메뉴 건너뛰기




Volumn 56, Issue , 2016, Pages 191-209

Structure-Driven Developments of 26S Proteasome Inhibitors

Author keywords

19S regulatory particle; AAA ATPase; Deubiquitylation; Structure based drug design

Indexed keywords

19S PROTEASOME; 20S PROTEASOME; 26S PROTEASOME; 26S PROTEASOME INHIBITOR; ADENOSINE TRIPHOSPHATASE; ANTIINFECTIVE AGENT; ANTIPARASITIC AGENT; MACROCYCLIC COMPOUND; NATURAL PRODUCT; PROTEASOME; PROTEASOME INHIBITOR; SYRBACTIN DERIVATIVE; UBIQUITIN; UNCLASSIFIED DRUG; ATP DEPENDENT 26S PROTEASE;

EID: 84954168039     PISSN: 03621642     EISSN: 15454304     Source Type: Book Series    
DOI: 10.1146/annurev-pharmtox-010814-124727     Document Type: Article
Times cited : (22)

References (133)
  • 1
    • 0036083396 scopus 로고    scopus 로고
    • The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction
    • Glickman MH, Ciechanover A. 2002. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82(2):373-428
    • (2002) Physiol. Rev. , vol.82 , Issue.2 , pp. 373-428
    • Glickman, M.H.1    Ciechanover, A.2
  • 2
    • 65649115267 scopus 로고    scopus 로고
    • Recognition and processing of ubiquitin-protein conjugates by the proteasome
    • Finley D. 2009. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78:477-513
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 477-513
    • Finley, D.1
  • 3
    • 79952900728 scopus 로고    scopus 로고
    • Therapeutically targeting the SUMOylation, Ubiquitination and Proteasome pathways as a novel anticancer strategy
    • Driscoll JJ, Dechowdhury R. 2010. Therapeutically targeting the SUMOylation, Ubiquitination and Proteasome pathways as a novel anticancer strategy. Target. Oncol. 5(4):281-89
    • (2010) Target. Oncol. , vol.5 , Issue.4 , pp. 281-289
    • Driscoll, J.J.1    Dechowdhury, R.2
  • 5
    • 41549133200 scopus 로고    scopus 로고
    • Proteasome inhibitors in cancer therapy: Lessons from the first decade
    • Orlowski RZ, Kuhn DJ. 2008. Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin. Cancer Res. 14(6):1649-57
    • (2008) Clin. Cancer Res. , vol.14 , Issue.6 , pp. 1649-1657
    • Orlowski, R.Z.1    Kuhn, D.J.2
  • 6
    • 33745674468 scopus 로고    scopus 로고
    • Drug discovery in the ubiquitin-proteasome system
    • Nalepa G, Rolfe M, Harper JW. 2006. Drug discovery in the ubiquitin-proteasome system. Nat. Rev. Drug Discov. 5(7):596-613
    • (2006) Nat. Rev. Drug Discov. , vol.5 , Issue.7 , pp. 596-613
    • Nalepa, G.1    Rolfe, M.2    Harper, J.W.3
  • 7
    • 2342613652 scopus 로고    scopus 로고
    • The proteasome: A suitable antineoplastic target
    • Adams J. 2004. The proteasome: A suitable antineoplastic target. Nat. Rev. Cancer 4(5):349-60
    • (2004) Nat. Rev. Cancer , vol.4 , Issue.5 , pp. 349-360
    • Adams, J.1
  • 8
    • 0036217332 scopus 로고    scopus 로고
    • Proteasome inhibition: A novel approach to cancer therapy
    • Adams J. 2002. Proteasome inhibition: A novel approach to cancer therapy. Trends Mol. Med. 8(4 Suppl.):S49-54
    • (2002) Trends Mol. Med. , vol.8 , Issue.4 , pp. S49-54
    • Adams, J.1
  • 9
    • 84870227323 scopus 로고    scopus 로고
    • Proteasome inhibitors: A new perspective for treating autoimmune diseases
    • Fierabracci A. 2012. Proteasome inhibitors: A new perspective for treating autoimmune diseases. Curr. Drug Targets 13(13):1665-75
    • (2012) Curr. Drug Targets , vol.13 , Issue.13 , pp. 1665-1675
    • Fierabracci, A.1
  • 10
    • 34250011799 scopus 로고    scopus 로고
    • The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases
    • Wang J, Maldonado MA. 2006. The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases. Cell. Mol. Immunol. 3(4):255-61
    • (2006) Cell. Mol. Immunol. , vol.3 , Issue.4 , pp. 255-261
    • Wang, J.1    Maldonado, M.A.2
  • 11
    • 2642551603 scopus 로고    scopus 로고
    • Development of the proteasome inhibitor Velcade (Bortezomib)
    • Adams J, Kauffman M. 2004. Development of the proteasome inhibitor Velcade (Bortezomib). Cancer Investig. 22(2):304-11
    • (2004) Cancer Investig. , vol.22 , Issue.2 , pp. 304-311
    • Adams, J.1    Kauffman, M.2
  • 12
    • 84855430944 scopus 로고    scopus 로고
    • Molecular pathways: Targeting proteasomal protein degradation in cancer
    • Molineaux SM. 2012. Molecular pathways: targeting proteasomal protein degradation in cancer. Clin. Cancer Res. 18(1):15-20
    • (2012) Clin. Cancer Res. , vol.18 , Issue.1 , pp. 15-20
    • Molineaux, S.M.1
  • 13
    • 0024972956 scopus 로고
    • Themulticatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria
    • Dahlmann B, Kopp F, Kuehn L,Niedel B, Pfeifer G, et al. 1989. Themulticatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria. FEBS Lett. 251(1-2):125-31
    • (1989) FEBS Lett. , vol.251 , Issue.1-2 , pp. 125-131
    • Dahlmann, B.1    Kopp, F.2    Kuehn, L.3    Niedel, B.4    Pfeifer, G.5
  • 14
    • 73449121150 scopus 로고    scopus 로고
    • Structure-based drug design strategies in medicinal chemistry
    • Andricopulo AD, Salum LB, Abraham DJ. 2009. Structure-based drug design strategies in medicinal chemistry. Curr. Top. Med. Chem. 9(9):771-90
    • (2009) Curr. Top. Med. Chem. , vol.9 , Issue.9 , pp. 771-790
    • Andricopulo, A.D.1    Salum, L.B.2    Abraham, D.J.3
  • 16
    • 84866070181 scopus 로고    scopus 로고
    • Structure-based drug design: Opening the door to an epigenetic target
    • Harrison C. 2012. Structure-based drug design: opening the door to an epigenetic target. Nat. Rev. Drug Discov. 11(9):672-73
    • (2012) Nat. Rev. Drug Discov. , vol.11 , Issue.9 , pp. 672-673
    • Harrison, C.1
  • 17
    • 0032146301 scopus 로고    scopus 로고
    • Structure-based drug design
    • Amzel LM. 1998. Structure-based drug design. Curr. Opin. Biotechnol. 9(4):366-69
    • (1998) Curr. Opin. Biotechnol. , vol.9 , Issue.4 , pp. 366-369
    • Amzel, L.M.1
  • 18
    • 0030574268 scopus 로고    scopus 로고
    • Structure-based drug design
    • Blundell TL. 1996. Structure-based drug design. Nature 384(6604 Suppl.):23-26
    • (1996) Nature , vol.384 , Issue.6604 , pp. 23-26
    • Blundell, T.L.1
  • 19
    • 67849113794 scopus 로고    scopus 로고
    • The rise of fragment-based drug discovery
    • Murray CW, Rees DC. 2009. The rise of fragment-based drug discovery. Nat. Chem. 1(3):187-92
    • (2009) Nat. Chem. , vol.1 , Issue.3 , pp. 187-192
    • Murray, C.W.1    Rees, D.C.2
  • 20
    • 84887001050 scopus 로고    scopus 로고
    • A three-stage biophysical screening cascade for fragmentbased drug discovery
    • Mashalidis EH,Sledz P,Lang S, Abell C. 2013. A three-stage biophysical screening cascade for fragmentbased drug discovery. Nat. Protoc. 8(11):2309-24
    • (2013) Nat. Protoc. , vol.8 , Issue.11 , pp. 2309-2324
