-
1
-
-
0036083396
-
The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction
-
Glickman MH, Ciechanover A. 2002. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82(2):373-428
-
(2002)
Physiol. Rev.
, vol.82
, Issue.2
, pp. 373-428
-
-
Glickman, M.H.1
Ciechanover, A.2
-
2
-
-
65649115267
-
Recognition and processing of ubiquitin-protein conjugates by the proteasome
-
Finley D. 2009. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78:477-513
-
(2009)
Annu. Rev. Biochem.
, vol.78
, pp. 477-513
-
-
Finley, D.1
-
3
-
-
79952900728
-
Therapeutically targeting the SUMOylation, Ubiquitination and Proteasome pathways as a novel anticancer strategy
-
Driscoll JJ, Dechowdhury R. 2010. Therapeutically targeting the SUMOylation, Ubiquitination and Proteasome pathways as a novel anticancer strategy. Target. Oncol. 5(4):281-89
-
(2010)
Target. Oncol.
, vol.5
, Issue.4
, pp. 281-289
-
-
Driscoll, J.J.1
Dechowdhury, R.2
-
4
-
-
45749118333
-
The potential of proteasome inhibitors in cancer therapy
-
Sterz J, von Metzler I, Hahne J-C, Lamottke B, Rademacher J, et al. 2008. The potential of proteasome inhibitors in cancer therapy. Expert Opin. Investig. Drugs 17(6):879-95
-
(2008)
Expert Opin. Investig. Drugs
, vol.17
, Issue.6
, pp. 879-895
-
-
Sterz, J.1
Von Metzler, I.2
Hahne, J.-C.3
Lamottke, B.4
Rademacher, J.5
-
5
-
-
41549133200
-
Proteasome inhibitors in cancer therapy: Lessons from the first decade
-
Orlowski RZ, Kuhn DJ. 2008. Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin. Cancer Res. 14(6):1649-57
-
(2008)
Clin. Cancer Res.
, vol.14
, Issue.6
, pp. 1649-1657
-
-
Orlowski, R.Z.1
Kuhn, D.J.2
-
6
-
-
33745674468
-
Drug discovery in the ubiquitin-proteasome system
-
Nalepa G, Rolfe M, Harper JW. 2006. Drug discovery in the ubiquitin-proteasome system. Nat. Rev. Drug Discov. 5(7):596-613
-
(2006)
Nat. Rev. Drug Discov.
, vol.5
, Issue.7
, pp. 596-613
-
-
Nalepa, G.1
Rolfe, M.2
Harper, J.W.3
-
7
-
-
2342613652
-
The proteasome: A suitable antineoplastic target
-
Adams J. 2004. The proteasome: A suitable antineoplastic target. Nat. Rev. Cancer 4(5):349-60
-
(2004)
Nat. Rev. Cancer
, vol.4
, Issue.5
, pp. 349-360
-
-
Adams, J.1
-
8
-
-
0036217332
-
Proteasome inhibition: A novel approach to cancer therapy
-
Adams J. 2002. Proteasome inhibition: A novel approach to cancer therapy. Trends Mol. Med. 8(4 Suppl.):S49-54
-
(2002)
Trends Mol. Med.
, vol.8
, Issue.4
, pp. S49-54
-
-
Adams, J.1
-
9
-
-
84870227323
-
Proteasome inhibitors: A new perspective for treating autoimmune diseases
-
Fierabracci A. 2012. Proteasome inhibitors: A new perspective for treating autoimmune diseases. Curr. Drug Targets 13(13):1665-75
-
(2012)
Curr. Drug Targets
, vol.13
, Issue.13
, pp. 1665-1675
-
-
Fierabracci, A.1
-
10
-
-
34250011799
-
The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases
-
Wang J, Maldonado MA. 2006. The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases. Cell. Mol. Immunol. 3(4):255-61
-
(2006)
Cell. Mol. Immunol.
, vol.3
, Issue.4
, pp. 255-261
-
-
Wang, J.1
Maldonado, M.A.2
-
11
-
-
2642551603
-
Development of the proteasome inhibitor Velcade (Bortezomib)
-
Adams J, Kauffman M. 2004. Development of the proteasome inhibitor Velcade (Bortezomib). Cancer Investig. 22(2):304-11
-
(2004)
Cancer Investig.
, vol.22
, Issue.2
, pp. 304-311
-
-
Adams, J.1
Kauffman, M.2
-
12
-
-
84855430944
-
Molecular pathways: Targeting proteasomal protein degradation in cancer
-
Molineaux SM. 2012. Molecular pathways: targeting proteasomal protein degradation in cancer. Clin. Cancer Res. 18(1):15-20
-
(2012)
Clin. Cancer Res.
, vol.18
, Issue.1
, pp. 15-20
-
-
Molineaux, S.M.1
-
13
-
-
0024972956
-
Themulticatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria
-
Dahlmann B, Kopp F, Kuehn L,Niedel B, Pfeifer G, et al. 1989. Themulticatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria. FEBS Lett. 251(1-2):125-31
-
(1989)
FEBS Lett.
, vol.251
, Issue.1-2
, pp. 125-131
-
-
Dahlmann, B.1
Kopp, F.2
Kuehn, L.3
Niedel, B.4
Pfeifer, G.5
-
16
-
-
84866070181
-
Structure-based drug design: Opening the door to an epigenetic target
-
Harrison C. 2012. Structure-based drug design: opening the door to an epigenetic target. Nat. Rev. Drug Discov. 11(9):672-73
-
(2012)
Nat. Rev. Drug Discov.
, vol.11
, Issue.9
, pp. 672-673
-
-
Harrison, C.1
-
17
-
-
0032146301
-
Structure-based drug design
-
Amzel LM. 1998. Structure-based drug design. Curr. Opin. Biotechnol. 9(4):366-69
-
(1998)
Curr. Opin. Biotechnol.
, vol.9
, Issue.4
, pp. 366-369
-
-
Amzel, L.M.1
-
18
-
-
0030574268
-
Structure-based drug design
-
Blundell TL. 1996. Structure-based drug design. Nature 384(6604 Suppl.):23-26
-
(1996)
Nature
, vol.384
, Issue.6604
, pp. 23-26
-
-
Blundell, T.L.1
-
19
-
-
67849113794
-
The rise of fragment-based drug discovery
-
Murray CW, Rees DC. 2009. The rise of fragment-based drug discovery. Nat. Chem. 1(3):187-92
-
(2009)
Nat. Chem.
, vol.1
, Issue.3
, pp. 187-192
-
-
Murray, C.W.1
Rees, D.C.2
-
20
-
-
84887001050
-
A three-stage biophysical screening cascade for fragmentbased drug discovery
-
Mashalidis EH,Sledz P,Lang S, Abell C. 2013. A three-stage biophysical screening cascade for fragmentbased drug discovery. Nat. Protoc. 8(11):2309-24
-
(2013)
Nat. Protoc.
, vol.8
, Issue.11
, pp. 2309-2324
-
-
Mashalidis, E.H.1
Sledz, P.2
Lang, S.3
Abell, C.4
-
21
-
-
84883472009
-
Unveiling the long-held secrets of the 26S proteasome
-
Förster F, Unverdorben P,Sledz P, Baumeister W. 2013. Unveiling the long-held secrets of the 26S proteasome. Structure 21(9):1551-62
-
(2013)
Structure
, vol.21
, Issue.9
, pp. 1551-1562
-
-
Förster, F.1
Unverdorben, P.2
Sledz, P.3
Baumeister, W.4
-
22
-
-
0019195859
-
Cation-sensitive neutral endopeptidase: Isolation and specificity of the bovine pituitary enzyme
-
Wilk S, Orlowski M. 1980. Cation-sensitive neutral endopeptidase: isolation and specificity of the bovine pituitary enzyme. J. Neurochem. 35(5):1172-82
-
(1980)
J. Neurochem.
, vol.35
, Issue.5
, pp. 1172-1182
-
-
Wilk, S.1
Orlowski, M.2
-
23
-
-
0019731397
-
A multicatalytic protease complex from pituitary that forms enkephalin and enkephalin containing peptides
-
Orlowski M, Wilk S. 1981. A multicatalytic protease complex from pituitary that forms enkephalin and enkephalin containing peptides. Biochem. Biophys. Res. Commun. 101(3):814-22
-
(1981)
Biochem. Biophys. Res. Commun.
