메뉴 건너뛰기




Volumn 425, Issue 2, 2013, Pages 199-213

Design principles of a universal protein degradation machine

Author keywords

26S proteasome; protein degradation; ubiquitin; UPS

Indexed keywords

PROTEASOME; RECA PROTEIN; UBIQUITIN; UBIQUITIN PROTEIN LIGASE;

EID: 84872102009     PISSN: 00222836     EISSN: 10898638     Source Type: Journal    
DOI: 10.1016/j.jmb.2012.11.001     Document Type: Review
Times cited : (49)

References (86)
  • 1
    • 79959389010 scopus 로고    scopus 로고
    • AAA + proteases: ATP-fueled machines of protein destruction
    • R.T. Sauer, and T.A. Baker AAA + proteases: ATP-fueled machines of protein destruction Annu. Rev. Biochem. 80 2011 587 612
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 587-612
    • Sauer, R.T.1    Baker, T.A.2
  • 2
    • 5344269437 scopus 로고    scopus 로고
    • Sculpting the proteome with AAA + proteases and disassembly machines
    • R.T. Sauer Sculpting the proteome with AAA + proteases and disassembly machines Cell 119 2004 9 18
    • (2004) Cell , vol.119 , pp. 9-18
    • Sauer, R.T.1
  • 3
    • 55549088522 scopus 로고    scopus 로고
    • Pore loops of the AAA + ClpX machine grip substrates to drive translocation and unfolding
    • A. Martin, T.A. Baker, and R.T. Sauer Pore loops of the AAA + ClpX machine grip substrates to drive translocation and unfolding Nat. Struct. Mol. Biol. 15 2008 1147 1151
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 1147-1151
    • Martin, A.1    Baker, T.A.2    Sauer, R.T.3
  • 4
    • 79955534260 scopus 로고    scopus 로고
    • ClpX(P) generates mechanical force to unfold and translocate its protein substrates
    • R.A. Maillard ClpX(P) generates mechanical force to unfold and translocate its protein substrates Cell 145 2011 459 469
    • (2011) Cell , vol.145 , pp. 459-469
    • Maillard, R.A.1
  • 5
    • 79953888421 scopus 로고    scopus 로고
    • Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine
    • M.E. Aubin-Tam, A.O. Olivares, R.T. Sauer, T.A. Baker, and M.J. Lang Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine Cell 145 2011 257 267
    • (2011) Cell , vol.145 , pp. 257-267
    • Aubin-Tam, M.E.1    Olivares, A.O.2    Sauer, R.T.3    Baker, T.A.4    Lang, M.J.5
  • 6
    • 69749089007 scopus 로고    scopus 로고
    • An intersubunit signaling network coordinates ATP hydrolysis by m-AAA proteases
    • S. Augustin An intersubunit signaling network coordinates ATP hydrolysis by m-AAA proteases Mol. Cell 35 2009 574 585
    • (2009) Mol. Cell , vol.35 , pp. 574-585
    • Augustin, S.1
  • 7
    • 3042795879 scopus 로고    scopus 로고
    • Direct evidence that a conserved arginine in RuvB AAA + ATPase acts as an allosteric effector for the ATPase activity of the adjacent subunit in a hexamer
    • T. Hishida, Y.W. Han, S. Fujimoto, H. Iwasaki, and H. Shinagawa Direct evidence that a conserved arginine in RuvB AAA + ATPase acts as an allosteric effector for the ATPase activity of the adjacent subunit in a hexamer Proc. Natl Acad. Sci. USA 101 2004 9573 9577
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 9573-9577
    • Hishida, T.1    Han, Y.W.2    Fujimoto, S.3    Iwasaki, H.4    Shinagawa, H.5
  • 8
    • 1642377971 scopus 로고    scopus 로고
    • Conserved arginine residues implicated in ATP hydrolysis, nucleotide-sensing, and inter-subunit interactions in AAA and AAA + ATPases
    • T. Ogura, S.W. Whiteheart, and A.J. Wilkinson Conserved arginine residues implicated in ATP hydrolysis, nucleotide-sensing, and inter-subunit interactions in AAA and AAA + ATPases J. Struct. Biol. 146 2004 106 112
    • (2004) J. Struct. Biol. , vol.146 , pp. 106-112
    • Ogura, T.1    Whiteheart, S.W.2    Wilkinson, A.J.3