    • Mashalidis, E.H.1    Sledz, P.2    Lang, S.3    Abell, C.4
  • 21
    • 84883472009 scopus 로고    scopus 로고
    • Unveiling the long-held secrets of the 26S proteasome
    • Förster F, Unverdorben P,Sledz P, Baumeister W. 2013. Unveiling the long-held secrets of the 26S proteasome. Structure 21(9):1551-62
    • (2013) Structure , vol.21 , Issue.9 , pp. 1551-1562
    • Förster, F.1    Unverdorben, P.2    Sledz, P.3    Baumeister, W.4
  • 22
    • 0019195859 scopus 로고
    • Cation-sensitive neutral endopeptidase: Isolation and specificity of the bovine pituitary enzyme
    • Wilk S, Orlowski M. 1980. Cation-sensitive neutral endopeptidase: isolation and specificity of the bovine pituitary enzyme. J. Neurochem. 35(5):1172-82
    • (1980) J. Neurochem. , vol.35 , Issue.5 , pp. 1172-1182
    • Wilk, S.1    Orlowski, M.2
  • 23
    • 0019731397 scopus 로고
    • A multicatalytic protease complex from pituitary that forms enkephalin and enkephalin containing peptides
    • Orlowski M, Wilk S. 1981. A multicatalytic protease complex from pituitary that forms enkephalin and enkephalin containing peptides. Biochem. Biophys. Res. Commun. 101(3):814-22
    • (1981) Biochem. Biophys. Res. Commun. , vol.101 , Issue.3 , pp. 814-822
    • Orlowski, M.1    Wilk, S.2
  • 24
    • 0020674228 scopus 로고
    • Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex
    • Wilk S, Orlowski M. 1983. Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex. J. Neurochem. 40(3):842-49
    • (1983) J. Neurochem. , vol.40 , Issue.3 , pp. 842-849
    • Wilk, S.1    Orlowski, M.2
  • 25
    • 0021824670 scopus 로고
    • Purification and characterization of a multicatalytic high-molecular-mass proteinase from rat skeletal muscle
    • Dahlmann B, Kuehn L, Rutschmann M, Reinauer H. 1985. Purification and characterization of a multicatalytic high-molecular-mass proteinase from rat skeletal muscle. Biochem. J. 228(1):161-70
    • (1985) Biochem. J. , vol.228 , Issue.1 , pp. 161-170
    • Dahlmann, B.1    Kuehn, L.2    Rutschmann, M.3    Reinauer, H.4
  • 26
    • 0023009780 scopus 로고
    • A high molecular weight protease in the cytosol of rat liver. I. Purification, enzymological properties, and tissue distribution
    • Tanaka K, Ii K, Ichihara A, Waxman L, Goldberg AL. 1986. A high molecular weight protease in the cytosol of rat liver. I. Purification, enzymological properties, and tissue distribution. J. Biol. Chem. 261(32):15197-203
    • (1986) J. Biol. Chem. , vol.261 , Issue.32 , pp. 15197-15203
    • Tanaka, K.1    Ii, K.2    Ichihara, A.3    Waxman, L.4    Goldberg, A.L.5
  • 27
    • 0025829436 scopus 로고
    • The three-dimensional structure of proteasomes from Thermoplasma acidophilum as determined by electron microscopy using random conical tilting
    • Hegerl R, Pfeifer G, Pühler G, Dahlmann B, BaumeisterW. 1991. The three-dimensional structure of proteasomes from Thermoplasma acidophilum as determined by electron microscopy using random conical tilting. FEBS Lett. 283(1):117-21
    • (1991) FEBS Lett. , vol.283 , Issue.1 , pp. 117-121
    • Hegerl, R.1    Pfeifer, G.2    Uhler G, P.3    Dahlmann, B.4    Baumeister, W.5
  • 28
    • 0039660006 scopus 로고    scopus 로고
    • Subunit topology of the Rhodococcus proteasome
    • Zühl F,TamuraT,Dolenc I,Cejka Z, Nagy I, et al. 1997. Subunit topology of the Rhodococcus proteasome. FEBS Lett. 400(1):83-90
    • (1997) FEBS Lett. , vol.400 , Issue.1 , pp. 83-90
    • Uhl F, Z.1    Tamura, T.2    Dolenc, I.3    Cejka, Z.4    Nagy, I.5
  • 29
    • 0028881547 scopus 로고
    • The proteasome from Thermoplasma acidophilum is neither a cysteine nor a serine protease
    • Seemüller E, Lupas A, Zühl F, Zwickl P, Baumeister W. 1995. The proteasome from Thermoplasma acidophilum is neither a cysteine nor a serine protease. FEBS Lett. 359(2-3):173-78
    • (1995) FEBS Lett. , vol.359 , Issue.2-3 , pp. 173-178
    • Seemüller, E.1    Lupas, A.2    Uhl F, Z.3    Zwickl, P.4    Baumeister, W.5
  • 31
    • 0029042511 scopus 로고
    • Crystal structure of the 20S proteasome from the archaeon T acidophilum at 3. 4A resolution
    • Löwe J, Stock D, Jap B, Zwickl P, BaumeisterW,HuberR. 1995. Crystal structure of the 20S proteasome from the archaeon T. Acidophilum at 3. 4A resolution. Science 268(5210):533-39
    • (1995) Science , vol.268 , Issue.5210 , pp. 533-539
    • Löwe, J.1    Stock, D.2    Jap, B.3    Zwickl, P.4    Baumeister, W.5    Huber, R.6
  • 33
    • 84890859839 scopus 로고    scopus 로고
    • The unique functions of tissue-specific proteasomes
    • Kniepert A, Groettrup M. 2014. The unique functions of tissue-specific proteasomes. Trends Biochem. Sci. 39(1):17-24
    • (2014) Trends Biochem. Sci. , vol.39 , Issue.1 , pp. 17-24
    • Kniepert, A.1    Groettrup, M.2
  • 34
    • 0032488846 scopus 로고    scopus 로고
    • The proteasome: Paradigm of a selfcompartmentalizing protease
    • Baumeister W, Walz J, Zühl F, Seemüller E. 1998. The proteasome: paradigm of a selfcompartmentalizing protease. Cell 92(3):367-80
    • (1998) Cell , vol.92 , Issue.3 , pp. 367-380
    • Baumeister, W.1    Walz, J.2    Uhl F, Z.3    Seemüller, E.4
  • 37
    • 65649123769 scopus 로고    scopus 로고
    • Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii
    • Zhang F, Wu Z, Zhang P, Tian G, Finley D, Shi Y. 2009. Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 34(4):485-96
    • (2009) Mol. Cell , vol.34 , Issue.4 , pp. 485-496
    • Zhang, F.1    Wu, Z.2    Zhang, P.3    Tian, G.4    Finley, D.5    Shi, Y.6
  • 38
    • 84869016840 scopus 로고    scopus 로고
    • The archaeal proteasome is regulated by a network of AAA ATPases
    • Forouzan D, Ammelburg M, Hobel CF, Ströh LJ, Sessler N, et al. 2012. The archaeal proteasome is regulated by a network of AAA ATPases. J. Biol. Chem. 287(46):39254-62
    • (2012) J. Biol. Chem. , vol.287 , Issue.46 , pp. 39254-39262
    • Forouzan, D.1    Ammelburg, M.2    Hobel, C.F.3    Ströh, L.J.4    Sessler, N.5
  • 39
    • 84865094127 scopus 로고    scopus 로고
    • Identification of the Cdc4820S proteasome as an ancient AAA+ proteolytic machine
    • Barthelme D, Sauer RT. 2012. Identification of the Cdc4820S proteasome as an ancient AAA+ proteolytic machine. Science 337(6096):843-46
    • (2012) Science , vol.337 , Issue.6096 , pp. 843-846
    • Barthelme, D.1    Sauer, R.T.2
  • 40
    • 42949096020 scopus 로고    scopus 로고
    • Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases
    • Rabl J, Smith DM, Yu Y, Chang S-C, Goldberg AL, Cheng Y. 2008. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol. Cell 30(3):360-68
    • (2008) Mol. Cell , vol.30 , Issue.3 , pp. 360-368