, vol.101
, Issue.3
, pp. 814-822
-
-
Orlowski, M.1
Wilk, S.2
-
24
-
-
0020674228
-
Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex
-
Wilk S, Orlowski M. 1983. Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex. J. Neurochem. 40(3):842-49
-
(1983)
J. Neurochem.
, vol.40
, Issue.3
, pp. 842-849
-
-
Wilk, S.1
Orlowski, M.2
-
25
-
-
0021824670
-
Purification and characterization of a multicatalytic high-molecular-mass proteinase from rat skeletal muscle
-
Dahlmann B, Kuehn L, Rutschmann M, Reinauer H. 1985. Purification and characterization of a multicatalytic high-molecular-mass proteinase from rat skeletal muscle. Biochem. J. 228(1):161-70
-
(1985)
Biochem. J.
, vol.228
, Issue.1
, pp. 161-170
-
-
Dahlmann, B.1
Kuehn, L.2
Rutschmann, M.3
Reinauer, H.4
-
26
-
-
0023009780
-
A high molecular weight protease in the cytosol of rat liver. I. Purification, enzymological properties, and tissue distribution
-
Tanaka K, Ii K, Ichihara A, Waxman L, Goldberg AL. 1986. A high molecular weight protease in the cytosol of rat liver. I. Purification, enzymological properties, and tissue distribution. J. Biol. Chem. 261(32):15197-203
-
(1986)
J. Biol. Chem.
, vol.261
, Issue.32
, pp. 15197-15203
-
-
Tanaka, K.1
Ii, K.2
Ichihara, A.3
Waxman, L.4
Goldberg, A.L.5
-
27
-
-
0025829436
-
The three-dimensional structure of proteasomes from Thermoplasma acidophilum as determined by electron microscopy using random conical tilting
-
Hegerl R, Pfeifer G, Pühler G, Dahlmann B, BaumeisterW. 1991. The three-dimensional structure of proteasomes from Thermoplasma acidophilum as determined by electron microscopy using random conical tilting. FEBS Lett. 283(1):117-21
-
(1991)
FEBS Lett.
, vol.283
, Issue.1
, pp. 117-121
-
-
Hegerl, R.1
Pfeifer, G.2
Uhler G, P.3
Dahlmann, B.4
Baumeister, W.5
-
28
-
-
0039660006
-
Subunit topology of the Rhodococcus proteasome
-
Zühl F,TamuraT,Dolenc I,Cejka Z, Nagy I, et al. 1997. Subunit topology of the Rhodococcus proteasome. FEBS Lett. 400(1):83-90
-
(1997)
FEBS Lett.
, vol.400
, Issue.1
, pp. 83-90
-
-
Uhl F, Z.1
Tamura, T.2
Dolenc, I.3
Cejka, Z.4
Nagy, I.5
-
29
-
-
0028881547
-
The proteasome from Thermoplasma acidophilum is neither a cysteine nor a serine protease
-
Seemüller E, Lupas A, Zühl F, Zwickl P, Baumeister W. 1995. The proteasome from Thermoplasma acidophilum is neither a cysteine nor a serine protease. FEBS Lett. 359(2-3):173-78
-
(1995)
FEBS Lett.
, vol.359
, Issue.2-3
, pp. 173-178
-
-
Seemüller, E.1
Lupas, A.2
Uhl F, Z.3
Zwickl, P.4
Baumeister, W.5
-
30
-
-
0029060166
-
Proteasome from Thermoplasma acidophilum: A threonine protease
-
Seemüller E, Lupas A, Stock D, Löwe J,Huber R, BaumeisterW. 1995. Proteasome from Thermoplasma acidophilum: A threonine protease. Science 268(5210):579-82
-
(1995)
Science
, vol.268
, Issue.5210
, pp. 579-582
-
-
Seemüller, E.1
Lupas, A.2
Stock, D.3
Löwe, J.4
Huber, R.5
Baumeister, W.6
-
31
-
-
0029042511
-
Crystal structure of the 20S proteasome from the archaeon T acidophilum at 3. 4A resolution
-
Löwe J, Stock D, Jap B, Zwickl P, BaumeisterW,HuberR. 1995. Crystal structure of the 20S proteasome from the archaeon T. Acidophilum at 3. 4A resolution. Science 268(5210):533-39
-
(1995)
Science
, vol.268
, Issue.5210
, pp. 533-539
-
-
Löwe, J.1
Stock, D.2
Jap, B.3
Zwickl, P.4
Baumeister, W.5
Huber, R.6
-
32
-
-
0030897031
-
Structure of 20S proteasome from yeast at 2
-
Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, et al. 1997. Structure of 20S proteasome from yeast at 2. 4A resolution. Nature 386(6624):463-71
-
(1997)
4A Resolution. Nature
, vol.386
, Issue.6624
, pp. 463-471
-
-
Groll, M.1
Ditzel, L.2
Löwe, J.3
Stock, D.4
Bochtler, M.5
-
33
-
-
84890859839
-
The unique functions of tissue-specific proteasomes
-
Kniepert A, Groettrup M. 2014. The unique functions of tissue-specific proteasomes. Trends Biochem. Sci. 39(1):17-24
-
(2014)
Trends Biochem. Sci.
, vol.39
, Issue.1
, pp. 17-24
-
-
Kniepert, A.1
Groettrup, M.2
-
34
-
-
0032488846
-
The proteasome: Paradigm of a selfcompartmentalizing protease
-
Baumeister W, Walz J, Zühl F, Seemüller E. 1998. The proteasome: paradigm of a selfcompartmentalizing protease. Cell 92(3):367-80
-
(1998)
Cell
, vol.92
, Issue.3
, pp. 367-380
-
-
Baumeister, W.1
Walz, J.2
Uhl F, Z.3
Seemüller, E.4
-
37
-
-
65649123769
-
Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii
-
Zhang F, Wu Z, Zhang P, Tian G, Finley D, Shi Y. 2009. Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 34(4):485-96
-
(2009)
Mol. Cell
, vol.34
, Issue.4
, pp. 485-496
-
-
Zhang, F.1
Wu, Z.2
Zhang, P.3
Tian, G.4
Finley, D.5
Shi, Y.6
-
38
-
-
84869016840
-
The archaeal proteasome is regulated by a network of AAA ATPases
-
Forouzan D, Ammelburg M, Hobel CF, Ströh LJ, Sessler N, et al. 2012. The archaeal proteasome is regulated by a network of AAA ATPases. J. Biol. Chem. 287(46):39254-62
-
(2012)
