10
    • 0033711215 scopus 로고    scopus 로고
    • Improved energy homeostasis of the heart in the metabolic state of exercise
    • Goodwin G.W., et al. Improved energy homeostasis of the heart in the metabolic state of exercise. Am. J. Physiol. Heart Circ. Physiol. 2000, 279:H1490-H1501.
    • (2000) Am. J. Physiol. Heart Circ. Physiol. , vol.279 , pp. H1490-H1501
    • Goodwin, G.W.1
  • 11
    • 84891350842 scopus 로고    scopus 로고
    • Failing mouse hearts utilize energy inefficiently and benefit from improved coupling of glycolysis and glucose oxidation
    • Masoud W.G.T., et al. Failing mouse hearts utilize energy inefficiently and benefit from improved coupling of glycolysis and glucose oxidation. Cardiovasc. Res. 2014, 101:30-38.
    • (2014) Cardiovasc. Res. , vol.101 , pp. 30-38
    • Masoud, W.G.T.1
  • 12
    • 84862867814 scopus 로고    scopus 로고
    • Availability of energetic substrates and exercise performance in heart failure with or without diabetes
    • Melenovsky V., et al. Availability of energetic substrates and exercise performance in heart failure with or without diabetes. Eur. J. Heart Fail. 2012, 14:754-763.
    • (2012) Eur. J. Heart Fail. , vol.14 , pp. 754-763
    • Melenovsky, V.1
  • 13
    • 84860134902 scopus 로고    scopus 로고
    • Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury
    • Ussher J.R., et al. Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury. Cardiovasc. Res. 2012, 94:359-369.
    • (2012) Cardiovasc. Res. , vol.94 , pp. 359-369
    • Ussher, J.R.1
  • 14
    • 84883562084 scopus 로고    scopus 로고
    • Cardiac metabolism in heart failure: implications beyond ATP production
    • Doenst T., et al. Cardiac metabolism in heart failure: implications beyond ATP production. Circ. Res. 2013, 113:709-724.
    • (2013) Circ. Res. , vol.113 , pp. 709-724
    • Doenst, T.1
  • 15
    • 84955512160 scopus 로고    scopus 로고
    • Defective expression of the mitochondrial-tRNA modifying enzyme GTPBP3 triggers AMPK-mediated adaptive responses involving complex i assembly factors, uncoupling protein 2, and the mitochondrial pyruvate carrier
    • Martínez-Zamora A., et al. Defective expression of the mitochondrial-tRNA modifying enzyme GTPBP3 triggers AMPK-mediated adaptive responses involving complex i assembly factors, uncoupling protein 2, and the mitochondrial pyruvate carrier. PLoS ONE 2015, 10:e0144273.
    • (2015) PLoS ONE , vol.10 , pp. e0144273
    • Martínez-Zamora, A.1
  • 16
    • 84955487681 scopus 로고    scopus 로고
    • Analysis of mitochondrial proteins in the surviving myocardium after ischemia identifies mitochondrial pyruvate carrier expression as possible mediator of tissue viability
    • Fernandez-Caggiano M., et al. Analysis of mitochondrial proteins in the surviving myocardium after ischemia identifies mitochondrial pyruvate carrier expression as possible mediator of tissue viability. Mol. Cell Proteomics 2016, 15:246-255.
    • (2016) Mol. Cell Proteomics , vol.15 , pp. 246-255
    • Fernandez-Caggiano, M.1
  • 17
    • 0242553503 scopus 로고
    • A note on the beneficial effect of the ingestion of cane sugar in certain forms of heart disease
    • Goulston A. A note on the beneficial effect of the ingestion of cane sugar in certain forms of heart disease. BMJ 1911, 1:615.
    • (1911) BMJ , vol.1 , pp. 615
    • Goulston, A.1
  • 18
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: the next generation
    • Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 19
    • 80052744948 scopus 로고    scopus 로고
    • SDH mutations in cancer
    • Bardella C., et al. SDH mutations in cancer. Biochim. Biophys. Acta 2011, 1807:1432-1443.
    • (2011) Biochim. Biophys. Acta , vol.1807 , pp. 1432-1443
    • Bardella, C.1
  • 20
    • 33746930794 scopus 로고    scopus 로고
    • Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer
    • King A., et al. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 2006, 25:4675-4682.