    • Rabl, J.1    Smith, D.M.2    Yu, Y.3    Chang, S.-C.4    Goldberg, A.L.5    Cheng, Y.6
  • 41
    • 77957970501 scopus 로고    scopus 로고
    • The proteasome antechamber maintains substrates in an unfolded state
    • Ruschak AM, Religa TL, Breuer S, Witt S, Kay LE. 2010. The proteasome antechamber maintains substrates in an unfolded state. Nature 467(7317):868-71
    • (2010) Nature , vol.467 , Issue.7317 , pp. 868-871
    • Ruschak, A.M.1    Religa, T.L.2    Breuer, S.3    Witt, S.4    Kay, L.E.5
  • 43
    • 84857134729 scopus 로고    scopus 로고
    • Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
    • Lasker K, Forster F, Bohn S, Walzthoeni T, Villa E, et al. 2012. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. PNAS 109(5):1380-87
    • (2012) PNAS , vol.109 , Issue.5 , pp. 1380-1387
    • Lasker, K.1    Forster, F.2    Bohn, S.3    Walzthoeni, T.4    Villa, E.5
  • 44
    • 84880157841 scopus 로고    scopus 로고
    • Conformational switching of the 26S proteasome enables substrate degradation
    • Matyskiela ME, Lander GC, Martin A. 2013. Conformational switching of the 26S proteasome enables substrate degradation. Nat. Struct. Mol. Biol. 20(7):781-88
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , Issue.7 , pp. 781-788
    • Matyskiela, M.E.1    Lander, G.C.2    Martin, A.3
  • 45
    • 84876909425 scopus 로고    scopus 로고
    • Structure of the 26S proteasome with ATP-S bound provides insights into the mechanism of nucleotide-dependent substrate translocation
    • Sledz P, Unverdorben P, Beck F, Pfeifer G, Schweitzer A, et al. 2013. Structure of the 26S proteasome with ATP-S bound provides insights into the mechanism of nucleotide-dependent substrate translocation. PNAS 110(18):7264-69
    • (2013) PNAS , vol.110 , Issue.18 , pp. 7264-7269
    • Sledz, P.1    Unverdorben, P.2    Beck, F.3    Pfeifer, G.4    Schweitzer, A.5
  • 46
    • 84856023509 scopus 로고    scopus 로고
    • The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together
    • Pathare GR, Nagy I, Bohn S, Unverdorben P, Hubert A, et al. 2012. The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together. PNAS 109(1):149-54
    • (2012) PNAS , vol.109 , Issue.1 , pp. 149-154
    • Pathare, G.R.1    Nagy, I.2    Bohn, S.3    Unverdorben, P.4    Hubert, A.5
  • 47
    • 0037131243 scopus 로고    scopus 로고
    • Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
    • Verma R, Aravind L, Oania R,McDonald WH, Yates JR, et al. 2002. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298(5593):611-15
    • (2002) Science , vol.298 , Issue.5593 , pp. 611-615
    • Verma, R.1    Aravind, L.2    Oania, R.3    McDonald, W.H.4    Yates, J.R.5
  • 48
    • 84872102009 scopus 로고    scopus 로고
    • Design principles of a universal protein degradation machine
    • Matyskiela ME, Martin A. 2013. Design principles of a universal protein degradation machine. J. Mol. Biol. 425(2):199-213
    • (2013) J. Mol. Biol. , vol.425 , Issue.2 , pp. 199-213
    • Matyskiela, M.E.1    Martin, A.2
  • 49
    • 84876412543 scopus 로고    scopus 로고
    • Allosteric effects in the regulation of 26S proteasome activities
    • Sledz P, Förster F, Baumeister W. 2013. Allosteric effects in the regulation of 26S proteasome activities. J. Mol. Biol. 425(9):1415-23
    • (2013) J. Mol. Biol. , vol.425 , Issue.9 , pp. 1415-1423
    • Sledz, P.1    Förster, F.2    Baumeister, W.3
  • 50
    • 84866269021 scopus 로고    scopus 로고
    • Near-atomic resolution structural model of the yeast 26S proteasome
    • Beck F, Unverdorben P, Bohn S, Schweitzer A, Pfeifer G, et al. 2012. Near-atomic resolution structural model of the yeast 26S proteasome. PNAS 109(37):14870-75
    • (2012) PNAS , vol.109 , Issue.37 , pp. 14870-14875
    • Beck, F.1    Unverdorben, P.2    Bohn, S.3    Schweitzer, A.4    Pfeifer, G.5
  • 51
    • 0028150688 scopus 로고
    • Inhibition of the proteolytic activity of the multicatalytic proteinase complex (proteasome) by substrate-related peptidyl aldehydes
    • Vinitsky A, Cardozo C, Sepp-Lorenzino L,Michaud C, OrlowskiM. 1994. Inhibition of the proteolytic activity of the multicatalytic proteinase complex (proteasome) by substrate-related peptidyl aldehydes. J. Biol. Chem. 269(47):29860-66
    • (1994) J. Biol. Chem. , vol.269 , Issue.47 , pp. 29860-29866
    • Vinitsky, A.1    Cardozo, C.2    Sepp-Lorenzino, L.3    Michaud, C.4    Orlowski, M.5
  • 52
    • 0032568514 scopus 로고    scopus 로고
    • Kinetic studies of the branched chain amino acid preferring peptidase activity of the 20S proteasome: Development of a continuous assay and inhibition by tripeptide aldehydes and clasto-lactacystin beta-lactone
    • McCormack TA, Cruikshank AA, Grenier L, Melandri FD, Nunes SL, et al. 1998. Kinetic studies of the branched chain amino acid preferring peptidase activity of the 20S proteasome: development of a continuous assay and inhibition by tripeptide aldehydes and clasto-lactacystin beta-lactone. Biochemistry 37(21):7792-800
    • (1998) Biochemistry , vol.37 , Issue.21 , pp. 7792-7800
    • McCormack, T.A.1    Cruikshank, A.A.2    Grenier, L.3    Melandri, F.D.4    Nunes, S.L.5
  • 53
    • 0026786503 scopus 로고
    • Inhibition of the chymotrypsin-like activity of the pituitary multicatalytic proteinase complex
    • Vinitsky A, Michaud C, Powers JC, Orlowski M. 1992. Inhibition of the chymotrypsin-like activity of the pituitary multicatalytic proteinase complex. Biochemistry 31(39):9421-28
    • (1992) Biochemistry , vol.31 , Issue.39 , pp. 9421-9428
    • Vinitsky, A.1    Michaud, C.2    Powers, J.C.3    Orlowski, M.4
  • 54
    • 33947659939 scopus 로고    scopus 로고
    • 20S proteasome and its inhibitors: Crystallographic knowledge for drug development
    • Borissenko L, Groll M. 2007. 20S proteasome and its inhibitors: crystallographic knowledge for drug development. Chem. Rev. 107(3):687-717
    • (2007) Chem. Rev. , vol.107 , Issue.3 , pp. 687-717
    • Borissenko, L.1    Groll, M.2
  • 55
    • 84856373151 scopus 로고    scopus 로고
    • Proteasome inhibitors: An expanding army attacking a unique target
    • Kisselev AF, van der Linden WA, Overkleeft HS. 2012. Proteasome inhibitors: An expanding army attacking a unique target. Chem. Biol. 19(1):99-115
    • (2012) Chem. Biol. , vol.19 , Issue.1 , pp. 99-115
    • Kisselev, A.F.1    Van Der Linden, W.A.2    Overkleeft, H.S.3
  • 56
    • 23344435097 scopus 로고    scopus 로고
    • Tripeptide mimetics inhibit the 20 S proteasome by covalent bonding to the active threonines
    • Braun HA, Umbreen S, GrollM, Kuckelkorn U,Mlynarczuk I, et al. 2005. Tripeptide mimetics inhibit the 20 S proteasome by covalent bonding to the active threonines. J. Biol. Chem. 280(31):28394-401