J. Biol. Chem.
, vol.287
, Issue.46
, pp. 39254-39262
-
-
Forouzan, D.1
Ammelburg, M.2
Hobel, C.F.3
Ströh, L.J.4
Sessler, N.5
-
39
-
-
84865094127
-
Identification of the Cdc4820S proteasome as an ancient AAA+ proteolytic machine
-
Barthelme D, Sauer RT. 2012. Identification of the Cdc4820S proteasome as an ancient AAA+ proteolytic machine. Science 337(6096):843-46
-
(2012)
Science
, vol.337
, Issue.6096
, pp. 843-846
-
-
Barthelme, D.1
Sauer, R.T.2
-
40
-
-
42949096020
-
Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases
-
Rabl J, Smith DM, Yu Y, Chang S-C, Goldberg AL, Cheng Y. 2008. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol. Cell 30(3):360-68
-
(2008)
Mol. Cell
, vol.30
, Issue.3
, pp. 360-368
-
-
Rabl, J.1
Smith, D.M.2
Yu, Y.3
Chang, S.-C.4
Goldberg, A.L.5
Cheng, Y.6
-
41
-
-
77957970501
-
The proteasome antechamber maintains substrates in an unfolded state
-
Ruschak AM, Religa TL, Breuer S, Witt S, Kay LE. 2010. The proteasome antechamber maintains substrates in an unfolded state. Nature 467(7317):868-71
-
(2010)
Nature
, vol.467
, Issue.7317
, pp. 868-871
-
-
Ruschak, A.M.1
Religa, T.L.2
Breuer, S.3
Witt, S.4
Kay, L.E.5
-
42
-
-
84856976866
-
Complete subunit architecture of the proteasome regulatory particle
-
Lander GC, Estrin E,MatyskielaME, Bashore C, Nogales E,Martin A. 2012. Complete subunit architecture of the proteasome regulatory particle. Nature 482(7384):186-91
-
(2012)
Nature
, vol.482
, Issue.7384
, pp. 186-191
-
-
Lander, G.C.1
Estrin, E.2
Matyskiela, M.E.3
Bashore, C.4
Nogales, E.5
Martin, A.6
-
43
-
-
84857134729
-
Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
-
Lasker K, Forster F, Bohn S, Walzthoeni T, Villa E, et al. 2012. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. PNAS 109(5):1380-87
-
(2012)
PNAS
, vol.109
, Issue.5
, pp. 1380-1387
-
-
Lasker, K.1
Forster, F.2
Bohn, S.3
Walzthoeni, T.4
Villa, E.5
-
44
-
-
84880157841
-
Conformational switching of the 26S proteasome enables substrate degradation
-
Matyskiela ME, Lander GC, Martin A. 2013. Conformational switching of the 26S proteasome enables substrate degradation. Nat. Struct. Mol. Biol. 20(7):781-88
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, Issue.7
, pp. 781-788
-
-
Matyskiela, M.E.1
Lander, G.C.2
Martin, A.3
-
45
-
-
84876909425
-
Structure of the 26S proteasome with ATP-S bound provides insights into the mechanism of nucleotide-dependent substrate translocation
-
Sledz P, Unverdorben P, Beck F, Pfeifer G, Schweitzer A, et al. 2013. Structure of the 26S proteasome with ATP-S bound provides insights into the mechanism of nucleotide-dependent substrate translocation. PNAS 110(18):7264-69
-
(2013)
PNAS
, vol.110
, Issue.18
, pp. 7264-7269
-
-
Sledz, P.1
Unverdorben, P.2
Beck, F.3
Pfeifer, G.4
Schweitzer, A.5
-
46
-
-
84856023509
-
The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together
-
Pathare GR, Nagy I, Bohn S, Unverdorben P, Hubert A, et al. 2012. The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together. PNAS 109(1):149-54
-
(2012)
PNAS
, vol.109
, Issue.1
, pp. 149-154
-
-
Pathare, G.R.1
Nagy, I.2
Bohn, S.3
Unverdorben, P.4
Hubert, A.5
-
47
-
-
0037131243
-
Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
-
Verma R, Aravind L, Oania R,McDonald WH, Yates JR, et al. 2002. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298(5593):611-15
-
(2002)
Science
, vol.298
, Issue.5593
, pp. 611-615
-
-
Verma, R.1
Aravind, L.2
Oania, R.3
McDonald, W.H.4
Yates, J.R.5
-
48
-
-
84872102009
-
Design principles of a universal protein degradation machine
-
Matyskiela ME, Martin A. 2013. Design principles of a universal protein degradation machine. J. Mol. Biol. 425(2):199-213
-
(2013)
J. Mol. Biol.
, vol.425
, Issue.2
, pp. 199-213
-
-
Matyskiela, M.E.1
Martin, A.2
-
49
-
-
84876412543
-
Allosteric effects in the regulation of 26S proteasome activities
-
Sledz P, Förster F, Baumeister W. 2013. Allosteric effects in the regulation of 26S proteasome activities. J. Mol. Biol. 425(9):1415-23
-
(2013)
J. Mol. Biol.
, vol.425
, Issue.9
, pp. 1415-1423
-
-
Sledz, P.1
Förster, F.2
Baumeister, W.3
-
50
-
-
84866269021
-
Near-atomic resolution structural model of the yeast 26S proteasome
-
Beck F, Unverdorben P, Bohn S, Schweitzer A, Pfeifer G, et al. 2012. Near-atomic resolution structural model of the yeast 26S proteasome. PNAS 109(37):14870-75
-
(2012)
PNAS
, vol.109
, Issue.37
, pp. 14870-14875
-
-
Beck, F.1
Unverdorben, P.2
Bohn, S.3
Schweitzer, A.4
Pfeifer, G.5
-
51
-
-
0028150688
-
Inhibition of the proteolytic activity of the multicatalytic proteinase complex (proteasome) by substrate-related peptidyl aldehydes
-
Vinitsky A, Cardozo C, Sepp-Lorenzino L,Michaud C, OrlowskiM. 1994. Inhibition of the proteolytic activity of the multicatalytic proteinase complex (proteasome) by substrate-related peptidyl aldehydes. J. Biol. Chem. 269(47):29860-66
-
(1994)
J. Biol. Chem.
, vol.269
, Issue.47
, pp. 29860-29866
-
-
Vinitsky, A.1
Cardozo, C.2
Sepp-Lorenzino, L.3
Michaud, C.4
Orlowski, M.5
-
52
-
-
0032568514
-
Kinetic studies of the branched chain amino acid preferring peptidase activity of the 20S proteasome: Development of a continuous assay and inhibition by tripeptide aldehydes and clasto-lactacystin beta-lactone
-
McCormack TA, Cruikshank AA, Grenier L, Melandri FD, Nunes SL, et al. 1998. Kinetic studies of the branched chain amino acid preferring peptidase activity of the 20S proteasome: development of a continuous assay and inhibition by tripeptide aldehydes and clasto-lactacystin beta-lactone. Biochemistry 37(21):7792-800
-
(1998)
Biochemistry
, vol.37
, Issue.21
, pp. 7792-7800
-
-
McCormack, T.A.1
Cruikshank, A.A.2
Grenier, L.3
Melandri, F.D.4
Nunes, S.L.5
-
53
-
-
0026786503
-
Inhibition of the chymotrypsin-like activity of the pituitary multicatalytic proteinase complex
-
Vinitsky A, Michaud C, Powers JC, Orlowski M. 1992. Inhibition of the chymotrypsin-like activity of the pituitary multicatalytic proteinase complex. Biochemistry 31(39):9421-28
-
(1992)
Biochemistry
, vol.31
, Issue.39
, pp. 9421-9428
-
-
Vinitsky, A.1
Michaud, C.2
Powers, J.C.3
Orlowski, M.4
-
54
-
-
33947659939
-
20S proteasome and its inhibitors: Crystallographic knowledge for drug development
-
Borissenko L, Groll M. 2007. 20S proteasome and its inhibitors: crystallographic knowledge for drug development. Chem. Rev. 107(3):687-717
-
(2007)
Chem. Rev.
, vol.107
, Issue.3
, pp. 687-717
-
-
Borissenko, L.1
Groll, M.2
-
55
-
-
84856373151
-
Proteasome inhibitors: An expanding army attacking a unique target
-
Kisselev AF, van der Linden WA, Overkleeft HS. 2012. Proteasome inhibitors: An expanding army attacking a unique target. Chem. Biol. 19(1):99-115
-
(2012)
Chem. Biol.