    • (2006) Oncogene , vol.25 , pp. 4675-4682
    • King, A.1
  • 21
    • 77952885778 scopus 로고    scopus 로고
    • Succinate dehydrogenase - assembly, regulation and role in human disease
    • Rutter J., et al. Succinate dehydrogenase - assembly, regulation and role in human disease. Mitochondrion 2010, 10:393-401.
    • (2010) Mitochondrion , vol.10 , pp. 393-401
    • Rutter, J.1
  • 22
    • 85006768050 scopus 로고
    • The metabolism of tumors in the body
    • Warburg O., et al. The metabolism of tumors in the body. J. Gen. Physiol. 1927, 8:519-530.
    • (1927) J. Gen. Physiol. , vol.8 , pp. 519-530
    • Warburg, O.1
  • 23
    • 84863397848 scopus 로고    scopus 로고
    • The monocarboxylate transporter family - role and regulation
    • Halestrap A.P., Wilson M.C. The monocarboxylate transporter family - role and regulation. IUBMB Life 2012, 64:109-119.
    • (2012) IUBMB Life , vol.64 , pp. 109-119
    • Halestrap, A.P.1    Wilson, M.C.2
  • 24
    • 84855444042 scopus 로고    scopus 로고
    • The monocarboxylate transporter family - structure and functional characterization
    • Halestrap A.P. The monocarboxylate transporter family - structure and functional characterization. IUBMB Life 2012, 64:1-9.
    • (2012) IUBMB Life , vol.64 , pp. 1-9
    • Halestrap, A.P.1
  • 25
    • 84925969707 scopus 로고    scopus 로고
    • Metabolic pathways promoting cancer cell survival and growth
    • Boroughs L.K., DeBerardinis R.J. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 2015, 17:351-359.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 351-359
    • Boroughs, L.K.1    DeBerardinis, R.J.2
  • 26
    • 84947704464 scopus 로고    scopus 로고
    • Cancer's fuel choice: new flavors for a picky eater
    • DeNicola G.M., Cantley L.C. Cancer's fuel choice: new flavors for a picky eater. Mol. Cell 2015, 60:514-523.
    • (2015) Mol. Cell , vol.60 , pp. 514-523
    • DeNicola, G.M.1    Cantley, L.C.2
  • 27
    • 84906334150 scopus 로고    scopus 로고
    • The multifaceted regulation and functions of PKM2 in tumor progression
    • Li Z., et al. The multifaceted regulation and functions of PKM2 in tumor progression. Biochim. Biophys. Acta 2014, 1846:285-296.
    • (2014) Biochim. Biophys. Acta , vol.1846 , pp. 285-296
    • Li, Z.1
  • 28
    • 84907983333 scopus 로고    scopus 로고
    • Tissue-specific isoform switch and DNA hypomethylation of the pyruvate kinase PKM gene in human cancers
    • Desai S., et al. Tissue-specific isoform switch and DNA hypomethylation of the pyruvate kinase PKM gene in human cancers. Oncotarget 2013, 5:8202-8210.
    • (2013) Oncotarget , vol.5 , pp. 8202-8210
    • Desai, S.1
  • 29
    • 40749099894 scopus 로고    scopus 로고
    • Pyruvate kinase M2 is a phosphotyrosine-binding protein
    • Christofk H.R., et al. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 2008, 452:181-186.
    • (2008) Nature , vol.452 , pp. 181-186
    • Christofk, H.R.1
  • 30
    • 40749163248 scopus 로고    scopus 로고
    • The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth
    • Christofk H.R., et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008, 452:230-233.
    • (2008) Nature , vol.452 , pp. 230-233
    • Christofk, H.R.1
  • 31
    • 84879040174 scopus 로고    scopus 로고
    • Protein tyrosine phosphatase 1B regulates pyruvate kinase M2 tyrosine phosphorylation
    • Bettaieb A., et al. Protein tyrosine phosphatase 1B regulates pyruvate kinase M2 tyrosine phosphorylation. J. Biol. Chem. 2013, 288:17360-17371.
    • (2013) J. Biol. Chem. , vol.288 , pp. 17360-17371
    • Bettaieb, A.1
  • 32
    • 84866842363 scopus 로고    scopus 로고
    • Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis
    • Anastasiou D., et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat. Chem. Biol. 2012, 8:839-847.