  • 9
    • 33751228400 scopus 로고    scopus 로고
    • ATP-dependent proteases of bacteria: Recognition logic and operating principles
    • T.A. Baker, and R.T. Sauer ATP-dependent proteases of bacteria: recognition logic and operating principles Trends Biochem. Sci. 31 2006 647 653
    • (2006) Trends Biochem. Sci. , vol.31 , pp. 647-653
    • Baker, T.A.1    Sauer, R.T.2
  • 10
    • 67651208925 scopus 로고    scopus 로고
    • Adapting the machine: Adaptor proteins for Hsp100/Clp and AAA + proteases
    • J. Kirstein, N. Moliere, D.A. Dougan, and K. Turgay Adapting the machine: adaptor proteins for Hsp100/Clp and AAA + proteases Nat. Rev., Microbiol. 7 2009 589 599
    • (2009) Nat. Rev., Microbiol. , vol.7 , pp. 589-599
    • Kirstein, J.1    Moliere, N.2    Dougan, D.A.3    Turgay, K.4
  • 11
    • 0035845498 scopus 로고    scopus 로고
    • Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis
    • J.M. Flynn Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis Proc. Natl Acad. Sci. USA 98 2001 10584 10589
    • (2001) Proc. Natl Acad. Sci. USA , vol.98 , pp. 10584-10589
    • Flynn, J.M.1
  • 12
    • 64149130398 scopus 로고    scopus 로고
    • ClpS is the recognition component for Escherichia coli substrates of the N-end rule degradation pathway
    • R. Schmidt, R. Zahn, B. Bukau, and A. Mogk ClpS is the recognition component for Escherichia coli substrates of the N-end rule degradation pathway Mol. Microbiol. 72 2009 506 517
    • (2009) Mol. Microbiol. , vol.72 , pp. 506-517
    • Schmidt, R.1    Zahn, R.2    Bukau, B.3    Mogk, A.4
  • 13
    • 77950524360 scopus 로고    scopus 로고
    • The mycobacterial Mpa-proteasome unfolds and degrades pupylated substrates by engaging Pup's N-terminus
    • F. Striebel, M. Hunkeler, H. Summer, and E. Weber-Ban The mycobacterial Mpa-proteasome unfolds and degrades pupylated substrates by engaging Pup's N-terminus EMBO J. 29 2010 1262 1271
    • (2010) EMBO J. , vol.29 , pp. 1262-1271
    • Striebel, F.1    Hunkeler, M.2    Summer, H.3    Weber-Ban, E.4
  • 14
    • 77957234666 scopus 로고    scopus 로고
    • A further case of Dop-ing in bacterial pupylation
    • A. Bremm, and D. Komander A further case of Dop-ing in bacterial pupylation EMBO Rep. 11 2010 722 723
    • (2010) EMBO Rep. , vol.11 , pp. 722-723
    • Bremm, A.1    Komander, D.2
  • 15
    • 0033543648 scopus 로고    scopus 로고
    • An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes
    • P. Zwickl, D. Ng, K.M. Woo, H.P. Klenk, and A.L. Goldberg An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes J. Biol. Chem. 274 1999 26008 26014
    • (1999) J. Biol. Chem. , vol.274 , pp. 26008-26014
    • Zwickl, P.1    Ng, D.2    Woo, K.M.3    Klenk, H.P.4    Goldberg, A.L.5
  • 16
    • 84865094127 scopus 로고    scopus 로고
    • Identification of the Cdc48·20S proteasome as an ancient AAA + proteolytic machine
    • D. Barthelme, and R.T. Sauer Identification of the Cdc48·20S proteasome as an ancient AAA + proteolytic machine Science 337 2012 843 846
    • (2012) Science , vol.337 , pp. 843-846
    • Barthelme, D.1    Sauer, R.T.2
  • 17
    • 27844493747 scopus 로고    scopus 로고
    • Archaeal proteasomes and other regulatory proteases
    • J.A. Maupin-Furlow Archaeal proteasomes and other regulatory proteases Curr. Opin. Microbiol. 8 2005 720 728
    • (2005) Curr. Opin. Microbiol. , vol.8 , pp. 720-728
    • Maupin-Furlow, J.A.1
  • 18
    • 84855883853 scopus 로고    scopus 로고
    • Proteasomes and protein conjugation across domains of life
    • J. Maupin-Furlow Proteasomes and protein conjugation across domains of life Nat. Rev., Microbiol. 10 2011 100 111