, vol.19
, Issue.1
, pp. 99-115
-
-
Kisselev, A.F.1
Van Der Linden, W.A.2
Overkleeft, H.S.3
-
56
-
-
23344435097
-
Tripeptide mimetics inhibit the 20 S proteasome by covalent bonding to the active threonines
-
Braun HA, Umbreen S, GrollM, Kuckelkorn U,Mlynarczuk I, et al. 2005. Tripeptide mimetics inhibit the 20 S proteasome by covalent bonding to the active threonines. J. Biol. Chem. 280(31):28394-401
-
(2005)
J. Biol. Chem.
, vol.280
, Issue.31
, pp. 28394-28401
-
-
Braun, H.A.1
Umbreen, S.2
Groll, M.3
Kuckelkorn, U.4
Mlynarczuk, I.5
-
57
-
-
0027980321
-
The ubiquitin-proteasome pathway is required for processing the NF-B1 precursor protein and the activation of NF-B
-
Palombella VJ, Rando OJ, Goldberg AL, Maniatis T. 1994. The ubiquitin-proteasome pathway is required for processing the NF-B1 precursor protein and the activation of NF-B. Cell 78(5):773-85
-
(1994)
Cell
, vol.78
, Issue.5
, pp. 773-785
-
-
Palombella, V.J.1
Rando, O.J.2
Goldberg, A.L.3
Maniatis, T.4
-
58
-
-
0000870917
-
Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae
-
Lee DH, Goldberg AL. 1996. Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae. J. Biol. Chem. 271(44):27280-84
-
(1996)
J. Biol. Chem.
, vol.271
, Issue.44
, pp. 27280-27284
-
-
Lee, D.H.1
Goldberg, A.L.2
-
59
-
-
0033621047
-
Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity
-
Meng L, Mohan R, Kwok BH, ElofssonM, Sin N, Crews CM. 1999. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. PNAS 96(18):10403-8
-
(1999)
PNAS
, vol.96
, Issue.18
, pp. 10403-10408
-
-
Meng, L.1
Mohan, R.2
Kwok, B.H.3
Elofsson, M.4
Sin, N.5
Crews, C.M.6
-
60
-
-
33644845743
-
Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome
-
GrollM, Berkers CR, PloeghHL, Ovaa H. 2006. Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure 14(3):451-56
-
(2006)
Structure
, vol.14
, Issue.3
, pp. 451-456
-
-
Groll, M.1
Berkers, C.R.2
Ploegh, H.L.3
Ovaa, H.4
-
61
-
-
41949110089
-
CEP-18770: A novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib
-
Piva R, Ruggeri B, Williams M, Costa G, Tamagno I, et al. 2008. CEP-18770: A novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib. Blood 111(5):2765-75
-
(2008)
Blood
, vol.111
, Issue.5
, pp. 2765-2775
-
-
Piva, R.1
Ruggeri, B.2
Williams, M.3
Costa, G.4
Tamagno, I.5
-
62
-
-
77950238258
-
Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer
-
Kupperman E, Lee EC, Cao Y, Bannerman B, Fitzgerald M, et al. 2010. Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Res. 70(5):1970-80
-
(2010)
Cancer Res.
, vol.70
, Issue.5
, pp. 1970-1980
-
-
Kupperman, E.1
Lee, E.C.2
Cao, Y.3
Bannerman, B.4
Fitzgerald, M.5
-
63
-
-
78650904648
-
Elucidation of the ketoaldehyde binding mechanism: A lead structure motif for proteasome inhibition
-
Gräwert MA, Gallastegui N, Stein M, Schmidt B, Kloetzel P-M, et al. 2011. Elucidation of the ketoaldehyde binding mechanism: A lead structure motif for proteasome inhibition. Angew. Chem. Int. Ed. Engl. 50(2):542-44
-
(2011)
Angew. Chem. Int. Ed. Engl.
, vol.50
, Issue.2
, pp. 542-544
-
-
Gräwert, M.A.1
Gallastegui, N.2
Stein, M.3
Schmidt, B.4
Kloetzel, P.-M.5
-
64
-
-
78650051900
-
Nature of pharmacophore influences active site specificity of proteasome inhibitors
-
Screen M, Britton M, Downey SL, Verdoes M, Voges MJ, et al. 2010. Nature of pharmacophore influences active site specificity of proteasome inhibitors. J. Biol. Chem. 285(51):40125-34
-
(2010)
J. Biol. Chem.
, vol.285
, Issue.51
, pp. 40125-40134
-
-
Screen, M.1
Britton, M.2
Downey, S.L.3
Verdoes, M.4
Voges, M.J.5
-
65
-
-
84873924284
-
Incorporation of non-natural amino acids improves cell permeability and potency of specific inhibitors of proteasome trypsin-like sites
-
Geurink PP, van der Linden WA, Mirabella AC, Gallastegui N, de Bruin G, et al. 2013. Incorporation of non-natural amino acids improves cell permeability and potency of specific inhibitors of proteasome trypsin-like sites. J. Med. Chem. 56(3):1262-75
-
(2013)
J. Med. Chem.
, vol.56
, Issue.3
, pp. 1262-1275
-
-
Geurink, P.P.1
Van Der Linden, W.A.2
Mirabella, A.C.3
Gallastegui, N.4
De Bruin, G.5
-
66
-
-
42049085712
-
A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism
-
Groll M, Schellenberg B, Bachmann AS, Archer CR, Huber R, et al. 2008. A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 452(7188):755-58
-
(2008)
Nature
, vol.452
, Issue.7188
, pp. 755-758
-
-
Groll, M.1
Schellenberg, B.2
Bachmann, A.S.3
Archer, C.R.4
Huber, R.5
-
67
-
-
66149090781
-
Synthetic and structural studies on syringolin A and B reveal critical determinants of selectivity and potency of proteasome inhibition
-
Clerc J, Groll M, Illich DJ, Bachmann AS, Huber R, et al. 2009. Synthetic and structural studies on syringolin A and B reveal critical determinants of selectivity and potency of proteasome inhibition. PNAS 106(16):6507-12
-
(2009)
PNAS
, vol.106
, Issue.16
, pp. 6507-6512
-
-
Clerc, J.1
Groll, M.2
Illich, D.J.3
Bachmann, A.S.4
Huber, R.5
-
68
-
-
33751040506
-
Syringolin A, A new plant elicitor from the phytopathogenic bacterium Pseudomonas syringae pv. Syringae, inhibits the proliferation of neuroblastoma and ovarian cancer cells and induces apoptosis
-
Coleman CS, Rocetes JP, Park DJ, Wallick CJ,Warn-Cramer BJ, et al. 2006. Syringolin A, a new plant elicitor from the phytopathogenic bacterium Pseudomonas syringae pv. syringae, inhibits the proliferation of neuroblastoma and ovarian cancer cells and induces apoptosis. Cell Prolif. 39(6):599-609
-
(2006)
Cell Prolif.
, vol.39
, Issue.6
, pp. 599-609
-
-
Coleman, C.S.1
Rocetes, J.P.2
Park, D.J.3
Wallick, C.J.4
Warn-Cramer, B.J.5
-
69
-
-
78649885502
-
The natural product hybrid of Syringolin A and Glidobactin A synergizes proteasome inhibition potency with subsite selectivity
-
Clerc J, Li N, Krahn D, Groll M, Bachmann AS, et al. 2011. The natural product hybrid of Syringolin A and Glidobactin A synergizes proteasome inhibition potency with subsite selectivity. Chem. Commun. 47(1):385-87
-
(2011)
Chem. Commun.
, vol.47
, Issue.1
, pp. 385-387
-
-
Clerc, J.1
Li, N.2
Krahn, D.3
Groll, M.4
Bachmann, A.S.5
-
70
-
-
84868578166
-
One-shot NMR analysis of microbial secretions identifies highly potent proteasome inhibitor
-
Stein ML, Beck P, Kaiser M, Dudler R, Becker CFW, Groll M. 2012. One-shot NMR analysis of microbial secretions identifies highly potent proteasome inhibitor. PNAS 109(45):18367-71
-
(2012)
PNAS
, vol.109
, Issue.45
, pp. 18367-18371
-
-
Stein, M.L.1
Beck, P.2
Kaiser, M.3
Dudler, R.4
Becker, C.F.W.5
Groll, M.6
-
71
-
-
0034105791
-
TMC-95A, B, C, and D, novel proteasome inhibitors produced by Apiospora montagnei Sacc. TC1093. Taxonomy, production, isolation, and biological activities
-
Koguchi Y, Kohno J, Nishio M, Takahashi K, Okuda T, et al. 2000. TMC-95A, B, C, and D, novel proteasome inhibitors produced by Apiospora montagnei Sacc. TC1093. Taxonomy, production, isolation, and biological activities. J. Antibiot. 53(2):105-9
-
(2000)
J. Antibiot.
, vol.53
, Issue.2
, pp. 105-109
-
-
Koguchi, Y.1
Kohno, J.2
Nishio, M.3
Takahashi, K.4
Okuda, T.5
-
72
-
-
0035902778
-
Crystal structure of the 20 S proteasome:TMC-95A complex: A non-covalent proteasome inhibitor
-
Groll M, Koguchi Y, Huber R, Kohno J. 2001. Crystal structure of the 20 S proteasome:TMC-95A complex: A non-covalent proteasome inhibitor. J. Mol. Biol. 311(3):543-48
-
(2001)
J. Mol. Biol.
, vol.311
, Issue.3
, pp. 543-548
-
-
Groll, M.1
Koguchi, Y.2
Huber, R.3
Kohno, J.4
-
73
-
-
0036494798
-
The core structure of TMC-95A is a promising lead for reversible proteasome inhibition
-
Kaiser M, Groll M, Renner C, Huber R, Moroder L. 2002. The core structure of TMC-95A is a promising lead for reversible proteasome inhibition. Angew. Chem. Int. Ed. Engl. 41(5):780-83
-
(2002)
Angew. Chem. Int. Ed. Engl.