    • (2012) Nat. Chem. Biol. , vol.8 , pp. 839-847
    • Anastasiou, D.1
  • 33
    • 84920447418 scopus 로고    scopus 로고
    • Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation
    • Lunt S.Y., et al. Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol. Cell 2015, 57:95-107.
    • (2015) Mol. Cell , vol.57 , pp. 95-107
    • Lunt, S.Y.1
  • 34
    • 84938232611 scopus 로고    scopus 로고
    • An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis
    • Birsoy K., et al. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 2015, 162:540-551.
    • (2015) Cell , vol.162 , pp. 540-551
    • Birsoy, K.1
  • 35
    • 84938234308 scopus 로고    scopus 로고
    • Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells
    • Sullivan L.B., et al. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 2015, 162:552-563.
    • (2015) Cell , vol.162 , pp. 552-563
    • Sullivan, L.B.1
  • 36
    • 84888433384 scopus 로고    scopus 로고
    • Lactate dehydrogenase a in cancer: a promising target for diagnosis and therapy
    • Miao P., et al. Lactate dehydrogenase a in cancer: a promising target for diagnosis and therapy. IUBMB Life 2013, 65:904-910.
    • (2013) IUBMB Life , vol.65 , pp. 904-910
    • Miao, P.1
  • 37
    • 76649126249 scopus 로고    scopus 로고
    • Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression
    • Le A., et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:2037-2042.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 2037-2042
    • Le, A.1
  • 38
    • 33744783432 scopus 로고    scopus 로고
    • Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance
    • Fantin V.R., et al. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 2006, 9:425-434.
    • (2006) Cancer Cell , vol.9 , pp. 425-434
    • Fantin, V.R.1
  • 39
    • 84900296103 scopus 로고    scopus 로고
    • Targeting lactate dehydrogenase-A inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor-initiating cells
    • Xie H., et al. Targeting lactate dehydrogenase-A inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor-initiating cells. Cell Metab. 2014, 19:795-809.
    • (2014) Cell Metab. , vol.19 , pp. 795-809
    • Xie, H.1
  • 40
    • 84867097473 scopus 로고    scopus 로고
    • Knockdown of lactate dehydrogenase A suppresses tumor growth and metastasis of human hepatocellular carcinoma
    • Sheng S.L., et al. Knockdown of lactate dehydrogenase A suppresses tumor growth and metastasis of human hepatocellular carcinoma. FEBS J. 2012, 279:3898-3910.
    • (2012) FEBS J. , vol.279 , pp. 3898-3910
    • Sheng, S.L.1
  • 41
    • 84939248200 scopus 로고    scopus 로고
    • Lactate dehydrogenase A negatively regulated by miRNAs promotes aerobic glycolysis and is increased in colorectal cancer
    • Wang J., et al. Lactate dehydrogenase A negatively regulated by miRNAs promotes aerobic glycolysis and is increased in colorectal cancer. Oncotarget 2015, 6:19456-19468.
    • (2015) Oncotarget , vol.6 , pp. 19456-19468
    • Wang, J.1
  • 42
    • 84900462660 scopus 로고    scopus 로고
    • Monocarboxylate transporter 4 facilitates cell proliferation and migration and is associated with poor prognosis in oral squamous cell carcinoma patients
    • Zhu J., et al. Monocarboxylate transporter 4 facilitates cell proliferation and migration and is associated with poor prognosis in oral squamous cell carcinoma patients. PLoS ONE 2014, 9:e87904.
    • (2014) PLoS ONE , vol.9 , pp. e87904
    • Zhu, J.1
  • 43
    • 84858710602 scopus 로고    scopus 로고
    • Using the 'reverse Warburg effect' to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers
    • Witkiewicz A.K., et al. Using the 'reverse Warburg effect' to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle 2012, 11:1108-1117.
    • (2012) Cell Cycle , vol.11 , pp. 1108-1117
    • Witkiewicz, A.K.1
  • 44
    • 84855370259 scopus 로고    scopus 로고
    • Prognostic significance of monocarboxylate transporter 4 expression in patients with colorectal cancer
    • Nakayama Y. Prognostic significance of monocarboxylate transporter 4 expression in patients with colorectal cancer. Exp. Ther. Med. 2012, 3:25-30.