    • (2005) J. Biol. Chem. , vol.280 , Issue.31 , pp. 28394-28401
    • Braun, H.A.1    Umbreen, S.2    Groll, M.3    Kuckelkorn, U.4    Mlynarczuk, I.5
  • 57
    • 0027980321 scopus 로고
    • The ubiquitin-proteasome pathway is required for processing the NF-B1 precursor protein and the activation of NF-B
    • Palombella VJ, Rando OJ, Goldberg AL, Maniatis T. 1994. The ubiquitin-proteasome pathway is required for processing the NF-B1 precursor protein and the activation of NF-B. Cell 78(5):773-85
    • (1994) Cell , vol.78 , Issue.5 , pp. 773-785
    • Palombella, V.J.1    Rando, O.J.2    Goldberg, A.L.3    Maniatis, T.4
  • 58
    • 0000870917 scopus 로고    scopus 로고
    • Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae
    • Lee DH, Goldberg AL. 1996. Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae. J. Biol. Chem. 271(44):27280-84
    • (1996) J. Biol. Chem. , vol.271 , Issue.44 , pp. 27280-27284
    • Lee, D.H.1    Goldberg, A.L.2
  • 59
    • 0033621047 scopus 로고    scopus 로고
    • Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity
    • Meng L, Mohan R, Kwok BH, ElofssonM, Sin N, Crews CM. 1999. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. PNAS 96(18):10403-8
    • (1999) PNAS , vol.96 , Issue.18 , pp. 10403-10408
    • Meng, L.1    Mohan, R.2    Kwok, B.H.3    Elofsson, M.4    Sin, N.5    Crews, C.M.6
  • 60
    • 33644845743 scopus 로고    scopus 로고
    • Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome
    • GrollM, Berkers CR, PloeghHL, Ovaa H. 2006. Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure 14(3):451-56
    • (2006) Structure , vol.14 , Issue.3 , pp. 451-456
    • Groll, M.1    Berkers, C.R.2    Ploegh, H.L.3    Ovaa, H.4
  • 61
    • 41949110089 scopus 로고    scopus 로고
    • CEP-18770: A novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib
    • Piva R, Ruggeri B, Williams M, Costa G, Tamagno I, et al. 2008. CEP-18770: A novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib. Blood 111(5):2765-75
    • (2008) Blood , vol.111 , Issue.5 , pp. 2765-2775
    • Piva, R.1    Ruggeri, B.2    Williams, M.3    Costa, G.4    Tamagno, I.5
  • 62
    • 77950238258 scopus 로고    scopus 로고
    • Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer
    • Kupperman E, Lee EC, Cao Y, Bannerman B, Fitzgerald M, et al. 2010. Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Res. 70(5):1970-80
    • (2010) Cancer Res. , vol.70 , Issue.5 , pp. 1970-1980
    • Kupperman, E.1    Lee, E.C.2    Cao, Y.3    Bannerman, B.4    Fitzgerald, M.5
  • 63
    • 78650904648 scopus 로고    scopus 로고
    • Elucidation of the ketoaldehyde binding mechanism: A lead structure motif for proteasome inhibition
    • Gräwert MA, Gallastegui N, Stein M, Schmidt B, Kloetzel P-M, et al. 2011. Elucidation of the ketoaldehyde binding mechanism: A lead structure motif for proteasome inhibition. Angew. Chem. Int. Ed. Engl. 50(2):542-44
    • (2011) Angew. Chem. Int. Ed. Engl. , vol.50 , Issue.2 , pp. 542-544
    • Gräwert, M.A.1    Gallastegui, N.2    Stein, M.3    Schmidt, B.4    Kloetzel, P.-M.5
  • 64
    • 78650051900 scopus 로고    scopus 로고
    • Nature of pharmacophore influences active site specificity of proteasome inhibitors
    • Screen M, Britton M, Downey SL, Verdoes M, Voges MJ, et al. 2010. Nature of pharmacophore influences active site specificity of proteasome inhibitors. J. Biol. Chem. 285(51):40125-34
    • (2010) J. Biol. Chem. , vol.285 , Issue.51 , pp. 40125-40134
    • Screen, M.1    Britton, M.2    Downey, S.L.3    Verdoes, M.4    Voges, M.J.5
  • 65
    • 84873924284 scopus 로고    scopus 로고
    • Incorporation of non-natural amino acids improves cell permeability and potency of specific inhibitors of proteasome trypsin-like sites
    • Geurink PP, van der Linden WA, Mirabella AC, Gallastegui N, de Bruin G, et al. 2013. Incorporation of non-natural amino acids improves cell permeability and potency of specific inhibitors of proteasome trypsin-like sites. J. Med. Chem. 56(3):1262-75
    • (2013) J. Med. Chem. , vol.56 , Issue.3 , pp. 1262-1275
    • Geurink, P.P.1    Van Der Linden, W.A.2    Mirabella, A.C.3    Gallastegui, N.4    De Bruin, G.5
  • 66
    • 42049085712 scopus 로고    scopus 로고
    • A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism
    • Groll M, Schellenberg B, Bachmann AS, Archer CR, Huber R, et al. 2008. A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 452(7188):755-58
    • (2008) Nature , vol.452 , Issue.7188 , pp. 755-758
    • Groll, M.1    Schellenberg, B.2    Bachmann, A.S.3    Archer, C.R.4    Huber, R.5
  • 67
    • 66149090781 scopus 로고    scopus 로고
    • Synthetic and structural studies on syringolin A and B reveal critical determinants of selectivity and potency of proteasome inhibition
    • Clerc J, Groll M, Illich DJ, Bachmann AS, Huber R, et al. 2009. Synthetic and structural studies on syringolin A and B reveal critical determinants of selectivity and potency of proteasome inhibition. PNAS 106(16):6507-12
    • (2009) PNAS , vol.106 , Issue.16 , pp. 6507-6512
    • Clerc, J.1    Groll, M.2    Illich, D.J.3    Bachmann, A.S.4    Huber, R.5
  • 68
    • 33751040506 scopus 로고    scopus 로고
    • Syringolin A, A new plant elicitor from the phytopathogenic bacterium Pseudomonas syringae pv. Syringae, inhibits the proliferation of neuroblastoma and ovarian cancer cells and induces apoptosis
    • Coleman CS, Rocetes JP, Park DJ, Wallick CJ,Warn-Cramer BJ, et al. 2006. Syringolin A, a new plant elicitor from the phytopathogenic bacterium Pseudomonas syringae pv. syringae, inhibits the proliferation of neuroblastoma and ovarian cancer cells and induces apoptosis. Cell Prolif. 39(6):599-609
    • (2006) Cell Prolif. , vol.39 , Issue.6 , pp. 599-609
    • Coleman, C.S.1    Rocetes, J.P.2    Park, D.J.3    Wallick, C.J.4    Warn-Cramer, B.J.5
  • 69
    • 78649885502 scopus 로고    scopus 로고
    • The natural product hybrid of Syringolin A and Glidobactin A synergizes proteasome inhibition potency with subsite selectivity
    • Clerc J, Li N, Krahn D, Groll M, Bachmann AS, et al. 2011. The natural product hybrid of Syringolin A and Glidobactin A synergizes proteasome inhibition potency with subsite selectivity. Chem. Commun. 47(1):385-87
    • (2011) Chem. Commun. , vol.47 , Issue.1 , pp. 385-387
    • Clerc, J.1    Li, N.2    Krahn, D.3    Groll, M.4    Bachmann, A.S.5
  • 70
    • 84868578166 scopus 로고    scopus 로고
    • One-shot NMR analysis of microbial secretions identifies highly potent proteasome inhibitor
    • Stein ML, Beck P, Kaiser M, Dudler R, Becker CFW, Groll M. 2012. One-shot NMR analysis of microbial secretions identifies highly potent proteasome inhibitor. PNAS 109(45):18367-71