, vol.41
, Issue.5
, pp. 780-783
-
-
Kaiser, M.1
Groll, M.2
Renner, C.3
Huber, R.4
Moroder, L.5
-
74
-
-
4644259397
-
Binding mode of TMC-95A analogues to eukaryotic 20S proteasome
-
Kaiser M, GrollM, Siciliano C, Assfalg-Machleidt I,Weyher E, et al. 2004. Binding mode of TMC-95A analogues to eukaryotic 20S proteasome. ChemBioChem 5(9):1256-66
-
(2004)
ChemBioChem
, vol.5
, Issue.9
, pp. 1256-1266
-
-
Kaiser, M.1
Groll, M.2
Siciliano, C.3
Assfalg-Machleidt, I.4
Weyher, E.5
-
75
-
-
33745187107
-
TMC-95-based inhibitor design provides evidence for the catalytic versatility of the proteasome
-
Groll M, Götz M, Kaiser M, Weyher E, Moroder L. 2006. TMC-95-based inhibitor design provides evidence for the catalytic versatility of the proteasome. Chem. Biol. 13(6):607-14
-
(2006)
Chem. Biol.
, vol.13
, Issue.6
, pp. 607-614
-
-
Groll, M.1
Götz, M.2
Kaiser, M.3
Weyher, E.4
Moroder, L.5
-
76
-
-
34250806632
-
Linear TMC-95-based proteasome inhibitors
-
Basse N, Piguel S, Papapostolou D, Ferrier-Berthelot A, Richy N, et al. 2007. Linear TMC-95-based proteasome inhibitors. J. Med. Chem. 50(12):2842-50
-
(2007)
J. Med. Chem.
, vol.50
, Issue.12
, pp. 2842-2850
-
-
Basse, N.1
Piguel, S.2
Papapostolou, D.3
Ferrier-Berthelot, A.4
Richy, N.5
-
77
-
-
77957656769
-
20S proteasome inhibition: Designing noncovalent linear peptide mimics of the natural product TMC-95A
-
Groll M, Gallastegui N, Maréchal X, Le Ravalec V, Basse N, et al. 2010. 20S proteasome inhibition: designing noncovalent linear peptide mimics of the natural product TMC-95A. ChemMedChem 5(10):1701-5
-
(2010)
ChemMedChem
, vol.5
, Issue.10
, pp. 1701-1705
-
-
Groll, M.1
Gallastegui, N.2
Maréchal, X.3
Le Ravalec, V.4
Basse, N.5
-
78
-
-
73149103209
-
Selective inhibitor of proteasome's caspase-like sites sensitizes cells to specific inhibition of chymotrypsin-like sites
-
BrittonM, LucasMM,Downey SL, Screen M, Pletnev AA, et al. 2009. Selective inhibitor of proteasome's caspase-like sites sensitizes cells to specific inhibition of chymotrypsin-like sites. Chem. Biol. 16(12):1278-89
-
(2009)
Chem. Biol.
, vol.16
, Issue.12
, pp. 1278-1289
-
-
Britton, M.1
Lucas, M.M.2
Downey, S.L.3
Screen, M.4
Pletnev, A.A.5
-
79
-
-
79957477617
-
Specific cell-permeable inhibitor of proteasome trypsin-like sites selectively sensitizes myeloma cells to bortezomib and carfilzomib
-
Mirabella AC, Pletnev AA, Downey SL, Florea BI, Shabaneh TB, et al. 2011. Specific cell-permeable inhibitor of proteasome trypsin-like sites selectively sensitizes myeloma cells to bortezomib and carfilzomib. Chem. Biol. 18(5):608-18
-
(2011)
Chem. Biol.
, vol.18
, Issue.5
, pp. 608-618
-
-
Mirabella, A.C.1
Pletnev, A.A.2
Downey, S.L.3
Florea, B.I.4
Shabaneh, T.B.5
-
80
-
-
0035927193
-
A new structural class of selective and non-covalent inhibitors of the chymotrypsin-like activity of the 20S proteasome
-
Garca-Echeverra C, Imbach P, France D, Fürst P, Lang M, et al. 2001. A new structural class of selective and non-covalent inhibitors of the chymotrypsin-like activity of the 20S proteasome. Bioorg. Med. Chem. Lett. 11(10):1317-19
-
(2001)
Bioorg. Med. Chem. Lett.
, vol.11
, Issue.10
, pp. 1317-1319
-
-
Garca-Echeverra, C.1
Imbach, P.2
France, D.3
Urst P, F.4
Lang, M.5
-
81
-
-
4544337315
-
Entry into a new class of potent proteasome inhibitors having high antiproliferative activity by structure-based design
-
Furet P, Imbach P, Noorani M, Koeppler J, Laumen K, et al. 2004. Entry into a new class of potent proteasome inhibitors having high antiproliferative activity by structure-based design. J. Med. Chem. 47(20):4810-13
-
(2004)
J. Med. Chem.
, vol.47
, Issue.20
, pp. 4810-4813
-
-
Furet, P.1
Imbach, P.2
Noorani, M.3
Koeppler, J.4
Laumen, K.5
-
82
-
-
77956687927
-
Characterization of a new series of non-covalent proteasome inhibitors with exquisite potency and selectivity for the 20S5-subunit
-
Blackburn C, Gigstad KM, Hales P, Garcia K, Jones M, et al. 2010. Characterization of a new series of non-covalent proteasome inhibitors with exquisite potency and selectivity for the 20S5-subunit. Biochem. J. 430(3):461-76
-
(2010)
Biochem. J.
, vol.430
, Issue.3
, pp. 461-476
-
-
Blackburn, C.1
Gigstad, K.M.2
Hales, P.3
Garcia, K.4
Jones, M.5
-
83
-
-
77958044160
-
Optimization of a series of dipeptides with a P3 threonine residue as non-covalent inhibitors of the chymotrypsin-like activity of the human 20S proteasome
-
BlackburnC, Barrett C, Blank JL, Bruzzese FJ, BumpN, et al. 2010. Optimization of a series of dipeptides with a P3 threonine residue as non-covalent inhibitors of the chymotrypsin-like activity of the human 20S proteasome. Bioorg. Med. Chem. Lett. 20(22):6581-86
-
(2010)
Bioorg. Med. Chem. Lett.
, vol.20
, Issue.22
, pp. 6581-6586
-
-
Blackburn, C.1
Barrett, C.2
Blank, J.L.3
Bruzzese, F.J.4
Bump, N.5
-
84
-
-
0027214605
-
Gamma-interferon and expression ofMHCgenes regulate peptide hydrolysis by proteasomes
-
Gaczynska M, Rock KL,Goldberg AL. 1993. Gamma-interferon and expression ofMHCgenes regulate peptide hydrolysis by proteasomes. Nature 365(6443):264-67
-
(1993)
Nature
, vol.365
, Issue.6443
, pp. 264-267
-
-
Gaczynska, M.1
Rock, K.L.2
Goldberg, A.L.3
-
85
-
-
0027223877
-
MHC-linked LMP gene products specifically alter peptidase activities of the proteasome
-
Driscoll J, Brown MG, Finley D, Monaco JJ. 1993. MHC-linked LMP gene products specifically alter peptidase activities of the proteasome. Nature 365(6443):262-64
-
(1993)
Nature
, vol.365
, Issue.6443
, pp. 262-264
-
-
Driscoll, J.1
Brown, M.G.2
Finley, D.3
Monaco, J.J.4
-
86
-
-
34249285172
-
A cell-permeable inhibitor and activity-based probe for the caspase-like activity of the proteasome
-
van Swieten PF, Samuel E, Hernández RO, van den Nieuwendijk AMCH, Leeuwenburgh MA, et al. 2007. A cell-permeable inhibitor and activity-based probe for the caspase-like activity of the proteasome. Bioorg. Med. Chem. Lett. 17(12):3402-5
-
(2007)
Bioorg. Med. Chem. Lett.