    • (2012) Exp. Ther. Med. , vol.3 , pp. 25-30
    • Nakayama, Y.1
  • 45
    • 84919863195 scopus 로고    scopus 로고
    • MCT4 defines a glycolytic subtype of pancreatic cancer with poor prognosis and unique metabolic dependencies
    • Baek G., et al. MCT4 defines a glycolytic subtype of pancreatic cancer with poor prognosis and unique metabolic dependencies. Cell Rep. 2014, 9:2233-2249.
    • (2014) Cell Rep. , vol.9 , pp. 2233-2249
    • Baek, G.1
  • 46
    • 77957234813 scopus 로고    scopus 로고
    • Co-expression of CD147 (EMMPRIN), CD44v3-10, MDR1 and monocarboxylate transporters is associated with prostate cancer drug resistance and progression
    • Hao J., et al. Co-expression of CD147 (EMMPRIN), CD44v3-10, MDR1 and monocarboxylate transporters is associated with prostate cancer drug resistance and progression. Br. J. Cancer 2010, 103:1008-1018.
    • (2010) Br. J. Cancer , vol.103 , pp. 1008-1018
    • Hao, J.1
  • 47
    • 84863553135 scopus 로고    scopus 로고
    • Identification and functional expression of the mitochondrial pyruvate carrier
    • Herzig S., et al. Identification and functional expression of the mitochondrial pyruvate carrier. Science 2012, 337:93-96.
    • (2012) Science , vol.337 , pp. 93-96
    • Herzig, S.1
  • 48
    • 84863552418 scopus 로고    scopus 로고
    • A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans
    • Bricker D.K., et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 2012, 337:96-100.
    • (2012) Science , vol.337 , pp. 96-100
    • Bricker, D.K.1
  • 49
    • 84922445353 scopus 로고    scopus 로고
    • A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth
    • Schell J.C., et al. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol. Cell 2014, 56:400-413.
    • (2014) Mol. Cell , vol.56 , pp. 400-413
    • Schell, J.C.1
  • 50
    • 84949626501 scopus 로고    scopus 로고
    • Sirt3 binds to and deacetylates mitochondrial pyruvate carrier 1 to enhance its activity
    • Liang L., et al. Sirt3 binds to and deacetylates mitochondrial pyruvate carrier 1 to enhance its activity. Biochem. Biophys. Res. Commun. 2015, 468:807-812.
    • (2015) Biochem. Biophys. Res. Commun. , vol.468 , pp. 807-812
    • Liang, L.1
  • 51
    • 84878679199 scopus 로고    scopus 로고
    • A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence
    • Kaplon J., et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 2013, 498:109-112.
    • (2013) Nature , vol.498 , pp. 109-112
    • Kaplon, J.1
  • 52
    • 84872548105 scopus 로고    scopus 로고
    • PDK1 inhibition is a novel therapeutic target in multiple myeloma
    • Fujiwara S., et al. PDK1 inhibition is a novel therapeutic target in multiple myeloma. Br. J. Cancer 2013, 108:170-178.
    • (2013) Br. J. Cancer , vol.108 , pp. 170-178
    • Fujiwara, S.1
  • 53
    • 84255162057 scopus 로고    scopus 로고
    • Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism
    • Hitosugi T., et al. Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism. Mol. Cell 2011, 44:864-877.
    • (2011) Mol. Cell , vol.44 , pp. 864-877
    • Hitosugi, T.1
  • 54
    • 84919936304 scopus 로고    scopus 로고
    • Acetate dependence of tumors
    • Comerford S.A., et al. Acetate dependence of tumors. Cell 2014, 159:1591-1602.
    • (2014) Cell , vol.159 , pp. 1591-1602
    • Comerford, S.A.1
  • 55
    • 84947648620 scopus 로고    scopus 로고
    • Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress
    • Schug Z.T., et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 2015, 27:57-71.
    • (2015) Cancer Cell , vol.27 , pp. 57-71
    • Schug, Z.T.1
  • 56
    • 84919903877 scopus 로고    scopus 로고
    • Acetate is a bioenergetic substrate for human glioblastoma and brain metastases
    • Mashimo T., et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 2014, 159:1603-1614.
    • (2014) Cell , vol.159 , pp. 1603-1614
    • Mashimo, T.1
  • 57
    • 0014712806 scopus 로고
    • Diisopropylammonium dichloroacetate (DIPA) and sodium dichloracetate (DCA): effect on glucose and fat metabolism in normal and diabetic tissue
    • Stacpoole P.W., Felts J.M. Diisopropylammonium dichloroacetate (DIPA) and sodium dichloracetate (DCA): effect on glucose and fat metabolism in normal and diabetic tissue. Metab. Clin. Exp. 1970, 19:71-78.
