메뉴 건너뛰기




Volumn 26, Issue 12, 2015, Pages 733-745

The miRNA Interactome in Metabolic Homeostasis

Author keywords

Adipose tissue; Insulin; Lipid metabolism; MiRNA; Sequencing

Indexed keywords

GLUCOSE; INTRONIC MICRORNA; LIPID; MICRORNA; POLYCISTRONIC MICRORNA; UNCLASSIFIED DRUG;

EID: 84949554432     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2015.09.006     Document Type: Review
Times cited : (73)

References (95)
  • 1
    • 79953317808 scopus 로고    scopus 로고
    • Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism
    • Jordan S.D., et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat. Cell Biol. 2011, 13:434-446.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 434-446
    • Jordan, S.D.1
  • 2
    • 84874715061 scopus 로고    scopus 로고
    • Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b
    • Kornfeld J.W., et al. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature 2013, 494:111-115.
    • (2013) Nature , vol.494 , pp. 111-115
    • Kornfeld, J.W.1
  • 3
    • 77953780835 scopus 로고    scopus 로고
    • MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis
    • Najafi-Shoushtari S.H., et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 2010, 328:1566-1569.
    • (2010) Science , vol.328 , pp. 1566-1569
    • Najafi-Shoushtari, S.H.1
  • 4
    • 77953787211 scopus 로고    scopus 로고
    • Mir-33 contributes to the regulation of cholesterol homeostasis
    • Rayner K.J., et al. mir-33 contributes to the regulation of cholesterol homeostasis. Science 2010, 328:1570-1573.
    • (2010) Science , vol.328 , pp. 1570-1573
    • Rayner, K.J.1
  • 5
    • 79959845414 scopus 로고    scopus 로고
    • MicroRNAs 103 and 107 regulate insulin sensitivity
    • Trajkovski M., et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011, 474:649-653.
    • (2011) Nature , vol.474 , pp. 649-653
    • Trajkovski, M.1
  • 6
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: target recognition and regulatory functions
    • Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell 2009, 136:215-233.
    • (2009) Cell , vol.136 , pp. 215-233
    • Bartel, D.P.1
  • 7
    • 0036544755 scopus 로고    scopus 로고
    • MicroRNAs are complementary to 3'UTR sequence motifs that mediate negative post-transcriptional regulation
    • Lai E.C. MicroRNAs are complementary to 3'UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 2002, 30:363-364.
    • (2002) Nat. Genet. , vol.30 , pp. 363-364
    • Lai, E.C.1
  • 8
    • 11844278458 scopus 로고    scopus 로고
    • Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
    • Lewis B.P., et al. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120:15-20.
    • (2005) Cell , vol.120 , pp. 15-20
    • Lewis, B.P.1
  • 9
    • 0346094457 scopus 로고    scopus 로고
    • Prediction of mammalian microRNA targets
    • Lewis B.P., et al. Prediction of mammalian microRNA targets. Cell 2003, 115:787-798.
    • (2003) Cell , vol.115 , pp. 787-798
    • Lewis, B.P.1
  • 10
    • 60149095444 scopus 로고    scopus 로고
    • Most mammalian mRNAs are conserved targets of microRNAs
    • Friedman R.C., et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009, 19:92-105.
    • (2009) Genome Res. , vol.19 , pp. 92-105
    • Friedman, R.C.1
  • 11
    • 34250805982 scopus 로고    scopus 로고
    • MicroRNA targeting specificity in mammals: determinants beyond seed pairing
    • Grimson A., et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 2007, 27:91-105.
    • (2007) Mol. Cell , vol.27 , pp. 91-105
    • Grimson, A.1
  • 12
    • 20944450160 scopus 로고    scopus 로고
    • Combinatorial microRNA target predictions
    • Krek A., et al. Combinatorial microRNA target predictions. Nat. Genet. 2005, 37:495-500.
    • (2005) Nat. Genet. , vol.37 , pp. 495-500
    • Krek, A.1
  • 13
    • 77955963884 scopus 로고    scopus 로고
    • Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites
    • Betel D., et al. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010, 11:R90.
    • (2010) Genome Biol. , vol.11 , pp. R90
    • Betel, D.1
  • 14
    • 84938384133 scopus 로고    scopus 로고
    • MiRWalk2.0: a comprehensive atlas of microRNA-target interactions
    • Dweep H., et al. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat. Methods 2015, 12:697.