, vol.17
, Issue.12
, pp. 3402-3405
-
-
Van Swieten, P.F.1
Samuel, E.2
Hernández, R.O.3
Van Den Nieuwendijk, A.M.C.H.4
Leeuwenburgh, M.A.5
-
87
-
-
34247190754
-
LMP2-specific inhibitors: Chemical genetic tools for proteasome biology
-
Ho YK, Bargagna-Mohan P,WehenkelM,Mohan R, Kim K-B. 2007. LMP2-specific inhibitors: chemical genetic tools for proteasome biology. Chem. Biol. 14(4):419-30
-
(2007)
Chem. Biol.
, vol.14
, Issue.4
, pp. 419-430
-
-
Ho, Y.K.1
Bargagna-Mohan, P.2
Wehenkel, M.3
Mohan, R.4
Kim, K.-B.5
-
88
-
-
67650388103
-
A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis
-
Muchamuel T, Basler M, Aujay MA, Suzuki E, Kalim KW, et al. 2009. A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat. Med. 15(7):781-87
-
(2009)
Nat. Med.
, vol.15
, Issue.7
, pp. 781-787
-
-
Muchamuel, T.1
Basler, M.2
Aujay, M.A.3
Suzuki, E.4
Kalim, K.W.5
-
89
-
-
84857313367
-
Immuno-and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity
-
Huber EM, Basler M, Schwab R, Heinemeyer W, Kirk CJ, et al. 2012. Immuno-and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity. Cell 148(4):727-38
-
(2012)
Cell
, vol.148
, Issue.4
, pp. 727-738
-
-
Huber, E.M.1
Basler, M.2
Schwab, R.3
Heinemeyer, W.4
Kirk, C.J.5
-
90
-
-
20744445650
-
Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma
-
Raval RR, Lau KW, Tran MGB, Sowter HM, Mandriota SJ, et al. 2005. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol. Cell. Biol. 25(13):5675-86
-
(2005)
Mol. Cell. Biol.
, vol.25
, Issue.13
, pp. 5675-5686
-
-
Raval, R.R.1
Lau, K.W.2
Tran, M.G.B.3
Sowter, H.M.4
Mandriota, S.J.5
-
91
-
-
2342597973
-
Inhibition of HIF2is sufficient to suppress pVHL-defective tumor growth
-
Kondo K, Kim WY, LechpammerM, KaelinWGJr. 2003. Inhibition of HIF2 is sufficient to suppress pVHL-defective tumor growth. PLOS Biol. 1(3):e83
-
(2003)
PLOS Biol.
, vol.1
, Issue.3
, pp. e83
-
-
Kondo, K.1
Kim, W.Y.2
Lechpammer, M.3
Kaelin, W.G.4
-
92
-
-
34047156190
-
HIF-2 promotes hypoxic cell proliferation by enhancing c-Myc transcriptional activity
-
Gordan JD, Bertout JA,HuC-J, Diehl JA, SimonMC. 2007. HIF-2 promotes hypoxic cell proliferation by enhancing c-Myc transcriptional activity. Cancer Cell 11(4):335-47
-
(2007)
Cancer Cell
, vol.11
, Issue.4
, pp. 335-347
-
-
Gordan, J.D.1
Bertout, J.A.2
HuC-J3
Diehl, J.A.4
Simon, M.C.5
-
93
-
-
84871609304
-
Validation of the proteasome as a therapeutic target in Plasmodium using an epoxyketone inhibitor with parasite-specific toxicity
-
Li H, Ponder EL, VerdoesM, Asbjornsdottir KH, Deu E, et al. 2012. Validation of the proteasome as a therapeutic target in Plasmodium using an epoxyketone inhibitor with parasite-specific toxicity. Chem. Biol. 19(12):1535-45
-
(2012)
Chem. Biol.
, vol.19
, Issue.12
, pp. 1535-1545
-
-
Li, H.1
Ponder, E.L.2
Verdoes, M.3
Asbjornsdottir, K.H.4
Deu, E.5
-
94
-
-
33645053287
-
Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate
-
Hu G, Lin G,WangM, Dick L, Xu R-M, et al. 2006. Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate. Mol. Microbiol. 59(5):1417-28
-
(2006)
Mol. Microbiol.
, vol.59
, Issue.5
, pp. 1417-1428
-
-
Hu, G.1
Lin, G.2
Wang, M.3
Dick, L.4
Xu, R.-M.5
-
95
-
-
33645073409
-
Mycobacterium tuberculosis prcBA genes encode a gated proteasome with broad oligopeptide specificity
-
Lin G,Hu G, Tsu C, Kunes YZ, Li H, et al. 2006. Mycobacterium tuberculosis prcBA genes encode a gated proteasome with broad oligopeptide specificity. Mol. Microbiol. 59(5):1405-16
-
(2006)
Mol. Microbiol.
, vol.59
, Issue.5
, pp. 1405-1416
-
-
Lin, G.1
Hu, G.2
Tsu, C.3
Kunes, Y.Z.4
Li, H.5
-
96
-
-
70349658267
-
Inhibitors selective for mycobacterial versus human proteasomes
-
Lin G, Li D, de Carvalho LPS, DengH, Tao H, et al. 2009. Inhibitors selective for mycobacterial versus human proteasomes. Nature 461(7264):621-26
-
(2009)
Nature
, vol.461
, Issue.7264
, pp. 621-626
-
-
Lin, G.1
Li, D.2
De Carvalho, L.P.S.3
Deng, H.4
Tao, H.5
-
97
-
-
57749098803
-
Distinct specificities of Mycobacterium tuberculosis and mammalian proteasomes for N-acetyl tripeptide substrates
-
Lin G, Tsu C, Dick L, Zhou XK, Nathan C. 2008. Distinct specificities of Mycobacterium tuberculosis and mammalian proteasomes for N-acetyl tripeptide substrates. J. Biol. Chem. 283(49):34423-31
-
(2008)
J. Biol. Chem.
, vol.283
, Issue.49
, pp. 34423-34431
-
-
Lin, G.1
Tsu, C.2
Dick, L.3
Zhou, X.K.4
Nathan, C.5
-
98
-
-
84880005002
-
N,C-capped dipeptides with selectivity for mycobacterial proteasome over human proteasomes: Role of S3 and S1 binding pockets
-
Lin G, Chidawanyika T, Tsu C, Warrier T, Vaubourgeix J, et al. 2013. N,C-capped dipeptides with selectivity for mycobacterial proteasome over human proteasomes: role of S3 and S1 binding pockets. J. Am. Chem. Soc. 135(27):9968-71
-
(2013)
J. Am. Chem. Soc.
, vol.135
, Issue.27
, pp. 9968-9971
-
-
Lin, G.1
Chidawanyika, T.2
Tsu, C.3
Warrier, T.4
Vaubourgeix, J.5
-
99
-
-
84855288982
-
Hydroxyureas as noncovalent proteasome inhibitors
-
Gallastegui N, Beck P, Arciniega M, HuberR,Hillebrand S,Groll M. 2012. Hydroxyureas as noncovalent proteasome inhibitors. Angew. Chem. Int. Ed. Engl. 51(1):247-49
-
(2012)
Angew. Chem. Int. Ed. Engl.