    • (1970) Metab. Clin. Exp. , vol.19 , pp. 71-78
    • Stacpoole, P.W.1    Felts, J.M.2
  • 58
    • 0016285850 scopus 로고
    • Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids
    • Whitehouse S., et al. Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids. Biochem. J. 1974, 141:761-774.
    • (1974) Biochem. J. , vol.141 , pp. 761-774
    • Whitehouse, S.1
  • 59
    • 33846002728 scopus 로고    scopus 로고
    • + channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth
    • + channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 2007, 11:37-51.
    • (2007) Cancer Cell , vol.11 , pp. 37-51
    • Bonnet, S.1
  • 60
    • 84878655372 scopus 로고    scopus 로고
    • Case report: sodium dichloroacetate (DCA) inhibition of the 'Warburg effect' in a human cancer patient: complete response in non-Hodgkin's lymphoma after disease progression with rituximab-CHOP
    • Strum S.B., et al. Case report: sodium dichloroacetate (DCA) inhibition of the 'Warburg effect' in a human cancer patient: complete response in non-Hodgkin's lymphoma after disease progression with rituximab-CHOP. J. Bioenerg. Biomembr. 2012, 45:307-315.
    • (2012) J. Bioenerg. Biomembr. , vol.45 , pp. 307-315
    • Strum, S.B.1
  • 61
    • 77957170568 scopus 로고    scopus 로고
    • In vitro cytotoxicity of combinations of dichloroacetate with anticancer platinum compounds
    • Olszewski U., et al. In vitro cytotoxicity of combinations of dichloroacetate with anticancer platinum compounds. Clin. Pharmacol. 2010, 2:177-183.
    • (2010) Clin. Pharmacol. , vol.2 , pp. 177-183
    • Olszewski, U.1
  • 62
    • 84896706932 scopus 로고    scopus 로고
    • Dichloroacetate should be considered with platinum-based chemotherapy in hypoxic tumors rather than as a single agent in advanced non-small cell lung cancer
    • Garon E.B., et al. Dichloroacetate should be considered with platinum-based chemotherapy in hypoxic tumors rather than as a single agent in advanced non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 2014, 140:443-452.
    • (2014) J. Cancer Res. Clin. Oncol. , vol.140 , pp. 443-452
    • Garon, E.B.1
  • 63
    • 85031968850 scopus 로고    scopus 로고
    • Activation of mitochondrial oxidation by PDK2 inhibition reverses cisplatin resistance in head and neck cancer
    • Roh J-L., et al. Activation of mitochondrial oxidation by PDK2 inhibition reverses cisplatin resistance in head and neck cancer. Cancer Lett. 2015.
    • (2015) Cancer Lett.
    • Roh, J.-L.1
  • 64
    • 84962275538 scopus 로고    scopus 로고
    • Inhibition of the pentose phosphate pathway by dichloroacetate unravels a missing link between aerobic glycolysis and cancer cell proliferation
    • Published online November 2, 2015
    • De Preter G., et al. Inhibition of the pentose phosphate pathway by dichloroacetate unravels a missing link between aerobic glycolysis and cancer cell proliferation. Oncotarget 2015, 5. Published online November 2, 2015. 10.18632/oncotarget.6272.
    • (2015) Oncotarget , vol.5
    • De Preter, G.1
  • 65
    • 84922005457 scopus 로고    scopus 로고
    • Dichloroacetate affects proliferation but not survival of human colorectal cancer cells
    • Delaney L.M., et al. Dichloroacetate affects proliferation but not survival of human colorectal cancer cells. Apoptosis 2015, 20:63-74.
    • (2015) Apoptosis , vol.20 , pp. 63-74
    • Delaney, L.M.1
  • 66
    • 84921260111 scopus 로고    scopus 로고
    • Pyruvate dehydrogenase kinase expression and metabolic changes following dichloroacetate exposure in anoxic human colorectal cancer cells
    • Ho N., Coomber B.L. Pyruvate dehydrogenase kinase expression and metabolic changes following dichloroacetate exposure in anoxic human colorectal cancer cells. Exp. Cell Res. 2015, 331:73-81.