    • (2015) Nat. Methods , vol.12 , pp. 697
    • Dweep, H.1
  • 15
    • 84887641104 scopus 로고    scopus 로고
    • Identification of a pan-cancer oncogenic microRNA superfamily anchored by a central core seed motif
    • Hamilton M.P., et al. Identification of a pan-cancer oncogenic microRNA superfamily anchored by a central core seed motif. Nat. Commun. 2013, 4:13.
    • (2013) Nat. Commun. , vol.4 , pp. 13
    • Hamilton, M.P.1
  • 16
    • 84863555312 scopus 로고    scopus 로고
    • Impact of microRNA regulation on variation in human gene expression
    • Lu J., et al. Impact of microRNA regulation on variation in human gene expression. Genome Res. 2012, 22:1243-1254.
    • (2012) Genome Res. , vol.22 , pp. 1243-1254
    • Lu, J.1
  • 17
    • 67749132423 scopus 로고    scopus 로고
    • Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps
    • Chi S.W., et al. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 2009, 460:479-486.
    • (2009) Nature , vol.460 , pp. 479-486
    • Chi, S.W.1
  • 18
    • 77950920903 scopus 로고    scopus 로고
    • Transcriptome-wide Identification of RNA-binding protein and microRNA target sites by PAR-CLIP
    • Hafner M., et al. Transcriptome-wide Identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 2010, 141:129-141.
    • (2010) Cell , vol.141 , pp. 129-141
    • Hafner, M.1
  • 19
    • 80455154984 scopus 로고    scopus 로고
    • Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs
    • Garcia D.M., et al. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat. Struct. Mol. Biol. 2011, 18:1139-1146.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1139-1146
    • Garcia, D.M.1
  • 20
    • 84862494264 scopus 로고    scopus 로고
    • Identification of RNA-protein interaction networks using PAR-CLIP
    • Ascano M., et al. Identification of RNA-protein interaction networks using PAR-CLIP. Wiley Interdiscip. Rev. RNA 2012, 3:159-177.
    • (2012) Wiley Interdiscip. Rev. RNA , vol.3 , pp. 159-177
    • Ascano, M.1
  • 21
    • 84880564138 scopus 로고    scopus 로고
    • Multiple products from microRNA transcripts
    • Marco A., et al. Multiple products from microRNA transcripts. Biochem. Soc. Trans. 2013, 41:850-854.
    • (2013) Biochem. Soc. Trans. , vol.41 , pp. 850-854
    • Marco, A.1
  • 22
    • 84866695456 scopus 로고    scopus 로고
    • Enemy or partner: relationship between intronic microRNAs and their host genes
    • Gao X., et al. Enemy or partner: relationship between intronic microRNAs and their host genes. IUBMB Life 2012, 64:835-840.
    • (2012) IUBMB Life , vol.64 , pp. 835-840
    • Gao, X.1
  • 23
    • 2342450524 scopus 로고    scopus 로고
    • Molecular evolution of a microRNA cluster
    • Tanzer A., et al. Molecular evolution of a microRNA cluster. J. Mol. Biol. 2004, 339:327-335.
    • (2004) J. Mol. Biol. , vol.339 , pp. 327-335
    • Tanzer, A.1
  • 24
    • 18344369543 scopus 로고    scopus 로고
    • MicroRNA biogenesis: coordinated cropping and dicing
    • Kim V.N. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 2005, 6:376-385.
    • (2005) Nat. Rev. Mol. Cell Biol. , vol.6 , pp. 376-385
    • Kim, V.N.1
  • 25
    • 84879852051 scopus 로고    scopus 로고
    • An SREBP-responsive microRNA operon contributes to a regulatory loop for intracellular lipid homeostasis
    • Jeon T.I., et al. An SREBP-responsive microRNA operon contributes to a regulatory loop for intracellular lipid homeostasis. Cell Metab. 2013, 18:51-61.
    • (2013) Cell Metab. , vol.18 , pp. 51-61
    • Jeon, T.I.1
  • 26
    • 84891856209 scopus 로고    scopus 로고
    • Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets
    • Kameswaran V., et al. Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab. 2014, 19:135-145.
    • (2014) Cell Metab. , vol.19 , pp. 135-145
    • Kameswaran, V.1
  • 27
    • 84880447792 scopus 로고    scopus 로고
    • Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates
    • Karginov F.V., et al. Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates. Genes Dev. 2013, 27:1624-1632.