    • (2012) PNAS , vol.109 , Issue.45 , pp. 18367-18371
    • Stein, M.L.1    Beck, P.2    Kaiser, M.3    Dudler, R.4    Becker, C.F.W.5    Groll, M.6
  • 71
    • 0034105791 scopus 로고    scopus 로고
    • TMC-95A, B, C, and D, novel proteasome inhibitors produced by Apiospora montagnei Sacc. TC1093. Taxonomy, production, isolation, and biological activities
    • Koguchi Y, Kohno J, Nishio M, Takahashi K, Okuda T, et al. 2000. TMC-95A, B, C, and D, novel proteasome inhibitors produced by Apiospora montagnei Sacc. TC1093. Taxonomy, production, isolation, and biological activities. J. Antibiot. 53(2):105-9
    • (2000) J. Antibiot. , vol.53 , Issue.2 , pp. 105-109
    • Koguchi, Y.1    Kohno, J.2    Nishio, M.3    Takahashi, K.4    Okuda, T.5
  • 72
    • 0035902778 scopus 로고    scopus 로고
    • Crystal structure of the 20 S proteasome:TMC-95A complex: A non-covalent proteasome inhibitor
    • Groll M, Koguchi Y, Huber R, Kohno J. 2001. Crystal structure of the 20 S proteasome:TMC-95A complex: A non-covalent proteasome inhibitor. J. Mol. Biol. 311(3):543-48
    • (2001) J. Mol. Biol. , vol.311 , Issue.3 , pp. 543-548
    • Groll, M.1    Koguchi, Y.2    Huber, R.3    Kohno, J.4
  • 73
    • 0036494798 scopus 로고    scopus 로고
    • The core structure of TMC-95A is a promising lead for reversible proteasome inhibition
    • Kaiser M, Groll M, Renner C, Huber R, Moroder L. 2002. The core structure of TMC-95A is a promising lead for reversible proteasome inhibition. Angew. Chem. Int. Ed. Engl. 41(5):780-83
    • (2002) Angew. Chem. Int. Ed. Engl. , vol.41 , Issue.5 , pp. 780-783
    • Kaiser, M.1    Groll, M.2    Renner, C.3    Huber, R.4    Moroder, L.5
  • 75
    • 33745187107 scopus 로고    scopus 로고
    • TMC-95-based inhibitor design provides evidence for the catalytic versatility of the proteasome
    • Groll M, Götz M, Kaiser M, Weyher E, Moroder L. 2006. TMC-95-based inhibitor design provides evidence for the catalytic versatility of the proteasome. Chem. Biol. 13(6):607-14
    • (2006) Chem. Biol. , vol.13 , Issue.6 , pp. 607-614
    • Groll, M.1    Götz, M.2    Kaiser, M.3    Weyher, E.4    Moroder, L.5
  • 77
    • 77957656769 scopus 로고    scopus 로고
    • 20S proteasome inhibition: Designing noncovalent linear peptide mimics of the natural product TMC-95A
    • Groll M, Gallastegui N, Maréchal X, Le Ravalec V, Basse N, et al. 2010. 20S proteasome inhibition: designing noncovalent linear peptide mimics of the natural product TMC-95A. ChemMedChem 5(10):1701-5
    • (2010) ChemMedChem , vol.5 , Issue.10 , pp. 1701-1705
    • Groll, M.1    Gallastegui, N.2    Maréchal, X.3    Le Ravalec, V.4    Basse, N.5
  • 78
    • 73149103209 scopus 로고    scopus 로고
    • Selective inhibitor of proteasome's caspase-like sites sensitizes cells to specific inhibition of chymotrypsin-like sites
    • BrittonM, LucasMM,Downey SL, Screen M, Pletnev AA, et al. 2009. Selective inhibitor of proteasome's caspase-like sites sensitizes cells to specific inhibition of chymotrypsin-like sites. Chem. Biol. 16(12):1278-89
    • (2009) Chem. Biol. , vol.16 , Issue.12 , pp. 1278-1289
    • Britton, M.1    Lucas, M.M.2    Downey, S.L.3    Screen, M.4    Pletnev, A.A.5
  • 79
    • 79957477617 scopus 로고    scopus 로고
    • Specific cell-permeable inhibitor of proteasome trypsin-like sites selectively sensitizes myeloma cells to bortezomib and carfilzomib
    • Mirabella AC, Pletnev AA, Downey SL, Florea BI, Shabaneh TB, et al. 2011. Specific cell-permeable inhibitor of proteasome trypsin-like sites selectively sensitizes myeloma cells to bortezomib and carfilzomib. Chem. Biol. 18(5):608-18
    • (2011) Chem. Biol. , vol.18 , Issue.5 , pp. 608-618
    • Mirabella, A.C.1    Pletnev, A.A.2    Downey, S.L.3    Florea, B.I.4    Shabaneh, T.B.5
  • 80
    • 0035927193 scopus 로고    scopus 로고
    • A new structural class of selective and non-covalent inhibitors of the chymotrypsin-like activity of the 20S proteasome
    • Garca-Echeverra C, Imbach P, France D, Fürst P, Lang M, et al. 2001. A new structural class of selective and non-covalent inhibitors of the chymotrypsin-like activity of the 20S proteasome. Bioorg. Med. Chem. Lett. 11(10):1317-19
    • (2001) Bioorg. Med. Chem. Lett. , vol.11 , Issue.10 , pp. 1317-1319
    • Garca-Echeverra, C.1    Imbach, P.2    France, D.3    Urst P, F.4    Lang, M.5
  • 81
    • 4544337315 scopus 로고    scopus 로고
    • Entry into a new class of potent proteasome inhibitors having high antiproliferative activity by structure-based design
    • Furet P, Imbach P, Noorani M, Koeppler J, Laumen K, et al. 2004. Entry into a new class of potent proteasome inhibitors having high antiproliferative activity by structure-based design. J. Med. Chem. 47(20):4810-13
    • (2004) J. Med. Chem. , vol.47 , Issue.20 , pp. 4810-4813
    • Furet, P.1    Imbach, P.2    Noorani, M.3    Koeppler, J.4    Laumen, K.5
  • 82
    • 77956687927 scopus 로고    scopus 로고
    • Characterization of a new series of non-covalent proteasome inhibitors with exquisite potency and selectivity for the 20S5-subunit
    • Blackburn C, Gigstad KM, Hales P, Garcia K, Jones M, et al. 2010. Characterization of a new series of non-covalent proteasome inhibitors with exquisite potency and selectivity for the 20S5-subunit. Biochem. J. 430(3):461-76
    • (2010) Biochem. J. , vol.430 , Issue.3 , pp. 461-476
    • Blackburn, C.1    Gigstad, K.M.2    Hales, P.3    Garcia, K.4    Jones, M.5
  • 83
    • 77958044160 scopus 로고    scopus 로고
    • Optimization of a series of dipeptides with a P3 threonine residue as non-covalent inhibitors of the chymotrypsin-like activity of the human 20S proteasome
    • BlackburnC, Barrett C, Blank JL, Bruzzese FJ, BumpN, et al. 2010. Optimization of a series of dipeptides with a P3 threonine residue as non-covalent inhibitors of the chymotrypsin-like activity of the human 20S proteasome. Bioorg. Med. Chem. Lett. 20(22):6581-86
    • (2010) Bioorg. Med. Chem. Lett. , vol.20 , Issue.22 , pp. 6581-6586
    • Blackburn, C.1    Barrett, C.2    Blank, J.L.3    Bruzzese, F.J.4    Bump, N.5
  • 84
    • 0027214605 scopus 로고
    • Gamma-interferon and expression ofMHCgenes regulate peptide hydrolysis by proteasomes
    • Gaczynska M, Rock KL,Goldberg AL. 1993. Gamma-interferon and expression ofMHCgenes regulate peptide hydrolysis by proteasomes. Nature 365(6443):264-67
    • (1993) Nature , vol.365 , Issue.6443 , pp. 264-267
    • Gaczynska, M.1    Rock, K.L.2    Goldberg, A.L.3
  • 85
    • 0027223877 scopus 로고
    • MHC-linked LMP gene products specifically alter peptidase activities of the proteasome
    • Driscoll J, Brown MG, Finley D, Monaco JJ. 1993. MHC-linked LMP gene products specifically alter peptidase activities of the proteasome. Nature 365(6443):262-64