    • (2015) Exp. Cell Res. , vol.331 , pp. 73-81
    • Ho, N.1    Coomber, B.L.2
  • 67
    • 77956231630 scopus 로고    scopus 로고
    • Sodium dichloroacetate (DCA) reduces apoptosis in colorectal tumor hypoxia
    • Shahrzad S., et al. Sodium dichloroacetate (DCA) reduces apoptosis in colorectal tumor hypoxia. Cancer Lett. 2010, 297:75-83.
    • (2010) Cancer Lett. , vol.297 , pp. 75-83
    • Shahrzad, S.1
  • 68
    • 84959492726 scopus 로고    scopus 로고
    • DCA promotes progression of neuroblastoma tumors in nude mice
    • Feuerecker B., et al. DCA promotes progression of neuroblastoma tumors in nude mice. Am. J. Cancer Res. 2015, 5:812-820.
    • (2015) Am. J. Cancer Res. , vol.5 , pp. 812-820
    • Feuerecker, B.1
  • 69
    • 6844257519 scopus 로고    scopus 로고
    • Physical map of the D6S149-D6S193 region on chromosome 6Q27 and its involvement in benign surface epithelial ovarian tumours
    • Tibiletti M.G., et al. Physical map of the D6S149-D6S193 region on chromosome 6Q27 and its involvement in benign surface epithelial ovarian tumours. Oncogene 1998, 16:1639-1642.
    • (1998) Oncogene , vol.16 , pp. 1639-1642
    • Tibiletti, M.G.1
  • 70
    • 84922468705 scopus 로고    scopus 로고
    • Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport
    • Yang C., et al. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol. Cell 2014, 56:414-424.
    • (2014) Mol. Cell , vol.56 , pp. 414-424
    • Yang, C.1
  • 71
    • 75549083303 scopus 로고    scopus 로고
    • Tumor heterogeneity: causes and consequences
    • Marusyk A., Polyak K. Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta 2010, 1805:105-117.
    • (2010) Biochim. Biophys. Acta , vol.1805 , pp. 105-117
    • Marusyk, A.1    Polyak, K.2
  • 72
    • 84941955458 scopus 로고    scopus 로고
    • Intratumoral heterogeneity: from diversity comes resistance
    • Pribluda A., et al. Intratumoral heterogeneity: from diversity comes resistance. Clin. Cancer Res. 2015, 21:2916-2923.
    • (2015) Clin. Cancer Res. , vol.21 , pp. 2916-2923
    • Pribluda, A.1
  • 73
    • 84857485231 scopus 로고    scopus 로고
    • Intratumoral heterogeneity in the self-renewal and tumorigenic differentiation of ovarian cancer
    • Abelson S., et al. Intratumoral heterogeneity in the self-renewal and tumorigenic differentiation of ovarian cancer. Stem Cells 2012, 30:415-424.
    • (2012) Stem Cells , vol.30 , pp. 415-424
    • Abelson, S.1
  • 74
    • 84927959720 scopus 로고    scopus 로고
    • Prognostic implication of intratumoral metabolic heterogeneity in invasive ductal carcinoma of the breast
    • Son S.H., et al. Prognostic implication of intratumoral metabolic heterogeneity in invasive ductal carcinoma of the breast. BMC Cancer 2014, 14:585.
    • (2014) BMC Cancer , vol.14 , pp. 585
    • Son, S.H.1
  • 75
    • 57449097020 scopus 로고    scopus 로고
    • Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice
    • Sonveaux P., et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 2008, 118:3930-3942.
    • (2008) J. Clin. Invest. , vol.118 , pp. 3930-3942
    • Sonveaux, P.1
  • 76
    • 84910097093 scopus 로고    scopus 로고
    • Glucose-lactate metabolic cooperation in cancer: insights from a spatial mathematical model and implications for targeted therapy
    • McGillen J.B., et al. Glucose-lactate metabolic cooperation in cancer: insights from a spatial mathematical model and implications for targeted therapy. J. Theor. Biol. 2014, 361:190-203.
    • (2014) J. Theor. Biol. , vol.361 , pp. 190-203
    • McGillen, J.B.1
  • 77
    • 84897544161 scopus 로고    scopus 로고
    • Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth
    • Martinez-Outschoorn U.E., et al. Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin. Cancer Biol. 2014, 25:47-60.