    • (2011) Nat. Rev., Microbiol. , vol.10 , pp. 100-111
    • Maupin-Furlow, J.1
  • 19
    • 33748581658 scopus 로고    scopus 로고
    • Proteasomes from structure to function: Perspectives from Archaea
    • J.A. Maupin-Furlow Proteasomes from structure to function: perspectives from Archaea Curr. Top. Dev. Biol. 75 2006 125 169
    • (2006) Curr. Top. Dev. Biol. , vol.75 , pp. 125-169
    • Maupin-Furlow, J.A.1
  • 20
    • 73849149089 scopus 로고    scopus 로고
    • Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii
    • M.A. Humbard, H.V. Miranda, J.-M. Lim, D.J. Krause, J.R. Pritz, and G. Zhou Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii Nature 463 2010 54 60
    • (2010) Nature , vol.463 , pp. 54-60
    • Humbard, M.A.1    Miranda, H.V.2    Lim, J.-M.3    Krause, D.J.4    Pritz, J.R.5    Zhou, G.6
  • 21
    • 0033769733 scopus 로고    scopus 로고
    • PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone
    • N. Benaroudj, and A.L. Goldberg PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone Nat. Cell Biol. 2 2000 833 839
    • (2000) Nat. Cell Biol. , vol.2 , pp. 833-839
    • Benaroudj, N.1    Goldberg, A.L.2
  • 22
    • 65649115267 scopus 로고    scopus 로고
    • Recognition and processing of ubiquitin-protein conjugates by the proteasome
    • D. Finley Recognition and processing of ubiquitin-protein conjugates by the proteasome Annu. Rev. Biochem. 78 2009 477 513
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 477-513
    • Finley, D.1
  • 23
    • 77955417276 scopus 로고    scopus 로고
    • Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne
    • A. Bremm, S.M. Freund, and D. Komander Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne Nat. Struct. Mol. Biol. 17 2010 939 947
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 939-947
    • Bremm, A.1    Freund, S.M.2    Komander, D.3
  • 24
    • 82955193293 scopus 로고    scopus 로고
    • Structure and recognition of polyubiquitin chains of different lengths and linkage
    • D. Fushman, and K.D. Wilkinson Structure and recognition of polyubiquitin chains of different lengths and linkage F1000 Biol. Rep. 3 2011 26
    • (2011) F1000 Biol. Rep. , vol.3 , pp. 26
    • Fushman, D.1    Wilkinson, K.D.2
  • 26
    • 79951850741 scopus 로고    scopus 로고
    • Defining the geometry of the two-component proteasome degron
    • T. Inobe, S. Fishbain, S. Prakash, and A. Matouschek Defining the geometry of the two-component proteasome degron Nat. Chem. Biol. 7 2011 161 167
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 161-167
    • Inobe, T.1    Fishbain, S.2    Prakash, S.3    Matouschek, A.4
  • 27
    • 0037131243 scopus 로고    scopus 로고
    • Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
    • R. Verma Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome Science 298 2002 611 615
    • (2002) Science , vol.298 , pp. 611-615
    • Verma, R.1
  • 28
    • 0028823598 scopus 로고
    • Metabolism of the polyubiquitin degradation signal: Structure, mechanism, and role of isopeptidase T
    • K.D. Wilkinson Metabolism of the polyubiquitin degradation signal: structure, mechanism, and role of isopeptidase T Biochemistry 34 1995 14535 14546
    • (1995) Biochemistry , vol.34 , pp. 14535-14546
    • Wilkinson, K.D.1
  • 29
    • 0037179694 scopus 로고    scopus 로고
    • A cryptic protease couples deubiquitination and degradation by the proteasome
    • T. Yao, and R.E. Cohen A cryptic protease couples deubiquitination and degradation by the proteasome Nature 419 2002 403 407
    • (2002) Nature , vol.419 , pp. 403-407
    • Yao, T.1    Cohen, R.E.2
  • 30
    • 65649091692 scopus 로고    scopus 로고
    • Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii
    • F. Zhang Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii Mol. Cell 34 2009 473 484
    • (2009) Mol. Cell , vol.34 , pp. 473-484
    • Zhang, F.1
  • 33
    • 33846349924 scopus 로고    scopus 로고
    • Rooting the tree of life by transition analyses
    • T. Cavalier-Smith Rooting the tree of life by transition analyses Biol. Direct 1 2006 19
    • (2006) Biol. Direct , vol.1 , pp. 19
    • Cavalier-Smith, T.1
  • 36
    • 84859702750 scopus 로고    scopus 로고
    • Molecular model of the human 26S proteasome
    • P.C. da Fonseca, J. He, and E.P. Morris Molecular model of the human 26S proteasome Mol. Cell 46 2012 54 66
    • (2012) Mol. Cell , vol.46 , pp. 54-66
    • Da Fonseca, P.C.1    He, J.2    Morris, E.P.3
  • 37
    • 0030897031 scopus 로고    scopus 로고
    • Structure of 20S proteasome from yeast at 2.4 Å resolution
    • M. Groll Structure of 20S proteasome from yeast at 2.4 Å resolution Nature 386 1997 463 471
    • (1997) Nature , vol.386 , pp. 463-471
    • Groll, M.1
  • 38
    • 77951945222 scopus 로고    scopus 로고
    • Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: Implications for proteasome structure and assembly
    • R.J. Tomko Jr, M. Funakoshi, K. Schneider, J. Wang, and M. Hochstrasser Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly Mol. Cell 38 2010 393 403
    • (2010) Mol. Cell , vol.38 , pp. 393-403
    • Tomko Jr., R.J.1    Funakoshi, M.2    Schneider, K.3    Wang, J.4    Hochstrasser, M.5
  • 39
    • 80053988669 scopus 로고    scopus 로고
    • IMod: Multipurpose normal mode analysis in internal coordinates
    • J.R. Lopez-Blanco, J.I. Garzon, and P. Chacon iMod: multipurpose normal mode analysis in internal coordinates Bioinformatics 27 2011 2843 2850
    • (2011) Bioinformatics , vol.27 , pp. 2843-2850
    • Lopez-Blanco, J.R.1    Garzon, J.I.2    Chacon, P.3
  • 40
    • 0037147328 scopus 로고    scopus 로고
    • What curves α-solenoids? Evidence for an α-helical toroid structure of Rpn1 and Rpn2 proteins of the 26S proteasome
    • A.V. Kajava What curves α-solenoids? Evidence for an α-helical toroid structure of Rpn1 and Rpn2 proteins of the 26S proteasome J. Biol. Chem. 277 2002 49791 49798
    • (2002) J. Biol. Chem. , vol.277 , pp. 49791-49798
    • Kajava, A.V.1
  • 41
    • 60849118366 scopus 로고    scopus 로고
    • Electron microscopic evidence in support of α-solenoid models of proteasomal subunits Rpn1 and Rpn2
    • G. Effantin, R. Rosenzweig, M.H. Glickman, and A.C. Steven Electron microscopic evidence in support of α-solenoid models of proteasomal subunits Rpn1 and Rpn2 J. Mol. Biol. 386 2009 1204 1211
    • (2009) J. Mol. Biol. , vol.386 , pp. 1204-1211
    • Effantin, G.1    Rosenzweig, R.2    Glickman, M.H.3    Steven, A.C.4
  • 42
    • 84857935771 scopus 로고    scopus 로고
    • The structure of the 26S proteasome subunit Rpn2 reveals its PC repeat domain as a closed toroid of two concentric α-helical rings
    • J. He, K. Kulkarni, P.C. da Fonseca, D. Krutauz, M.H. Glickman, D. Barford, and E.P. Morris The structure of the 26S proteasome subunit Rpn2 reveals its PC repeat domain as a closed toroid of two concentric α-helical rings Structure 20 2012 513 521
    • (2012) Structure , vol.20 , pp. 513-521
    • He, J.1    Kulkarni, K.2    Da Fonseca, P.C.3    Krutauz, D.4    Glickman, M.H.5    Barford, D.6    Morris, E.P.7
  • 43
    • 33749049581 scopus 로고    scopus 로고
    • Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation
    • J. Hanna Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation Cell 127 2006 99 111
    • (2006) Cell , vol.127 , pp. 99-111
    • Hanna, J.1
  • 44
    • 0036753063 scopus 로고    scopus 로고