    • (1993) Nature , vol.365 , Issue.6443 , pp. 262-264
    • Driscoll, J.1    Brown, M.G.2    Finley, D.3    Monaco, J.J.4
  • 87
    • 34247190754 scopus 로고    scopus 로고
    • LMP2-specific inhibitors: Chemical genetic tools for proteasome biology
    • Ho YK, Bargagna-Mohan P,WehenkelM,Mohan R, Kim K-B. 2007. LMP2-specific inhibitors: chemical genetic tools for proteasome biology. Chem. Biol. 14(4):419-30
    • (2007) Chem. Biol. , vol.14 , Issue.4 , pp. 419-430
    • Ho, Y.K.1    Bargagna-Mohan, P.2    Wehenkel, M.3    Mohan, R.4    Kim, K.-B.5
  • 88
    • 67650388103 scopus 로고    scopus 로고
    • A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis
    • Muchamuel T, Basler M, Aujay MA, Suzuki E, Kalim KW, et al. 2009. A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat. Med. 15(7):781-87
    • (2009) Nat. Med. , vol.15 , Issue.7 , pp. 781-787
    • Muchamuel, T.1    Basler, M.2    Aujay, M.A.3    Suzuki, E.4    Kalim, K.W.5
  • 89
    • 84857313367 scopus 로고    scopus 로고
    • Immuno-and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity
    • Huber EM, Basler M, Schwab R, Heinemeyer W, Kirk CJ, et al. 2012. Immuno-and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity. Cell 148(4):727-38
    • (2012) Cell , vol.148 , Issue.4 , pp. 727-738
    • Huber, E.M.1    Basler, M.2    Schwab, R.3    Heinemeyer, W.4    Kirk, C.J.5
  • 90
    • 20744445650 scopus 로고    scopus 로고
    • Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma
    • Raval RR, Lau KW, Tran MGB, Sowter HM, Mandriota SJ, et al. 2005. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol. Cell. Biol. 25(13):5675-86
    • (2005) Mol. Cell. Biol. , vol.25 , Issue.13 , pp. 5675-5686
    • Raval, R.R.1    Lau, K.W.2    Tran, M.G.B.3    Sowter, H.M.4    Mandriota, S.J.5
  • 91
    • 2342597973 scopus 로고    scopus 로고
    • Inhibition of HIF2is sufficient to suppress pVHL-defective tumor growth
    • Kondo K, Kim WY, LechpammerM, KaelinWGJr. 2003. Inhibition of HIF2 is sufficient to suppress pVHL-defective tumor growth. PLOS Biol. 1(3):e83
    • (2003) PLOS Biol. , vol.1 , Issue.3 , pp. e83
    • Kondo, K.1    Kim, W.Y.2    Lechpammer, M.3    Kaelin, W.G.4
  • 92
    • 34047156190 scopus 로고    scopus 로고
    • HIF-2 promotes hypoxic cell proliferation by enhancing c-Myc transcriptional activity
    • Gordan JD, Bertout JA,HuC-J, Diehl JA, SimonMC. 2007. HIF-2 promotes hypoxic cell proliferation by enhancing c-Myc transcriptional activity. Cancer Cell 11(4):335-47
    • (2007) Cancer Cell , vol.11 , Issue.4 , pp. 335-347
    • Gordan, J.D.1    Bertout, J.A.2    HuC-J3    Diehl, J.A.4    Simon, M.C.5
  • 93
    • 84871609304 scopus 로고    scopus 로고
    • Validation of the proteasome as a therapeutic target in Plasmodium using an epoxyketone inhibitor with parasite-specific toxicity
    • Li H, Ponder EL, VerdoesM, Asbjornsdottir KH, Deu E, et al. 2012. Validation of the proteasome as a therapeutic target in Plasmodium using an epoxyketone inhibitor with parasite-specific toxicity. Chem. Biol. 19(12):1535-45
    • (2012) Chem. Biol. , vol.19 , Issue.12 , pp. 1535-1545
    • Li, H.1    Ponder, E.L.2    Verdoes, M.3    Asbjornsdottir, K.H.4    Deu, E.5
  • 94
    • 33645053287 scopus 로고    scopus 로고
    • Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate
    • Hu G, Lin G,WangM, Dick L, Xu R-M, et al. 2006. Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate. Mol. Microbiol. 59(5):1417-28
    • (2006) Mol. Microbiol. , vol.59 , Issue.5 , pp. 1417-1428
    • Hu, G.1    Lin, G.2    Wang, M.3    Dick, L.4    Xu, R.-M.5
  • 95
    • 33645073409 scopus 로고    scopus 로고
    • Mycobacterium tuberculosis prcBA genes encode a gated proteasome with broad oligopeptide specificity
    • Lin G,Hu G, Tsu C, Kunes YZ, Li H, et al. 2006. Mycobacterium tuberculosis prcBA genes encode a gated proteasome with broad oligopeptide specificity. Mol. Microbiol. 59(5):1405-16
    • (2006) Mol. Microbiol. , vol.59 , Issue.5 , pp. 1405-1416
    • Lin, G.1    Hu, G.2    Tsu, C.3    Kunes, Y.Z.4    Li, H.5
  • 96
    • 70349658267 scopus 로고    scopus 로고
    • Inhibitors selective for mycobacterial versus human proteasomes
    • Lin G, Li D, de Carvalho LPS, DengH, Tao H, et al. 2009. Inhibitors selective for mycobacterial versus human proteasomes. Nature 461(7264):621-26
    • (2009) Nature , vol.461 , Issue.7264 , pp. 621-626
    • Lin, G.1    Li, D.2    De Carvalho, L.P.S.3    Deng, H.4    Tao, H.5
  • 97
    • 57749098803 scopus 로고    scopus 로고
    • Distinct specificities of Mycobacterium tuberculosis and mammalian proteasomes for N-acetyl tripeptide substrates
    • Lin G, Tsu C, Dick L, Zhou XK, Nathan C. 2008. Distinct specificities of Mycobacterium tuberculosis and mammalian proteasomes for N-acetyl tripeptide substrates. J. Biol. Chem. 283(49):34423-31
    • (2008) J. Biol. Chem. , vol.283 , Issue.49 , pp. 34423-34431
    • Lin, G.1    Tsu, C.2    Dick, L.3    Zhou, X.K.4    Nathan, C.5
  • 98
    • 84880005002 scopus 로고    scopus 로고
    • N,C-capped dipeptides with selectivity for mycobacterial proteasome over human proteasomes: Role of S3 and S1 binding pockets
    • Lin G, Chidawanyika T, Tsu C, Warrier T, Vaubourgeix J, et al. 2013. N,C-capped dipeptides with selectivity for mycobacterial proteasome over human proteasomes: role of S3 and S1 binding pockets. J. Am. Chem. Soc. 135(27):9968-71
    • (2013) J. Am. Chem. Soc. , vol.135 , Issue.27 , pp. 9968-9971
    • Lin, G.1    Chidawanyika, T.2    Tsu, C.3    Warrier, T.4    Vaubourgeix, J.5
  • 100
    • 84876154755 scopus 로고    scopus 로고
    • Homopiperazine derivatives as a novel class of proteasome inhibitors with a unique mode of proteasome binding
    • Kikuchi J, Shibayama N, Yamada S, Wada T, Nobuyoshi M, et al. 2013. Homopiperazine derivatives as a novel class of proteasome inhibitors with a unique mode of proteasome binding. PLOS ONE 8(4):e60649
    • (2013) PLOS ONE , vol.8 , Issue.4 , pp. e60649
    • Kikuchi, J.1    Shibayama, N.2    Yamada, S.3    Wada, T.4    Nobuyoshi, M.5
  • 101
    • 0029033981 scopus 로고
    • Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin
    • Fenteany G, StandaertRF, Lane WS,Choi S,Corey EJ, Schreiber SL. 1995. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268(5211):726-31
    • (1995) Science , vol.268 , Issue.5211 , pp. 726-731
    • Fenteany, G.1    Standaert, R.F.2    Lane, W.S.3    Choi, S.4    Corey, E.J.5    Schreiber, S.L.6
  • 102
    • 0029937677 scopus 로고    scopus 로고
    • Mechanistic studies on the inactivation of the proteasome by lactacystin: A central role for clasto-lactacystin lactone