    • (2014) Semin. Cancer Biol. , vol.25 , pp. 47-60
    • Martinez-Outschoorn, U.E.1
  • 78
    • 84867112200 scopus 로고    scopus 로고
    • Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay
    • Fiaschi T., et al. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res. 2012, 72:5130-5140.
    • (2012) Cancer Res. , vol.72 , pp. 5130-5140
    • Fiaschi, T.1
  • 79
    • 84920616812 scopus 로고    scopus 로고
    • PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis
    • LeBleu V.S., et al. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 2014, 16:992-1003.
    • (2014) Nat. Cell Biol. , vol.16 , pp. 992-1003
    • LeBleu, V.S.1
  • 80
    • 84908270276 scopus 로고    scopus 로고
    • Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial-mesenchymal transition
    • Hamabe A., et al. Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial-mesenchymal transition. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:15526-15531.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 15526-15531
    • Hamabe, A.1
  • 81
    • 84896929687 scopus 로고    scopus 로고
    • Metabolic requirements for the maintenance of self-renewing stem cells
    • Ito K., Suda T. Metabolic requirements for the maintenance of self-renewing stem cells. Nat. Rev. Mol. Cell Biol. 2014, 15:243-256.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 243-256
    • Ito, K.1    Suda, T.2
  • 82
    • 80053916176 scopus 로고    scopus 로고
    • Metabolic regulation of hematopoietic stem cells in the hypoxic niche
    • Suda T., et al. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 2011, 9:298-310.
    • (2011) Cell Stem Cell , vol.9 , pp. 298-310
    • Suda, T.1
  • 83
    • 84907457584 scopus 로고    scopus 로고
    • Redox and metabolic regulation of stem/progenitor cells and their niche
    • Ushio-Fukai M., Rehman J. Redox and metabolic regulation of stem/progenitor cells and their niche. Antioxid. Redox Signal. 2014, 21:1587-1590.
    • (2014) Antioxid. Redox Signal. , vol.21 , pp. 1587-1590
    • Ushio-Fukai, M.1    Rehman, J.2
  • 84
    • 84942843640 scopus 로고    scopus 로고
    • Differentiate or die: 3-bromopyruvate and pluripotency in mouse embryonic stem cells
    • Rodrigues A.S., et al. Differentiate or die: 3-bromopyruvate and pluripotency in mouse embryonic stem cells. PLoS ONE 2015, 10:e0135617.
    • (2015) PLoS ONE , vol.10 , pp. e0135617
    • Rodrigues, A.S.1
  • 85
    • 84881056831 scopus 로고    scopus 로고
    • MYC, metabolism, cell growth, and tumorigenesis
    • Dang C.V. MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb. Perspect. Med. 2013, 3:1-15.
    • (2013) Cold Spring Harb. Perspect. Med. , vol.3 , pp. 1-15
    • Dang, C.V.1
  • 86
    • 8644219660 scopus 로고    scopus 로고
    • C-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation
    • Wilson A., et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 2004, 18:2747-2763.
    • (2004) Genes Dev. , vol.18 , pp. 2747-2763
    • Wilson, A.1
  • 87
    • 77954142510 scopus 로고    scopus 로고
    • Myc maintains embryonic stem cell pluripotency and self-renewal
    • Varlakhanova N.V., et al. Myc maintains embryonic stem cell pluripotency and self-renewal. Differentiation 2010, 80:9-19.
    • (2010) Differentiation , vol.80 , pp. 9-19
    • Varlakhanova, N.V.1
  • 88
    • 0033587146 scopus 로고    scopus 로고
    • The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis
    • Maxwell P.H., et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999, 399:271-275.
    • (1999) Nature , vol.399 , pp. 271-275
    • Maxwell, P.H.1
  • 89
    • 0035834409 scopus 로고    scopus 로고
    • A conserved family of prolyl-4-hydroxylases that modify HIF
    • Bruick R.K., McKnight S.L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001, 294:1337-1340.
    • (2001) Science , vol.294 , pp. 1337-1340
    • Bruick, R.K.1    McKnight, S.L.2
  • 90
    • 0035937715 scopus 로고    scopus 로고
    • Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia
    • Chen C., et al. Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J. Biol. Chem. 2001, 276:9519-9525.