    • (2013) Genes Dev. , vol.27 , pp. 1624-1632
    • Karginov, F.V.1
  • 28
    • 84905389814 scopus 로고    scopus 로고
    • MicroRNA directly enhances mitochondrial translation during muscle differentiation
    • Zhang X., et al. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 2014, 158:607-619.
    • (2014) Cell , vol.158 , pp. 607-619
    • Zhang, X.1
  • 29
    • 84922422451 scopus 로고    scopus 로고
    • In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA
    • La Rocca G., et al. In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:767-772.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 767-772
    • La Rocca, G.1
  • 30
    • 84879531857 scopus 로고    scopus 로고
    • Akt-mediated phosphorylation of Argonaute 2 downregulates cleavage and upregulates translational repression of microRNA targets
    • Horman S.R., et al. Akt-mediated phosphorylation of Argonaute 2 downregulates cleavage and upregulates translational repression of microRNA targets. Mol. Cell 2013, 50:356-367.
    • (2013) Mol. Cell , vol.50 , pp. 356-367
    • Horman, S.R.1
  • 31
    • 84900510730 scopus 로고    scopus 로고
    • TRIM65 regulates microRNA activity by ubiquitination of TNRC6
    • Li S., et al. TRIM65 regulates microRNA activity by ubiquitination of TNRC6. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:6970-6975.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 6970-6975
    • Li, S.1
  • 32
    • 84858379476 scopus 로고    scopus 로고
    • MicroRNAs in stress signaling and human disease
    • Mendell J.T., et al. MicroRNAs in stress signaling and human disease. Cell 2012, 148:1172-1187.
    • (2012) Cell , vol.148 , pp. 1172-1187
    • Mendell, J.T.1
  • 33
    • 84930751975 scopus 로고    scopus 로고
    • The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes
    • Belgardt B.F., et al. The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes. Nat. Med. 2015, 21:619-627.
    • (2015) Nat. Med. , vol.21 , pp. 619-627
    • Belgardt, B.F.1
  • 34
    • 84900797916 scopus 로고    scopus 로고
    • MicroRNA-7a regulates pancreatic beta cell function
    • Latreille M., et al. MicroRNA-7a regulates pancreatic beta cell function. J. Clin. Invest. 2014, 124:2722-2735.
    • (2014) J. Clin. Invest. , vol.124 , pp. 2722-2735
    • Latreille, M.1
  • 35
    • 65249093130 scopus 로고    scopus 로고
    • MiR-375 maintains normal pancreatic alpha- and beta-cell mass
    • Poy M.N., et al. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:5813-5818.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 5813-5818
    • Poy, M.N.1
  • 36
    • 9144270691 scopus 로고    scopus 로고
    • A pancreatic islet-specific microRNA regulates insulin secretion
    • Poy M.N., et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004, 432:226-230.
    • (2004) Nature , vol.432 , pp. 226-230
    • Poy, M.N.1
  • 37
    • 84919820315 scopus 로고    scopus 로고
    • MicroRNA-200 is induced by thioredoxin-interacting protein and regulates Zeb1 protein signaling and beta cell apoptosis
    • Filios S.R., et al. MicroRNA-200 is induced by thioredoxin-interacting protein and regulates Zeb1 protein signaling and beta cell apoptosis. J. Biol. Chem. 2014, 289:36275-36283.
    • (2014) J. Biol. Chem. , vol.289 , pp. 36275-36283
    • Filios, S.R.1
  • 38
    • 84918819322 scopus 로고    scopus 로고
    • Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease
    • Shulman G.I. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N. Engl. J. Med. 2014, 371:2237-2238.
    • (2014) N. Engl. J. Med. , vol.371 , pp. 2237-2238
    • Shulman, G.I.1
  • 39
    • 0036251153 scopus 로고    scopus 로고
    • SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
    • Horton J.D., et al. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 2002, 109:1125-1131.
    • (2002) J. Clin. Invest. , vol.109 , pp. 1125-1131
    • Horton, J.D.1
  • 40
    • 80054971110 scopus 로고    scopus 로고
    • Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides
    • Rayner K.J., et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 2011, 478:404-407.