    • Dick LR, Cruikshank AA, Grenier L, Melandri FD, Nunes SL, Stein RL. 1996. Mechanistic studies on the inactivation of the proteasome by lactacystin: A central role for clasto-lactacystin lactone. J. Biol. Chem. 271(13):7273-76
    • (1996) J. Biol. Chem. , vol.271 , Issue.13 , pp. 7273-7276
    • Dick, L.R.1    Cruikshank, A.A.2    Grenier, L.3    Melandri, F.D.4    Nunes, S.L.5    Stein, R.L.6
  • 103
    • 15644363581 scopus 로고    scopus 로고
    • Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells
    • Dick LR, Cruikshank AA, Destree AT, Grenier L, McCormack TA, et al. 1997. Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. J. Biol. Chem. 272(1):182-88
    • (1997) J. Biol. Chem. , vol.272 , Issue.1 , pp. 182-188
    • Dick, L.R.1    Cruikshank, A.A.2    Destree, A.T.3    Grenier, L.4    McCormack, T.A.5
  • 104
    • 33646137808 scopus 로고    scopus 로고
    • Crystal structures of Salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of lactone ring opening and a mechanism for irreversible binding
    • GrollM, Huber R, Potts BCM. 2006. Crystal structures of Salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of lactone ring opening and a mechanism for irreversible binding. J. Am. Chem. Soc. 128(15):5136-41
    • (2006) J. Am. Chem. Soc. , vol.128 , Issue.15 , pp. 5136-5141
    • Groll, M.1    Huber, R.2    Potts, B.C.M.3
  • 105
    • 57349153171 scopus 로고    scopus 로고
    • Structural analysis of spiro lactone proteasome inhibitors
    • Groll M, Balskus EP, Jacobsen EN. 2008. Structural analysis of spiro lactone proteasome inhibitors. J. Am. Chem. Soc. 130(45):14981-83
    • (2008) J. Am. Chem. Soc. , vol.130 , Issue.45 , pp. 14981-14983
    • Groll, M.1    Balskus, E.P.2    Jacobsen, E.N.3
  • 106
    • 69949108710 scopus 로고    scopus 로고
    • Snapshots of the fluorosalinosporamide/20S complex offer mechanistic insights for fine tuning proteasome inhibition
    • Groll M, McArthur KA, Macherla VR, Manam RR, Potts BC. 2009. Snapshots of the fluorosalinosporamide/20S complex offer mechanistic insights for fine tuning proteasome inhibition. J. Med. Chem. 52(17):5420-28
    • (2009) J. Med. Chem. , vol.52 , Issue.17 , pp. 5420-5428
    • Groll, M.1    McArthur, K.A.2    Macherla, V.R.3    Manam, R.R.4    Potts, B.C.5
  • 107
    • 1642276251 scopus 로고    scopus 로고
    • A new structural class of proteasome inhibitors identified by microbial screening using yeast-based assay
    • Asai A, Tsujita T, Sharma SV, Yamashita Y, Akinaga S, et al. 2004. A new structural class of proteasome inhibitors identified by microbial screening using yeast-based assay. Biochem. Pharmacol. 67(2):227-34
    • (2004) Biochem. Pharmacol. , vol.67 , Issue.2 , pp. 227-234
    • Asai, A.1    Tsujita, T.2    Sharma, S.V.3    Yamashita, Y.4    Akinaga, S.5
  • 108
    • 33645237455 scopus 로고    scopus 로고
    • Inhibitor-binding mode of homobelactosin C to proteasomes: New insights into class i MHC ligand generation
    • Groll M, Larionov OV, Huber R, de Meijere A. 2006. Inhibitor-binding mode of homobelactosin C to proteasomes: new insights into class I MHC ligand generation. PNAS 103(12):4576-79
    • (2006) PNAS , vol.103 , Issue.12 , pp. 4576-4579
    • Groll, M.1    Larionov, O.V.2    Huber, R.3    De Meijere, A.4
  • 109
    • 84877697520 scopus 로고    scopus 로고
    • Potent proteasome inhibitors derived from the unnatural cis-cyclopropane isomer of Belactosin A: Synthesis, biological activity, and mode of action
    • Kawamura S, Unno Y, List A, Mizuno A, Tanaka M, et al. 2013. Potent proteasome inhibitors derived from the unnatural cis-cyclopropane isomer of Belactosin A: synthesis, biological activity, and mode of action. J. Med. Chem. 56(9):3689-700
    • (2013) J. Med. Chem. , vol.56 , Issue.9 , pp. 3689-3700
    • Kawamura, S.1    Unno, Y.2    List, A.3    Mizuno, A.4    Tanaka, M.5
  • 110
    • 84892882219 scopus 로고    scopus 로고
    • Marching to the beat of the ring: Polypeptide translocation by AAA+ proteases
    • Nyquist K, Martin A. 2014. Marching to the beat of the ring: polypeptide translocation by AAA+ proteases. Trends Biochem. Sci. 39(2):53-60
    • (2014) Trends Biochem. Sci. , vol.39 , Issue.2 , pp. 53-60
    • Nyquist, K.1    Martin, A.2
  • 111
    • 79959389010 scopus 로고    scopus 로고
    • AAA+ proteases: ATP-fueled machines of protein destruction
    • Sauer RT, Baker TA. 2011. AAA+ proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem. 80:587-612
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 587-612
    • Sauer, R.T.1    Baker, T.A.2
  • 113
    • 0032969563 scopus 로고    scopus 로고
    • AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes
    • Neuwald AF, Aravind L, Spouge JL, Koonin EV. 1999. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9(1):27-43
    • (1999) Genome Res. , vol.9 , Issue.1 , pp. 27-43
    • Neuwald, A.F.1    Aravind, L.2    Spouge, J.L.3    Koonin, E.V.4
  • 114
    • 84885428073 scopus 로고    scopus 로고
    • Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase
    • Beckwith R, Estrin E, Worden EJ, Martin A. 2013. Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase. Nat. Struct. Mol. Biol. 20(10):1164-72
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , Issue.10 , pp. 1164-1172
    • Beckwith, R.1    Estrin, E.2    Worden, E.J.3    Martin, A.4
  • 115
    • 34347208609 scopus 로고    scopus 로고
    • Identification of a peptoid inhibitor of the proteasome 19S regulatory particle
    • Lim H-S, Archer CT, Kodadek T. 2007. Identification of a peptoid inhibitor of the proteasome 19S regulatory particle. J. Am. Chem. Soc. 129(25):7750-51
    • (2007) J. Am. Chem. Soc. , vol.129 , Issue.25 , pp. 7750-7751
    • Lim, H.-S.1    Archer, C.T.2    Kodadek, T.3
  • 116
    • 39749185236 scopus 로고    scopus 로고
    • Rapid identification of the pharmacophore in a peptoid inhibitor of the proteasome regulatory particle
    • Lim H-S, Archer CT, Kim Y-C, Hutchens T, Kodadek T. 2008. Rapid identification of the pharmacophore in a peptoid inhibitor of the proteasome regulatory particle. Chem. Commun. 2008:1064-66
    • (2008) Chem. Commun. , vol.2008 , pp. 1064-1066
    • Lim, H.-S.1    Archer, C.T.2    Kim, Y.-C.3    Hutchens, T.4    Kodadek, T.5
  • 117
    • 80052353713 scopus 로고    scopus 로고
    • Development of p97 AAA ATPase inhibitors
    • Chou T-F, Deshaies RJ. 2011. Development of p97 AAA ATPase inhibitors. Autophagy 7(9):1091-92
    • (2011) Autophagy , vol.7 , Issue.9 , pp. 1091-1092
    • Chou, T.-F.1    Deshaies, R.J.2
  • 118
    • 79953171555 scopus 로고    scopus 로고
    • Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways
    • Chou T-F, Brown SJ, Minond D, Nordin BE, Li K, et al. 2011. Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. PNAS 108(12):4834-39