    • (2001) J. Biol. Chem. , vol.276 , pp. 9519-9525
    • Chen, C.1
  • 91
    • 0031016301 scopus 로고    scopus 로고
    • Induction of hypoxia-inducible factor-1, erythropoietin, vascular endothelial growth factor, and glucose transporter-1 by hypoxia: evidence against a regulatory role for Src kinase
    • Gleadle J.M., Ratcliffe P.J. Induction of hypoxia-inducible factor-1, erythropoietin, vascular endothelial growth factor, and glucose transporter-1 by hypoxia: evidence against a regulatory role for Src kinase. Blood 1997, 89:503-509.
    • (1997) Blood , vol.89 , pp. 503-509
    • Gleadle, J.M.1    Ratcliffe, P.J.2
  • 92
    • 0035900767 scopus 로고    scopus 로고
    • Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions
    • Mathupala S.P., et al. Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J. Biol. Chem. 2001, 276:43407-43412.
    • (2001) J. Biol. Chem. , vol.276 , pp. 43407-43412
    • Mathupala, S.P.1
  • 93
    • 15444342958 scopus 로고    scopus 로고
    • 2 homeostasis by hypoxia-inducible factor 1 alpha
    • 2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998, 12:149-162.
    • (1998) Genes Dev. , vol.12 , pp. 149-162
    • Iyer, N.V.1
  • 94
    • 0030460724 scopus 로고    scopus 로고
    • Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1
    • Semenza G.L., et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 1996, 271:32529-32537.
    • (1996) J. Biol. Chem. , vol.271 , pp. 32529-32537
    • Semenza, G.L.1
  • 95
    • 33646917296 scopus 로고    scopus 로고
    • The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism
    • Ullah M.S., et al. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J. Biol. Chem. 2006, 281:9030-9037.
    • (2006) J. Biol. Chem. , vol.281 , pp. 9030-9037
    • Ullah, M.S.1
  • 96
    • 84892547584 scopus 로고    scopus 로고
    • Oxygen tension controls the expression of the monocarboxylate transporter MCT4 in cultured mouse cortical astrocytes via a hypoxia-inducible factor-1α-mediated transcriptional regulation
    • Rosafio K., Pellerin L. Oxygen tension controls the expression of the monocarboxylate transporter MCT4 in cultured mouse cortical astrocytes via a hypoxia-inducible factor-1α-mediated transcriptional regulation. Glia 2014, 62:477-490.
    • (2014) Glia , vol.62 , pp. 477-490
    • Rosafio, K.1    Pellerin, L.2
  • 97
    • 33644614520 scopus 로고    scopus 로고
    • HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia
    • Kim J-W., et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006, 3:177-185.
    • (2006) Cell Metab. , vol.3 , pp. 177-185
    • Kim, J.-W.1
  • 98
    • 33644622570 scopus 로고    scopus 로고
    • HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption
    • Papandreou I., et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006, 3:187-197.
    • (2006) Cell Metab. , vol.3 , pp. 187-197
    • Papandreou, I.1
  • 99
    • 50149097983 scopus 로고    scopus 로고
    • Hypoxia, HIF1 and glucose metabolism in the solid tumour
    • Denko N.C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer 2008, 8:705-713.
    • (2008) Nat. Rev. Cancer , vol.8 , pp. 705-713
    • Denko, N.C.1
  • 100
    • 84655161946 scopus 로고    scopus 로고
    • HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression
    • Keith B., et al. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 2012, 12:9-22.
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 9-22
    • Keith, B.1
  • 101
    • 84883501150 scopus 로고    scopus 로고
    • HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations
    • Semenza G.L. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Invest. 2013, 123:3664-3671.
    • (2013) J. Clin. Invest. , vol.123 , pp. 3664-3671
    • Semenza, G.L.1
  • 102
    • 84906719808 scopus 로고    scopus 로고
    • Hypoxic regulation of metabolism offers new opportunities for anticancer therapy
    • Denko N.C. Hypoxic regulation of metabolism offers new opportunities for anticancer therapy. Expert Rev. Anticancer Ther. 2014, 14:979-981.
    • (2014) Expert Rev. Anticancer Ther. , vol.14 , pp. 979-981
    • Denko, N.C.1
  • 103
    • 84947202428 scopus 로고    scopus 로고
    • HIF-1α pathway: role, regulation and intervention for cancer therapy
    • Masoud G.N., Li W. HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm. Sin. B 2015, 5:378-389.
    • (2015) Acta Pharm. Sin. B , vol.5 , pp. 378-389
    • Masoud, G.N.1    Li, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.