, vol.51
, Issue.1
, pp. 247-249
-
-
Gallastegui, N.1
Beck, P.2
Arciniega, M.3
Huber, R.4
Hillebrand, S.5
Groll, M.6
-
100
-
-
84876154755
-
Homopiperazine derivatives as a novel class of proteasome inhibitors with a unique mode of proteasome binding
-
Kikuchi J, Shibayama N, Yamada S, Wada T, Nobuyoshi M, et al. 2013. Homopiperazine derivatives as a novel class of proteasome inhibitors with a unique mode of proteasome binding. PLOS ONE 8(4):e60649
-
(2013)
PLOS ONE
, vol.8
, Issue.4
, pp. e60649
-
-
Kikuchi, J.1
Shibayama, N.2
Yamada, S.3
Wada, T.4
Nobuyoshi, M.5
-
101
-
-
0029033981
-
Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin
-
Fenteany G, StandaertRF, Lane WS,Choi S,Corey EJ, Schreiber SL. 1995. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268(5211):726-31
-
(1995)
Science
, vol.268
, Issue.5211
, pp. 726-731
-
-
Fenteany, G.1
Standaert, R.F.2
Lane, W.S.3
Choi, S.4
Corey, E.J.5
Schreiber, S.L.6
-
102
-
-
0029937677
-
Mechanistic studies on the inactivation of the proteasome by lactacystin: A central role for clasto-lactacystin lactone
-
Dick LR, Cruikshank AA, Grenier L, Melandri FD, Nunes SL, Stein RL. 1996. Mechanistic studies on the inactivation of the proteasome by lactacystin: A central role for clasto-lactacystin lactone. J. Biol. Chem. 271(13):7273-76
-
(1996)
J. Biol. Chem.
, vol.271
, Issue.13
, pp. 7273-7276
-
-
Dick, L.R.1
Cruikshank, A.A.2
Grenier, L.3
Melandri, F.D.4
Nunes, S.L.5
Stein, R.L.6
-
103
-
-
15644363581
-
Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells
-
Dick LR, Cruikshank AA, Destree AT, Grenier L, McCormack TA, et al. 1997. Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. J. Biol. Chem. 272(1):182-88
-
(1997)
J. Biol. Chem.
, vol.272
, Issue.1
, pp. 182-188
-
-
Dick, L.R.1
Cruikshank, A.A.2
Destree, A.T.3
Grenier, L.4
McCormack, T.A.5
-
104
-
-
33646137808
-
Crystal structures of Salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of lactone ring opening and a mechanism for irreversible binding
-
GrollM, Huber R, Potts BCM. 2006. Crystal structures of Salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of lactone ring opening and a mechanism for irreversible binding. J. Am. Chem. Soc. 128(15):5136-41
-
(2006)
J. Am. Chem. Soc.
, vol.128
, Issue.15
, pp. 5136-5141
-
-
Groll, M.1
Huber, R.2
Potts, B.C.M.3
-
105
-
-
57349153171
-
Structural analysis of spiro lactone proteasome inhibitors
-
Groll M, Balskus EP, Jacobsen EN. 2008. Structural analysis of spiro lactone proteasome inhibitors. J. Am. Chem. Soc. 130(45):14981-83
-
(2008)
J. Am. Chem. Soc.
, vol.130
, Issue.45
, pp. 14981-14983
-
-
Groll, M.1
Balskus, E.P.2
Jacobsen, E.N.3
-
106
-
-
69949108710
-
Snapshots of the fluorosalinosporamide/20S complex offer mechanistic insights for fine tuning proteasome inhibition
-
Groll M, McArthur KA, Macherla VR, Manam RR, Potts BC. 2009. Snapshots of the fluorosalinosporamide/20S complex offer mechanistic insights for fine tuning proteasome inhibition. J. Med. Chem. 52(17):5420-28
-
(2009)
J. Med. Chem.
, vol.52
, Issue.17
, pp. 5420-5428
-
-
Groll, M.1
McArthur, K.A.2
Macherla, V.R.3
Manam, R.R.4
Potts, B.C.5
-
107
-
-
1642276251
-
A new structural class of proteasome inhibitors identified by microbial screening using yeast-based assay
-
Asai A, Tsujita T, Sharma SV, Yamashita Y, Akinaga S, et al. 2004. A new structural class of proteasome inhibitors identified by microbial screening using yeast-based assay. Biochem. Pharmacol. 67(2):227-34
-
(2004)
Biochem. Pharmacol.
, vol.67
, Issue.2
, pp. 227-234
-
-
Asai, A.1
Tsujita, T.2
Sharma, S.V.3
Yamashita, Y.4
Akinaga, S.5
-
108
-
-
33645237455
-
Inhibitor-binding mode of homobelactosin C to proteasomes: New insights into class i MHC ligand generation
-
Groll M, Larionov OV, Huber R, de Meijere A. 2006. Inhibitor-binding mode of homobelactosin C to proteasomes: new insights into class I MHC ligand generation. PNAS 103(12):4576-79
-
(2006)
PNAS
, vol.103
, Issue.12
, pp. 4576-4579
-
-
Groll, M.1
Larionov, O.V.2
Huber, R.3
De Meijere, A.4
-
109
-
-
84877697520
-
Potent proteasome inhibitors derived from the unnatural cis-cyclopropane isomer of Belactosin A: Synthesis, biological activity, and mode of action
-
Kawamura S, Unno Y, List A, Mizuno A, Tanaka M, et al. 2013. Potent proteasome inhibitors derived from the unnatural cis-cyclopropane isomer of Belactosin A: synthesis, biological activity, and mode of action. J. Med. Chem. 56(9):3689-700
-
(2013)
J. Med. Chem.
, vol.56
, Issue.9
, pp. 3689-3700
-
-
Kawamura, S.1
Unno, Y.2
List, A.3
Mizuno, A.4
Tanaka, M.5
-
110
-
-
84892882219
-
Marching to the beat of the ring: Polypeptide translocation by AAA+ proteases
-
Nyquist K, Martin A. 2014. Marching to the beat of the ring: polypeptide translocation by AAA+ proteases. Trends Biochem. Sci. 39(2):53-60
-
(2014)
Trends Biochem. Sci.
, vol.39
, Issue.2
, pp. 53-60
-
-
Nyquist, K.1
Martin, A.2
-
111
-
-
79959389010
-
AAA+ proteases: ATP-fueled machines of protein destruction
-
Sauer RT, Baker TA. 2011. AAA+ proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem. 80:587-612
-
(2011)
Annu. Rev. Biochem.
, vol.80
, pp. 587-612
-
-
Sauer, R.T.1
Baker, T.A.2
-
113
-
-
0032969563
-
AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes
-
Neuwald AF, Aravind L, Spouge JL, Koonin EV. 1999. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9(1):27-43
-
(1999)
Genome Res.
, vol.9
, Issue.1
, pp. 27-43
-
-
Neuwald, A.F.1
Aravind, L.2
Spouge, J.L.3
Koonin, E.V.4
-
114
-
-
84885428073
-
Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase
-
Beckwith R, Estrin E, Worden EJ, Martin A. 2013. Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase. Nat. Struct. Mol. Biol. 20(10):1164-72
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, Issue.10
, pp. 1164-1172
-
-
Beckwith, R.1
Estrin, E.2
Worden, E.J.3
Martin, A.4
-
115
-
-
34347208609
-
Identification of a peptoid inhibitor of the proteasome 19S regulatory particle
-
Lim H-S, Archer CT, Kodadek T. 2007. Identification of a peptoid inhibitor of the proteasome 19S regulatory particle. J. Am. Chem. Soc. 129(25):7750-51
-
(2007)
J. Am. Chem. Soc.
, vol.129
, Issue.25
, pp. 7750-7751
-
-
Lim, H.-S.1
Archer, C.T.2
Kodadek, T.3
-
116
-
-
39749185236
-
Rapid identification of the pharmacophore in a peptoid inhibitor of the proteasome regulatory particle
-
Lim H-S, Archer CT, Kim Y-C, Hutchens T, Kodadek T. 2008. Rapid identification of the pharmacophore in a peptoid inhibitor of the proteasome regulatory particle. Chem. Commun. 2008:1064-66
-
(2008)
Chem. Commun.