    • Multiple associated proteins regulate proteasome structure and function
    • D.S. Leggett Multiple associated proteins regulate proteasome structure and function Mol. Cell 10 2002 495 507
    • (2002) Mol. Cell , vol.10 , pp. 495-507
    • Leggett, D.S.1
  • 45
    • 0036713383 scopus 로고    scopus 로고
    • Proteasome subunit Rpn1 binds ubiquitin-like protein domains
    • S. Elsasser Proteasome subunit Rpn1 binds ubiquitin-like protein domains Nat. Cell Biol. 4 2002 725 730
    • (2002) Nat. Cell Biol. , vol.4 , pp. 725-730
    • Elsasser, S.1
  • 46
    • 79957637389 scopus 로고    scopus 로고
    • Identification of a functional docking site in the Rpn1 LRR domain for the UBA-UBL domain protein Ddi1
    • T.A. Gomez, N. Kolawa, M. Gee, M.J. Sweredoski, and R.J. Deshaies Identification of a functional docking site in the Rpn1 LRR domain for the UBA-UBL domain protein Ddi1 BMC Biol. 9 2011 33
    • (2011) BMC Biol. , vol.9 , pp. 33
    • Gomez, T.A.1    Kolawa, N.2    Gee, M.3    Sweredoski, M.J.4    Deshaies, R.J.5
  • 47
    • 44349094727 scopus 로고    scopus 로고
    • Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction
    • P. Schreiner Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction Nature 453 2008 548 552
    • (2008) Nature , vol.453 , pp. 548-552
    • Schreiner, P.1
  • 48
    • 0032483546 scopus 로고    scopus 로고
    • A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3
    • M.H. Glickman A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3 Cell 94 1998 615 623
    • (1998) Cell , vol.94 , pp. 615-623
    • Glickman, M.H.1
  • 49
    • 84856023509 scopus 로고    scopus 로고
    • The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together
    • G.R. Pathare, I. Nagy, S. Bohn, P. Unverdorben, A. Hubert, and R. Körner The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together Proc. Natl Acad. Sci. USA 109 2012 149 154
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 149-154
    • Pathare, G.R.1    Nagy, I.2    Bohn, S.3    Unverdorben, P.4    Hubert, A.5    Körner, R.6
  • 50
    • 33747347236 scopus 로고    scopus 로고
    • Structural organization of the 19S proteasome lid: Insights from MS of intact complexes
    • M. Sharon, T. Taverner, X.I. Ambroggio, R.J. Deshaies, and C.V. Robinson Structural organization of the 19S proteasome lid: insights from MS of intact complexes PLoS Biol. 4 2006 e267
    • (2006) PLoS Biol. , vol.4 , pp. 267
    • Sharon, M.1    Taverner, T.2    Ambroggio, X.I.3    Deshaies, R.J.4    Robinson, C.V.5
  • 52
    • 3142723187 scopus 로고    scopus 로고
    • Participation of the proteasomal lid subunit Rpn11 in mitochondrial morphology and function is mapped to a distinct C-terminal domain
    • T. Rinaldi Participation of the proteasomal lid subunit Rpn11 in mitochondrial morphology and function is mapped to a distinct C-terminal domain Biochem. J. 381 2004 275 285
    • (2004) Biochem. J. , vol.381 , pp. 275-285
    • Rinaldi, T.1
  • 53
    • 0037131242 scopus 로고    scopus 로고
    • Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1
    • G.A. Cope Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1 Science 298 2002 608 611
    • (2002) Science , vol.298 , pp. 608-611
    • Cope, G.A.1
  • 54
    • 70350772363 scopus 로고    scopus 로고
    • Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA + protein-unfolding machine
    • S.E. Glynn, A. Martin, A.R. Nager, T.A. Baker, and R.T. Sauer Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA + protein-unfolding machine Cell 139 2009 744 756
    • (2009) Cell , vol.139 , pp. 744-756
    • Glynn, S.E.1    Martin, A.2    Nager, A.R.3    Baker, T.A.4    Sauer, R.T.5
  • 55