    • (2011) Nature , vol.478 , pp. 404-407
    • Rayner, K.J.1
  • 41
    • 84924561760 scopus 로고    scopus 로고
    • Hepatitis C virus RNA functionally sequesters miR-122
    • Luna J.M., et al. Hepatitis C virus RNA functionally sequesters miR-122. Cell 2015, 160:1099-1110.
    • (2015) Cell , vol.160 , pp. 1099-1110
    • Luna, J.M.1
  • 42
    • 33645075443 scopus 로고    scopus 로고
    • MiR-122 regulation of lipid metabolism revealed by in vivo antisense targeting
    • Esau C., et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006, 3:87-98.
    • (2006) Cell Metab. , vol.3 , pp. 87-98
    • Esau, C.1
  • 43
    • 84930405027 scopus 로고    scopus 로고
    • MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids
    • Fu X., et al. MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids. J. Clin. Invest. 2015, 125:2497-2509.
    • (2015) J. Clin. Invest. , vol.125 , pp. 2497-2509
    • Fu, X.1
  • 44
    • 84855518254 scopus 로고    scopus 로고
    • Control of glucose homeostasis and insulin sensitivity by the let-7 family of microRNAs
    • Frost R.J., et al. Control of glucose homeostasis and insulin sensitivity by the let-7 family of microRNAs. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:21075-21080.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 21075-21080
    • Frost, R.J.1
  • 45
    • 80053481600 scopus 로고    scopus 로고
    • The Lin28/let-7 axis regulates glucose metabolism
    • Zhu H., et al. The Lin28/let-7 axis regulates glucose metabolism. Cell 2011, 147:81-94.
    • (2011) Cell , vol.147 , pp. 81-94
    • Zhu, H.1
  • 46
    • 84924904421 scopus 로고    scopus 로고
    • The cell biology of fat expansion
    • Rutkowski J.M., et al. The cell biology of fat expansion. J. Cell Biol. 2015, 208:501-512.
    • (2015) J. Cell Biol. , vol.208 , pp. 501-512
    • Rutkowski, J.M.1
  • 47
    • 84860441011 scopus 로고    scopus 로고
    • Inflammation and lipid signaling in the etiology of insulin resistance
    • Glass C.K., et al. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab. 2012, 15:635-645.
    • (2012) Cell Metab. , vol.15 , pp. 635-645
    • Glass, C.K.1
  • 48
    • 84864383359 scopus 로고    scopus 로고
    • Adipose tissue microRNAs as regulators of CCL2 production in human obesity
    • Arner E., et al. Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes 2012, 61:1986-1993.
    • (2012) Diabetes , vol.61 , pp. 1986-1993
    • Arner, E.1
  • 49
    • 84899792206 scopus 로고    scopus 로고
    • MicroRNAs regulate human adipocyte lipolysis: effects of miR-145 are linked to TNF-α
    • Lorente-Cebrian S., et al. MicroRNAs regulate human adipocyte lipolysis: effects of miR-145 are linked to TNF-α. PLoS ONE 2014, 9:e86800.
    • (2014) PLoS ONE , vol.9 , pp. e86800
    • Lorente-Cebrian, S.1
  • 50
    • 79951560291 scopus 로고    scopus 로고
    • Between brown and white: novel aspects of adipocyte differentiation
    • Cinti S. Between brown and white: novel aspects of adipocyte differentiation. Ann. Med. 2011, 43:104-115.
    • (2011) Ann. Med. , vol.43 , pp. 104-115
    • Cinti, S.1
  • 51
    • 84864287504 scopus 로고    scopus 로고
    • Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human
    • Wu J., et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012, 150:366-376.
    • (2012) Cell , vol.150 , pp. 366-376
    • Wu, J.1
  • 52
    • 84892702771 scopus 로고    scopus 로고
    • Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch
    • Cohen P., et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 2014, 156:304-316.
    • (2014) Cell , vol.156 , pp. 304-316
    • Cohen, P.1
  • 53
    • 84929965189 scopus 로고    scopus 로고
    • MicroRNA regulatory networks in human adipose tissue and obesity
    • Arner P., et al. MicroRNA regulatory networks in human adipose tissue and obesity. Nat. Rev. Endocrinol. 2015, 11:276-288.