    • (2011) PNAS , vol.108 , Issue.12 , pp. 4834-4839
    • Chou, T.-F.1    Brown, S.J.2    Minond, D.3    Nordin, B.E.4    Li, K.5
  • 119
    • 84883196231 scopus 로고    scopus 로고
    • Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death
    • Magnaghi P, D'Alessio R, Valsasina B, Avanzi N, Rizzi S, et al. 2013. Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. Nat. Chem. Biol. 9:548-56
    • (2013) Nat. Chem. Biol. , vol.9 , pp. 548-556
    • Magnaghi, P.1    D'Alessio, R.2    Valsasina, B.3    Avanzi, N.4    Rizzi, S.5
  • 120
    • 84862814996 scopus 로고    scopus 로고
    • Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein
    • Firestone AJ, Weinger JS, MaldonadoM, Barlan K, Langston LD, et al. 2012. Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein. Nature 484(7392):125-29
    • (2012) Nature , vol.484 , Issue.7392 , pp. 125-129
    • Firestone, A.J.1    Weinger, J.S.2    Maldonado, M.3    Barlan, K.4    Langston, L.D.5
  • 121
    • 37249004920 scopus 로고    scopus 로고
    • Reaching for high-hanging fruit in drug discovery at protein-protein interfaces
    • Wells JA, McClendon CL. 2007. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450(7172):1001-9
    • (2007) Nature , vol.450 , Issue.7172 , pp. 1001-1009
    • Wells, J.A.1    McClendon, C.L.2
  • 122
    • 77952546241 scopus 로고    scopus 로고
    • Drugging challenging targets using fragment-based approaches
    • Coyne AG, Scott DE, Abell C. 2010. Drugging challenging targets using fragment-based approaches. Curr. Opin. Chem. Biol. 14(3):299-307
    • (2010) Curr. Opin. Chem. Biol. , vol.14 , Issue.3 , pp. 299-307
    • Coyne, A.G.1    Scott, D.E.2    Abell, C.3
  • 123
    • 6044271376 scopus 로고    scopus 로고
    • Ubistatins inhibit proteasome-dependent degradation by binding the ubiquitin chain
    • Verma R, Peters NR, D'Onofrio M, Tochtrop GP, Sakamoto KM, et al. 2004. Ubistatins inhibit proteasome-dependent degradation by binding the ubiquitin chain. Science 306(5693):117-20
    • (2004) Science , vol.306 , Issue.5693 , pp. 117-120
    • Verma, R.1    Peters, N.R.2    D'Onofrio, M.3    Tochtrop, G.P.4    Sakamoto, K.M.5
  • 124
    • 78751659623 scopus 로고    scopus 로고
    • Unsaturated carbonyl system of chalcone-based derivatives is responsible for broad inhibition of proteasomal activity and preferential killing of human papilloma virus (HPV) positive cervical cancer cells
    • Bazzaro M, Anchoori RK, Mudiam MKR, Issaenko O, Kumar S, et al. 2011.,-Unsaturated carbonyl system of chalcone-based derivatives is responsible for broad inhibition of proteasomal activity and preferential killing of human papilloma virus (HPV) positive cervical cancer cells. J. Med. Chem. 54(2):449-56
    • (2011) J. Med. Chem. , vol.54 , Issue.2 , pp. 449-456
    • Bazzaro, M.1    Anchoori, R.K.2    Mudiam, M.K.R.3    Issaenko, O.4    Kumar, S.5
  • 125
    • 84891913291 scopus 로고    scopus 로고
    • A bis-benzylidine piperidone targeting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer
    • Anchoori RK, Karanam B, Peng S,Wang JW, Jiang R, et al. 2013. A bis-benzylidine piperidone targeting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer. Cancer Cell 24(6):791-805
    • (2013) Cancer Cell , vol.24 , Issue.6 , pp. 791-805
    • Anchoori, R.K.1    Karanam, B.2    Peng, S.3    Wang, J.W.4    Jiang, R.5
  • 126
    • 71149107057 scopus 로고    scopus 로고
    • Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening
    • Peth A, Besche HC, Goldberg AL. 2009. Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening. Mol. Cell 36(5):794-804
    • (2009) Mol. Cell , vol.36 , Issue.5 , pp. 794-804
    • Peth, A.1    Besche, H.C.2    Goldberg, A.L.3
  • 127
    • 77956527159 scopus 로고    scopus 로고
    • Enhancement of proteasome activity by a small-molecule inhibitor of USP14
    • Lee B-H, Lee MJ, Park S, Oh D-C, Elsasser S, et al. 2010. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467(7312):179-84
    • (2010) Nature , vol.467 , Issue.7312 , pp. 179-184
    • Lee, B.-H.1    Lee, M.J.2    Park, S.3    Oh, D.-C.4    Elsasser, S.5
  • 128
    • 84856085129 scopus 로고    scopus 로고
    • Inhibition of proteasome deubiquitinating activity as a new cancer therapy
    • D'Arcy P, Brnjic S, Olofsson MH, Fryknäs M, Lindsten K, et al. 2011. Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat. Med. 17(12):1636-40
    • (2011) Nat. Med. , vol.17 , Issue.12 , pp. 1636-1640
    • D'Arcy, P.1    Brnjic, S.2    Olofsson, M.H.3    Fryknäs, M.4    Lindsten, K.5
  • 129
    • 84896856969 scopus 로고    scopus 로고
    • Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11
    • Pathare GR, Nagy I, Sledz P, Anderson DJ, Zhou H-J, et al. 2014. Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11. PNAS 111(8):2984-89
    • (2014) PNAS , vol.111 , Issue.8 , pp. 2984-2989
    • Pathare, G.R.1    Nagy, I.2    Sledz, P.3    Anderson, D.J.4    Zhou, H.-J.5
  • 130
    • 84895868714 scopus 로고    scopus 로고
    • Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation
    • Worden EJ, Padovani C, Martin A. 2014. Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation. Nat. Struct. Mol. Biol. 21:220-27
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 220-227
    • Worden, E.J.1    Padovani, C.2    Martin, A.3
  • 131
    • 33846849171 scopus 로고    scopus 로고
    • The JAMM motif of human deubiquitinase Poh1 is essential for cell viability
    • Gallery M, Blank JL, Lin Y, Gutierrez JA, Pulido JC, et al. 2007. The JAMM motif of human deubiquitinase Poh1 is essential for cell viability. Mol. Cancer Ther. 6(1):262-68
    • (2007) Mol. Cancer Ther. , vol.6 , Issue.1 , pp. 262-268
    • Gallery, M.1    Blank, J.L.2    Lin, Y.3    Gutierrez, J.A.4    Pulido, J.C.5
  • 132
    • 0036875582 scopus 로고    scopus 로고
    • The essential 26S proteasome subunit Rpn11 confers multidrug resistance to mammalian cells
    • SpataroV, SimmenK, RealiniCA. 2002. The essential 26S proteasome subunit Rpn11 confers multidrug resistance to mammalian cells. Anticancer Res. 22(6C):3905-9
    • (2002) Anticancer Res. , vol.22 , Issue.6 C , pp. 3905-3909
    • Spataro, V.1    Simmen, K.2    Realini, C.A.3
  • 133
    • 79953046542 scopus 로고    scopus 로고
    • FAS and NF-B signalling modulate dependence of lung cancers on mutant EGFR
    • Bivona TG, Hieronymus H, Parker J, Chang K, Taron M, et al. 2011. FAS and NF-B signalling modulate dependence of lung cancers on mutant EGFR. Nature 471(7339):523-26
    • (2011) Nature , vol.471 , Issue.7339 , pp. 523-526
    • Bivona, T.G.1    Hieronymus, H.2    Parker, J.3    Chang, K.4    Taron, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.