    • 84861876642 scopus 로고    scopus 로고
    • Dynamic and static components power unfolding in topologically closed rings of a AAA + proteolytic machine
    • S.E. Glynn, A.R. Nager, T.A. Baker, and R.T. Sauer Dynamic and static components power unfolding in topologically closed rings of a AAA + proteolytic machine Nat. Struct. Mol. Biol. 19 2012 616 622
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 616-622
    • Glynn, S.E.1    Nager, A.R.2    Baker, T.A.3    Sauer, R.T.4
  • 56
    • 78049264771 scopus 로고    scopus 로고
    • The 26S proteasome: Assembly and function of a destructive machine
    • N. Gallastegui, and M. Groll The 26S proteasome: assembly and function of a destructive machine Trends Biochem. Sci. 35 2010 634 642
    • (2010) Trends Biochem. Sci. , vol.35 , pp. 634-642
    • Gallastegui, N.1    Groll, M.2
  • 57
    • 34548274872 scopus 로고    scopus 로고
    • Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's α ring opens the gate for substrate entry
    • D.M. Smith Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's α ring opens the gate for substrate entry Mol. Cell 27 2007 731 744
    • (2007) Mol. Cell , vol.27 , pp. 731-744
    • Smith, D.M.1
  • 58
    • 79960658440 scopus 로고    scopus 로고
    • C termini of proteasomal ATPases play nonequivalent roles in cellular assembly of mammalian 26S proteasome
    • Y.C. Kim, and G.N. DeMartino C termini of proteasomal ATPases play nonequivalent roles in cellular assembly of mammalian 26S proteasome J. Biol. Chem. 286 2011 26652 26666
    • (2011) J. Biol. Chem. , vol.286 , pp. 26652-26666
    • Kim, Y.C.1    Demartino, G.N.2
  • 59
    • 80555130924 scopus 로고    scopus 로고
    • An asymmetric interface between the regulatory and core particles of the proteasome
    • G. Tian An asymmetric interface between the regulatory and core particles of the proteasome Nat. Struct. Mol. Biol. 18 2011 1259 1267
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1259-1267
    • Tian, G.1
  • 60
    • 79951707743 scopus 로고    scopus 로고
    • ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle
    • D.M. Smith, H. Fraga, C. Reis, G. Kafri, and A.L. Goldberg ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle Cell 144 2011 526 538
    • (2011) Cell , vol.144 , pp. 526-538
    • Smith, D.M.1    Fraga, H.2    Reis, C.3    Kafri, G.4    Goldberg, A.L.5
  • 61
    • 78650450552 scopus 로고    scopus 로고
    • Structure of the 26S proteasome from Schizosaccharomyces pombe at subnanometer resolution
    • S. Bohn Structure of the 26S proteasome from Schizosaccharomyces pombe at subnanometer resolution Proc. Natl Acad. Sci. USA 107 2010 20992 20997
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 20992-20997
    • Bohn, S.1
  • 62
    • 67749095289 scopus 로고    scopus 로고
    • Insights into the molecular architecture of the 26S proteasome
    • S. Nickell Insights into the molecular architecture of the 26S proteasome Proc. Natl Acad. Sci. USA 106 2009 11943 11947
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 11943-11947
    • Nickell, S.1
  • 64
    • 71149107057 scopus 로고    scopus 로고
    • Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening
    • A. Peth, H.C. Besche, and A.L. Goldberg Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening Mol. Cell 36 2009 794 804
    • (2009) Mol. Cell , vol.36 , pp. 794-804
    • Peth, A.1    Besche, H.C.2    Goldberg, A.L.3
  • 65
    • 82455179484 scopus 로고    scopus 로고
    • Systematic and quantitative assessment of the ubiquitin-modified proteome
    • W. Kim, E.J. Bennett, E.L. Huttlin, A. Guo, J. Li, and A. Possemato Systematic and quantitative assessment of the ubiquitin-modified proteome Mol. Cell 44 2011 325 340