    • (2015) Nat. Rev. Endocrinol. , vol.11 , pp. 276-288
    • Arner, P.1
  • 54
    • 79960984113 scopus 로고    scopus 로고
    • MiR-193b-365 is essential for brown fat differentiation
    • Sun L., et al. miR-193b-365 is essential for brown fat differentiation. Nat. Cell Biol. 2011, 13:958-964.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 958-964
    • Sun, L.1
  • 55
    • 84907377132 scopus 로고    scopus 로고
    • MicroRNA-378 controls classical brown fat expansion to counteract obesity
    • Pan D., et al. MicroRNA-378 controls classical brown fat expansion to counteract obesity. Nat. Commun. 2014, 5:4725.
    • (2014) Nat. Commun. , vol.5 , pp. 4725
    • Pan, D.1
  • 56
    • 84981516812 scopus 로고    scopus 로고
    • MiR-30 promotes thermogenesis and the development of beige fat by targeting RIP140
    • Hu F., et al. miR-30 promotes thermogenesis and the development of beige fat by targeting RIP140. Diabetes 2015, 64:2056-2068.
    • (2015) Diabetes , vol.64 , pp. 2056-2068
    • Hu, F.1
  • 57
    • 84870595878 scopus 로고    scopus 로고
    • MyomiR-133 regulates brown fat differentiation through Prdm16
    • Trajkovski M., et al. myomiR-133 regulates brown fat differentiation through Prdm16. Nat. Cell Biol. 2012, 14:1330-1335.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 1330-1335
    • Trajkovski, M.1
  • 58
    • 84921928542 scopus 로고    scopus 로고
    • Glucocorticoids transcriptionally regulate miR-27b expression promoting body fat accumulation via suppressing the browning of white adipose tissue
    • Kong X., et al. Glucocorticoids transcriptionally regulate miR-27b expression promoting body fat accumulation via suppressing the browning of white adipose tissue. Diabetes 2015, 64:393-404.
    • (2015) Diabetes , vol.64 , pp. 393-404
    • Kong, X.1
  • 59
    • 84880812042 scopus 로고    scopus 로고
    • MiR-133a regulates adipocyte browning in vivo
    • Liu W., et al. miR-133a regulates adipocyte browning in vivo. PLoS Genet. 2013, 9:e1003626.
    • (2013) PLoS Genet. , vol.9 , pp. e1003626
    • Liu, W.1
  • 60
    • 84860009214 scopus 로고    scopus 로고
    • Essential role for miR-196a in brown adipogenesis of white fat progenitor cells
    • Mori M., et al. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol. 2012, 10:e1001314.
    • (2012) PLoS Biol. , vol.10 , pp. e1001314
    • Mori, M.1
  • 61
    • 84873327762 scopus 로고    scopus 로고
    • MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16
    • Yin H., et al. MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell Metab. 2013, 17:210-224.
    • (2013) Cell Metab. , vol.17 , pp. 210-224
    • Yin, H.1
  • 62
    • 78650945931 scopus 로고    scopus 로고
    • Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice
    • Seale P., et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J. Clin. Invest. 2011, 121:96-105.
    • (2011) J. Clin. Invest. , vol.121 , pp. 96-105
    • Seale, P.1
  • 63
    • 84877747920 scopus 로고    scopus 로고
    • MiR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit
    • Chen Y., et al. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat. Commun. 2013, 4:1769.
    • (2013) Nat. Commun. , vol.4 , pp. 1769
    • Chen, Y.1
  • 64
    • 84866546187 scopus 로고    scopus 로고
    • Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*
    • Carrer M., et al. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:15330-15335.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 15330-15335
    • Carrer, M.1
  • 65
    • 84911879597 scopus 로고    scopus 로고
    • MicroRNAs are required for the feature maintenance and differentiation of brown adipocytes
    • Kim H.J., et al. MicroRNAs are required for the feature maintenance and differentiation of brown adipocytes. Diabetes 2014, 63:4045-4056.
    • (2014) Diabetes , vol.63 , pp. 4045-4056
    • Kim, H.J.1
  • 66
    • 84905455013 scopus 로고    scopus 로고
    • Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy
    • Mori M.A., et al. Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy. J. Clin. Invest. 2014, 124:3339-3351.
    • (2014) J. Clin. Invest. , vol.124 , pp. 3339-3351
    • Mori, M.A.1
  • 67
    • 65549144017 scopus 로고    scopus 로고
    • MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity
    • Xie H., et al. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 2009, 58:1050-1057.