, vol.2008
, pp. 1064-1066
-
-
Lim, H.-S.1
Archer, C.T.2
Kim, Y.-C.3
Hutchens, T.4
Kodadek, T.5
-
117
-
-
80052353713
-
Development of p97 AAA ATPase inhibitors
-
Chou T-F, Deshaies RJ. 2011. Development of p97 AAA ATPase inhibitors. Autophagy 7(9):1091-92
-
(2011)
Autophagy
, vol.7
, Issue.9
, pp. 1091-1092
-
-
Chou, T.-F.1
Deshaies, R.J.2
-
118
-
-
79953171555
-
Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways
-
Chou T-F, Brown SJ, Minond D, Nordin BE, Li K, et al. 2011. Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. PNAS 108(12):4834-39
-
(2011)
PNAS
, vol.108
, Issue.12
, pp. 4834-4839
-
-
Chou, T.-F.1
Brown, S.J.2
Minond, D.3
Nordin, B.E.4
Li, K.5
-
119
-
-
84883196231
-
Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death
-
Magnaghi P, D'Alessio R, Valsasina B, Avanzi N, Rizzi S, et al. 2013. Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. Nat. Chem. Biol. 9:548-56
-
(2013)
Nat. Chem. Biol.
, vol.9
, pp. 548-556
-
-
Magnaghi, P.1
D'Alessio, R.2
Valsasina, B.3
Avanzi, N.4
Rizzi, S.5
-
120
-
-
84862814996
-
Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein
-
Firestone AJ, Weinger JS, MaldonadoM, Barlan K, Langston LD, et al. 2012. Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein. Nature 484(7392):125-29
-
(2012)
Nature
, vol.484
, Issue.7392
, pp. 125-129
-
-
Firestone, A.J.1
Weinger, J.S.2
Maldonado, M.3
Barlan, K.4
Langston, L.D.5
-
121
-
-
37249004920
-
Reaching for high-hanging fruit in drug discovery at protein-protein interfaces
-
Wells JA, McClendon CL. 2007. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450(7172):1001-9
-
(2007)
Nature
, vol.450
, Issue.7172
, pp. 1001-1009
-
-
Wells, J.A.1
McClendon, C.L.2
-
122
-
-
77952546241
-
Drugging challenging targets using fragment-based approaches
-
Coyne AG, Scott DE, Abell C. 2010. Drugging challenging targets using fragment-based approaches. Curr. Opin. Chem. Biol. 14(3):299-307
-
(2010)
Curr. Opin. Chem. Biol.
, vol.14
, Issue.3
, pp. 299-307
-
-
Coyne, A.G.1
Scott, D.E.2
Abell, C.3
-
123
-
-
6044271376
-
Ubistatins inhibit proteasome-dependent degradation by binding the ubiquitin chain
-
Verma R, Peters NR, D'Onofrio M, Tochtrop GP, Sakamoto KM, et al. 2004. Ubistatins inhibit proteasome-dependent degradation by binding the ubiquitin chain. Science 306(5693):117-20
-
(2004)
Science
, vol.306
, Issue.5693
, pp. 117-120
-
-
Verma, R.1
Peters, N.R.2
D'Onofrio, M.3
Tochtrop, G.P.4
Sakamoto, K.M.5
-
124
-
-
78751659623
-
Unsaturated carbonyl system of chalcone-based derivatives is responsible for broad inhibition of proteasomal activity and preferential killing of human papilloma virus (HPV) positive cervical cancer cells
-
Bazzaro M, Anchoori RK, Mudiam MKR, Issaenko O, Kumar S, et al. 2011.,-Unsaturated carbonyl system of chalcone-based derivatives is responsible for broad inhibition of proteasomal activity and preferential killing of human papilloma virus (HPV) positive cervical cancer cells. J. Med. Chem. 54(2):449-56
-
(2011)
J. Med. Chem.
, vol.54
, Issue.2
, pp. 449-456
-
-
Bazzaro, M.1
Anchoori, R.K.2
Mudiam, M.K.R.3
Issaenko, O.4
Kumar, S.5
-
125
-
-
84891913291
-
A bis-benzylidine piperidone targeting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer
-
Anchoori RK, Karanam B, Peng S,Wang JW, Jiang R, et al. 2013. A bis-benzylidine piperidone targeting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer. Cancer Cell 24(6):791-805
-
(2013)
Cancer Cell
, vol.24
, Issue.6
, pp. 791-805
-
-
Anchoori, R.K.1
Karanam, B.2
Peng, S.3
Wang, J.W.4
Jiang, R.5
-
126
-
-
71149107057
-
Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening
-
Peth A, Besche HC, Goldberg AL. 2009. Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening. Mol. Cell 36(5):794-804
-
(2009)
Mol. Cell
, vol.36
, Issue.5
, pp. 794-804
-
-
Peth, A.1
Besche, H.C.2
Goldberg, A.L.3
-
127
-
-
77956527159
-
Enhancement of proteasome activity by a small-molecule inhibitor of USP14
-
Lee B-H, Lee MJ, Park S, Oh D-C, Elsasser S, et al. 2010. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467(7312):179-84
-
(2010)
Nature
, vol.467
, Issue.7312
, pp. 179-184
-
-
Lee, B.-H.1
Lee, M.J.2
Park, S.3
Oh, D.-C.4
Elsasser, S.5
-
128
-
-
84856085129
-
Inhibition of proteasome deubiquitinating activity as a new cancer therapy
-
D'Arcy P, Brnjic S, Olofsson MH, Fryknäs M, Lindsten K, et al. 2011. Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat. Med. 17(12):1636-40
-
(2011)
Nat. Med.
, vol.17
, Issue.12
, pp. 1636-1640
-
-
D'Arcy, P.1
Brnjic, S.2
Olofsson, M.H.3
Fryknäs, M.4
Lindsten, K.5
-
129
-
-
84896856969
-
Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11
-
Pathare GR, Nagy I, Sledz P, Anderson DJ, Zhou H-J, et al. 2014. Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11. PNAS 111(8):2984-89
-
(2014)
PNAS
, vol.111
, Issue.8
, pp. 2984-2989
-
-
Pathare, G.R.1
Nagy, I.2
Sledz, P.3
Anderson, D.J.4
Zhou, H.-J.5
-
130
-
-
84895868714
-
Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation
-
Worden EJ, Padovani C, Martin A. 2014. Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation. Nat. Struct. Mol. Biol. 21:220-27
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 220-227
-
-
Worden, E.J.1
Padovani, C.2
Martin, A.3
-
131
-
-
33846849171
-
The JAMM motif of human deubiquitinase Poh1 is essential for cell viability
-
Gallery M, Blank JL, Lin Y, Gutierrez JA, Pulido JC, et al. 2007. The JAMM motif of human deubiquitinase Poh1 is essential for cell viability. Mol. Cancer Ther. 6(1):262-68
-
(2007)
Mol. Cancer Ther.
, vol.6
, Issue.1
, pp. 262-268
-
-
Gallery, M.1
Blank, J.L.2
Lin, Y.3
Gutierrez, J.A.4
Pulido, J.C.5
-
132
-
-
0036875582
-
The essential 26S proteasome subunit Rpn11 confers multidrug resistance to mammalian cells
-
SpataroV, SimmenK, RealiniCA. 2002. The essential 26S proteasome subunit Rpn11 confers multidrug resistance to mammalian cells. Anticancer Res. 22(6C):3905-9
-
(2002)
Anticancer Res.
, vol.22
, Issue.6 C
, pp. 3905-3909
-
-
Spataro, V.1
Simmen, K.2
Realini, C.A.3
-
133
-
-
79953046542
-
FAS and NF-B signalling modulate dependence of lung cancers on mutant EGFR
-
Bivona TG, Hieronymus H, Parker J, Chang K, Taron M, et al. 2011. FAS and NF-B signalling modulate dependence of lung cancers on mutant EGFR. Nature 471(7339):523-26
-
(2011)
Nature
, vol.471
, Issue.7339
, pp. 523-526
-
-
Bivona, T.G.1
Hieronymus, H.2
Parker, J.3
Chang, K.4
Taron, M.5
|