    • (2011) Mol. Cell , vol.44 , pp. 325-340
    • Kim, W.1    Bennett, E.J.2    Huttlin, E.L.3    Guo, A.4    Li, J.5    Possemato, A.6
  • 66
    • 36749080327 scopus 로고    scopus 로고
    • Quantitative profiling of ubiquitylated proteins reveals proteasome substrates and the substrate repertoire influenced by the Rpn10 receptor pathway
    • T. Mayor, J. Graumann, J. Bryan, M.J. MacCoss, and R.J. Deshaies Quantitative profiling of ubiquitylated proteins reveals proteasome substrates and the substrate repertoire influenced by the Rpn10 receptor pathway Mol. Cell. Proteomics 6 2007 1885 1895
    • (2007) Mol. Cell. Proteomics , vol.6 , pp. 1885-1895
    • Mayor, T.1    Graumann, J.2    Bryan, J.3    MacCoss, M.J.4    Deshaies, R.J.5
  • 67
    • 84863115607 scopus 로고    scopus 로고
    • Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy
    • E. Sakata, S. Bohn, O. Mihalache, P. Kiss, F. Beck, and I. Nagy Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy Proc. Natl Acad. Sci. USA 109 2012 1479 1484
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 1479-1484
    • Sakata, E.1    Bohn, S.2    Mihalache, O.3    Kiss, P.4    Beck, F.5    Nagy, I.6
  • 68
    • 44349116590 scopus 로고    scopus 로고
    • Proteasome subunit Rpn13 is a novel ubiquitin receptor
    • K. Husnjak Proteasome subunit Rpn13 is a novel ubiquitin receptor Nature 453 2008 481 488
    • (2008) Nature , vol.453 , pp. 481-488
    • Husnjak, K.1
  • 70
    • 70449397570 scopus 로고    scopus 로고
    • Mechanisms of ubiquitin transfer by the anaphase-promoting complex
    • M.E. Matyskiela, M.C. Rodrigo-Brenni, and D.O. Morgan Mechanisms of ubiquitin transfer by the anaphase-promoting complex J. Biol. 8 2009 92
    • (2009) J. Biol. , vol.8 , pp. 92
    • Matyskiela, M.E.1    Rodrigo-Brenni, M.C.2    Morgan, D.O.3
  • 71
    • 79955620198 scopus 로고    scopus 로고
    • Constructing and decoding unconventional ubiquitin chains
    • C. Behrends, and J.W. Harper Constructing and decoding unconventional ubiquitin chains Nat. Struct. Mol. Biol. 18 2011 520 528
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 520-528
    • Behrends, C.1    Harper, J.W.2
  • 72
    • 33847056330 scopus 로고    scopus 로고
    • Crystal structure and solution NMR studies of Lys48-linked tetraubiquitin at neutral pH
    • M.J. Eddins, R. Varadan, D. Fushman, C.M. Pickart, and C. Wolberger Crystal structure and solution NMR studies of Lys48-linked tetraubiquitin at neutral pH J. Mol. Biol. 367 2007 204 211
    • (2007) J. Mol. Biol. , vol.367 , pp. 204-211
    • Eddins, M.J.1    Varadan, R.2    Fushman, D.3    Pickart, C.M.4    Wolberger, C.5
  • 73
    • 63049125531 scopus 로고    scopus 로고
    • Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation
    • P. Xu Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation Cell 137 2009 133 145
    • (2009) Cell , vol.137 , pp. 133-145
    • Xu, P.1
  • 74
    • 60549107173 scopus 로고    scopus 로고
    • Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome
    • Y. Saeki Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome EMBO J. 28 2009 359 371
    • (2009) EMBO J. , vol.28 , pp. 359-371
    • Saeki, Y.1
  • 75
    • 77958604450 scopus 로고    scopus 로고
    • Structure of Rpn10 and its interactions with polyubiquitin chains and the proteasome subunit Rpn12
    • C. Riedinger Structure of Rpn10 and its interactions with polyubiquitin chains and the proteasome subunit Rpn12 J. Biol. Chem. 285 2010 33992 34003
    • (2010) J. Biol. Chem. , vol.285 , pp. 33992-34003
    • Riedinger, C.1
  • 76
    • 72149114101 scopus 로고    scopus 로고