    • (2009) Diabetes , vol.58 , pp. 1050-1057
    • Xie, H.1
  • 68
    • 69649109364 scopus 로고    scopus 로고
    • Circos: an information aesthetic for comparative genomics
    • Krzywinski M., et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009, 19:1639-1645.
    • (2009) Genome Res. , vol.19 , pp. 1639-1645
    • Krzywinski, M.1
  • 69
    • 79959326172 scopus 로고    scopus 로고
    • MiR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling
    • Davalos A., et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:9232-9237.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 9232-9237
    • Davalos, A.1
  • 70
    • 79953048345 scopus 로고    scopus 로고
    • The induction of microRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes
    • Ryu H.S., et al. The induction of microRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes. PLoS ONE 2011, 6:e17343.
    • (2011) PLoS ONE , vol.6 , pp. e17343
    • Ryu, H.S.1
  • 71
    • 84863228519 scopus 로고    scopus 로고
    • Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice
    • Roggli E., et al. Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice. Diabetes 2012, 61:1742-1751.
    • (2012) Diabetes , vol.61 , pp. 1742-1751
    • Roggli, E.1
  • 72
    • 84875372911 scopus 로고    scopus 로고
    • Natural RNA circles function as efficient microRNA sponges
    • Hansen T.B., et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013, 495:384-388.
    • (2013) Nature , vol.495 , pp. 384-388
    • Hansen, T.B.1
  • 73
    • 41649089309 scopus 로고    scopus 로고
    • The regulatory activity of microRNA* species has substantial influence on microRNA and 3' UTR evolution
    • Okamura K., et al. The regulatory activity of microRNA* species has substantial influence on microRNA and 3' UTR evolution. Nat. Struct. Mol. Biol. 2008, 15:354-363.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 354-363
    • Okamura, K.1
  • 74
    • 84931572130 scopus 로고    scopus 로고
    • Towards a molecular understanding of microRNA-mediated gene silencing
    • Jonas S., et al. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 2015, 16:421-433.
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 421-433
    • Jonas, S.1
  • 75
    • 84879414849 scopus 로고    scopus 로고
    • Argonaute proteins: functional insights and emerging roles
    • Meister G. Argonaute proteins: functional insights and emerging roles. Nat. Rev. Genet. 2013, 14:447-459.
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 447-459
    • Meister, G.1
  • 76
    • 84861839851 scopus 로고    scopus 로고
    • PABP and the poly(A) tail augment microRNA repression by facilitated miRISC binding
    • Moretti F., et al. PABP and the poly(A) tail augment microRNA repression by facilitated miRISC binding. Nat. Struct. Mol. Biol. 2012, 19:603-608.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 603-608
    • Moretti, F.1
  • 77
    • 84897571308 scopus 로고    scopus 로고
    • Poly(A)-tail profiling reveals an embryonic switch in translational control
    • Subtelny A.O., et al. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 2014, 508:66-71.
    • (2014) Nature , vol.508 , pp. 66-71
    • Subtelny, A.O.1
  • 78
    • 84878108145 scopus 로고    scopus 로고
    • EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2
    • Shen J., et al. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature 2013, 497:383-387.
    • (2013) Nature , vol.497 , pp. 383-387
    • Shen, J.1
  • 79
    • 79953682552 scopus 로고    scopus 로고
    • Phosphorylation of human Argonaute proteins affects small RNA binding
    • Rudel S., et al. Phosphorylation of human Argonaute proteins affects small RNA binding. Nucleic Acids Res. 2011, 39:2330-2343.
    • (2011) Nucleic Acids Res. , vol.39 , pp. 2330-2343
    • Rudel, S.1
  • 80
    • 0242266620 scopus 로고    scopus 로고
    • Dicer is essential for mouse development
    • Bernstein E., et al. Dicer is essential for mouse development. Nat. Genet. 2003, 35:215-217.
    • (2003) Nat. Genet. , vol.35 , pp. 215-217
    • Bernstein, E.1
  • 81
    • 34248156225 scopus 로고    scopus 로고
    • One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation
    • Morita S., et al. One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics 2007, 89:687-696.
    • (2007) Genomics , vol.89 , pp. 687-696
    • Morita, S.1
  • 82
    • 33847323881 scopus 로고    scopus 로고
    • DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal
    • Wang Y., et al. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat. Genet. 2007, 39:380-385.
    • (2007) Nat. Genet. , vol.39 , pp. 380-385
    • Wang, Y.1
  • 83
    • 84865797929 scopus 로고    scopus 로고
    • Role of microRNA processing in adipose tissue in stress defense and longevity
    • Mori M.A., et al. Role of microRNA processing in adipose tissue in stress defense and longevity. Cell Metab. 2012, 16:336-347.
    • (2012) Cell Metab. , vol.16 , pp. 336-347
    • Mori, M.A.1
  • 84
    • 23344439006 scopus 로고    scopus 로고
    • The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb
    • Harfe B.D., et al. The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:10898-10903.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 10898-10903
    • Harfe, B.D.1
  • 85
    • 36248978699 scopus 로고    scopus 로고
    • MicroRNA expression is required for pancreatic islet cell genesis in the mouse
    • Lynn F.C., et al. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 2007, 56:2938-2945.
    • (2007) Diabetes , vol.56 , pp. 2938-2945
    • Lynn, F.C.1
  • 86
    • 84936123498 scopus 로고    scopus 로고
    • DICER inactivation identifies pancreatic beta-cell "disallowed" genes targeted by microRNAs
    • Martinez-Sanchez A., et al. DICER inactivation identifies pancreatic beta-cell "disallowed" genes targeted by microRNAs. Mol. Endocrinol. 2015, 29:1067-1079.
    • (2015) Mol. Endocrinol. , vol.29 , pp. 1067-1079
    • Martinez-Sanchez, A.1
  • 87
    • 79951776196 scopus 로고    scopus 로고
    • Dicer is required for the formation of white but not brown adipose tissue
    • Mudhasani R., et al. Dicer is required for the formation of white but not brown adipose tissue. J. Cell. Physiol. 2011, 226:1399-1406.
    • (2011) J. Cell. Physiol. , vol.226 , pp. 1399-1406
    • Mudhasani, R.1
  • 88
    • 23644433363 scopus 로고    scopus 로고
    • TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing
    • Chendrimada T.P., et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005, 436:740-744.
    • (2005) Nature , vol.436 , pp. 740-744
    • Chendrimada, T.P.1
  • 89
    • 84905037866 scopus 로고    scopus 로고
    • Versatile microRNA biogenesis in animals and their viruses
    • Xie M., et al. Versatile microRNA biogenesis in animals and their viruses. RNA Biol. 2014, 11:673-681.
    • (2014) RNA Biol. , vol.11 , pp. 673-681
    • Xie, M.1
  • 90
    • 80052996141 scopus 로고    scopus 로고
    • Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants
    • Yang J.S., et al. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol. Cell 2011, 43:892-903.
    • (2011) Mol. Cell , vol.43 , pp. 892-903
    • Yang, J.S.1
  • 91
    • 54349104464 scopus 로고    scopus 로고
    • Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, Dicer-dependent small RNAs
    • Babiarz J.E., et al. Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, Dicer-dependent small RNAs. Genes Dev. 2008, 22:2773-2785.
    • (2008) Genes Dev. , vol.22 , pp. 2773-2785
    • Babiarz, J.E.1
  • 92
    • 84894609055 scopus 로고    scopus 로고
    • Mammalian 5'-capped microRNA precursors that generate a single microRNA
    • Xie M., et al. Mammalian 5'-capped microRNA precursors that generate a single microRNA. Cell 2013, 155:1568-1580.
    • (2013) Cell , vol.155 , pp. 1568-1580
    • Xie, M.1
  • 93
    • 77953183812 scopus 로고    scopus 로고
    • A Dicer-independent miRNA biogenesis pathway that requires Ago catalysis
    • Cheloufi S., et al. A Dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 2010, 465:584-589.
    • (2010) Nature , vol.465 , pp. 584-589
    • Cheloufi, S.1
  • 94
    • 77953897182 scopus 로고    scopus 로고
    • A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity
    • Cifuentes D., et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 2010, 328:1694-1698.
    • (2010) Science , vol.328 , pp. 1694-1698
    • Cifuentes, D.1
  • 95
    • 84929267929 scopus 로고    scopus 로고
    • Glucose-based regulation of miR-451/AMPK signaling depends on the OCT1 transcription factor
    • Ansari K.I., et al. Glucose-based regulation of miR-451/AMPK signaling depends on the OCT1 transcription factor. Cell Rep. 2015, 11:902-909.
    • (2015) Cell Rep. , vol.11 , pp. 902-909
    • Ansari, K.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.