    • Together, Rpn10 and Dsk2 can serve as a polyubiquitin chain-length sensor
    • D. Zhang Together, Rpn10 and Dsk2 can serve as a polyubiquitin chain-length sensor Mol. Cell 36 2009 1018 1033
    • (2009) Mol. Cell , vol.36 , pp. 1018-1033
    • Zhang, D.1
  • 77
    • 30344466977 scopus 로고    scopus 로고
    • The processivity of multiubiquitination by the APC determines the order of substrate degradation
    • M. Rape, S.K. Reddy, and M.W. Kirschner The processivity of multiubiquitination by the APC determines the order of substrate degradation Cell 124 2006 89 103
    • (2006) Cell , vol.124 , pp. 89-103
    • Rape, M.1    Reddy, S.K.2    Kirschner, M.W.3
  • 78
    • 63649134628 scopus 로고    scopus 로고
    • Analysis of activator-binding sites on the APC/C supports a cooperative substrate-binding mechanism
    • M.E. Matyskiela, and D.O. Morgan Analysis of activator-binding sites on the APC/C supports a cooperative substrate-binding mechanism Mol. Cell 34 2009 68 80
    • (2009) Mol. Cell , vol.34 , pp. 68-80
    • Matyskiela, M.E.1    Morgan, D.O.2
  • 79
    • 11844279698 scopus 로고    scopus 로고
    • The APC subunit Doc1 promotes recognition of the substrate destruction box
    • C.W. Carroll, M. Enquist-Newman, and D.O. Morgan The APC subunit Doc1 promotes recognition of the substrate destruction box Curr. Biol. 15 2005 11 18
    • (2005) Curr. Biol. , vol.15 , pp. 11-18
    • Carroll, C.W.1    Enquist-Newman, M.2    Morgan, D.O.3
  • 80
    • 52149103164 scopus 로고    scopus 로고
    • Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains
    • Y. Sato Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains Nature 455 2008 358 362
    • (2008) Nature , vol.455 , pp. 358-362
    • Sato, Y.1
  • 81
  • 82
    • 84867398821 scopus 로고    scopus 로고
    • The size of the proteasomal substrate determines whether its degradation will be mediated by mono- or polyubiquitylation
    • N. Shabek, Y. Herman-Bachinsky, S. Buchsbaum, O. Lewinson, M. Haj-Yahya, and M. Hejjaoui The size of the proteasomal substrate determines whether its degradation will be mediated by mono- or polyubiquitylation Mol. Cell 48 2012 87 97
    • (2012) Mol. Cell , vol.48 , pp. 87-97
    • Shabek, N.1    Herman-Bachinsky, Y.2    Buchsbaum, S.3    Lewinson, O.4    Haj-Yahya, M.5    Hejjaoui, M.6
  • 83
    • 33745742269 scopus 로고    scopus 로고
    • Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology
    • D.S. Kirkpatrick Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology Nat. Cell Biol. 8 2006 700 710
    • (2006) Nat. Cell Biol. , vol.8 , pp. 700-710
    • Kirkpatrick, D.S.1
  • 84
    • 27144474906 scopus 로고    scopus 로고
    • Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines
    • A. Martin, T.A. Baker, and R.T. Sauer Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines Nature 437 2005 1115 1120
    • (2005) Nature , vol.437 , pp. 1115-1120
    • Martin, A.1    Baker, T.A.2    Sauer, R.T.3
  • 85
    • 70350344051 scopus 로고    scopus 로고
    • Running in reverse: The structural basis for translocation polarity in hexameric helicases
    • N.D. Thomsen, and J.M. Berger Running in reverse: the structural basis for translocation polarity in hexameric helicases Cell 139 2009 523 534
    • (2009) Cell , vol.139 , pp. 523-534
    • Thomsen, N.D.1    Berger, J.M.2
  • 86
    • 33746375404 scopus 로고    scopus 로고
    • Mechanism of DNA translocation in a replicative hexameric helicase
    • E.J. Enemark, and L. Joshua-Tor Mechanism of DNA translocation in a replicative hexameric helicase Nature 442 2006 270 275
    • (2006) Nature , vol.442 , pp. 270-275
    • Enemark, E.J.1    Joshua-Tor, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.