-
1
-
-
79953317808
-
Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism
-
Jordan S.D., et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat. Cell Biol. 2011, 13:434-446.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 434-446
-
-
Jordan, S.D.1
-
2
-
-
84874715061
-
Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b
-
Kornfeld J.W., et al. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature 2013, 494:111-115.
-
(2013)
Nature
, vol.494
, pp. 111-115
-
-
Kornfeld, J.W.1
-
3
-
-
77953780835
-
MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis
-
Najafi-Shoushtari S.H., et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 2010, 328:1566-1569.
-
(2010)
Science
, vol.328
, pp. 1566-1569
-
-
Najafi-Shoushtari, S.H.1
-
4
-
-
77953787211
-
Mir-33 contributes to the regulation of cholesterol homeostasis
-
Rayner K.J., et al. mir-33 contributes to the regulation of cholesterol homeostasis. Science 2010, 328:1570-1573.
-
(2010)
Science
, vol.328
, pp. 1570-1573
-
-
Rayner, K.J.1
-
5
-
-
79959845414
-
MicroRNAs 103 and 107 regulate insulin sensitivity
-
Trajkovski M., et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011, 474:649-653.
-
(2011)
Nature
, vol.474
, pp. 649-653
-
-
Trajkovski, M.1
-
6
-
-
58249088751
-
MicroRNAs: target recognition and regulatory functions
-
Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell 2009, 136:215-233.
-
(2009)
Cell
, vol.136
, pp. 215-233
-
-
Bartel, D.P.1
-
7
-
-
0036544755
-
MicroRNAs are complementary to 3'UTR sequence motifs that mediate negative post-transcriptional regulation
-
Lai E.C. MicroRNAs are complementary to 3'UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 2002, 30:363-364.
-
(2002)
Nat. Genet.
, vol.30
, pp. 363-364
-
-
Lai, E.C.1
-
8
-
-
11844278458
-
Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
-
Lewis B.P., et al. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120:15-20.
-
(2005)
Cell
, vol.120
, pp. 15-20
-
-
Lewis, B.P.1
-
9
-
-
0346094457
-
Prediction of mammalian microRNA targets
-
Lewis B.P., et al. Prediction of mammalian microRNA targets. Cell 2003, 115:787-798.
-
(2003)
Cell
, vol.115
, pp. 787-798
-
-
Lewis, B.P.1
-
10
-
-
60149095444
-
Most mammalian mRNAs are conserved targets of microRNAs
-
Friedman R.C., et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009, 19:92-105.
-
(2009)
Genome Res.
, vol.19
, pp. 92-105
-
-
Friedman, R.C.1
-
11
-
-
34250805982
-
MicroRNA targeting specificity in mammals: determinants beyond seed pairing
-
Grimson A., et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 2007, 27:91-105.
-
(2007)
Mol. Cell
, vol.27
, pp. 91-105
-
-
Grimson, A.1
-
12
-
-
20944450160
-
Combinatorial microRNA target predictions
-
Krek A., et al. Combinatorial microRNA target predictions. Nat. Genet. 2005, 37:495-500.
-
(2005)
Nat. Genet.
, vol.37
, pp. 495-500
-
-
Krek, A.1
-
13
-
-
77955963884
-
Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites
-
Betel D., et al. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010, 11:R90.
-
(2010)
Genome Biol.
, vol.11
, pp. R90
-
-
Betel, D.1
-
14
-
-
84938384133
-
MiRWalk2.0: a comprehensive atlas of microRNA-target interactions
-
Dweep H., et al. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat. Methods 2015, 12:697.
-
(2015)
Nat. Methods
, vol.12
, pp. 697
-
-
Dweep, H.1
-
15
-
-
84887641104
-
Identification of a pan-cancer oncogenic microRNA superfamily anchored by a central core seed motif
-
Hamilton M.P., et al. Identification of a pan-cancer oncogenic microRNA superfamily anchored by a central core seed motif. Nat. Commun. 2013, 4:13.
-
(2013)
Nat. Commun.
, vol.4
, pp. 13
-
-
Hamilton, M.P.1
-
16
-
-
84863555312
-
Impact of microRNA regulation on variation in human gene expression
-
Lu J., et al. Impact of microRNA regulation on variation in human gene expression. Genome Res. 2012, 22:1243-1254.
-
(2012)
Genome Res.
, vol.22
, pp. 1243-1254
-
-
Lu, J.1
-
17
-
-
67749132423
-
Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps
-
Chi S.W., et al. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 2009, 460:479-486.
-
(2009)
Nature
, vol.460
, pp. 479-486
-
-
Chi, S.W.1
-
18
-
-
77950920903
-
Transcriptome-wide Identification of RNA-binding protein and microRNA target sites by PAR-CLIP
-
Hafner M., et al. Transcriptome-wide Identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 2010, 141:129-141.
-
(2010)
Cell
, vol.141
, pp. 129-141
-
-
Hafner, M.1
-
19
-
-
80455154984
-
Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs
-
Garcia D.M., et al. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat. Struct. Mol. Biol. 2011, 18:1139-1146.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 1139-1146
-
-
Garcia, D.M.1
-
20
-
-
84862494264
-
Identification of RNA-protein interaction networks using PAR-CLIP
-
Ascano M., et al. Identification of RNA-protein interaction networks using PAR-CLIP. Wiley Interdiscip. Rev. RNA 2012, 3:159-177.
-
(2012)
Wiley Interdiscip. Rev. RNA
, vol.3
, pp. 159-177
-
-
Ascano, M.1
-
21
-
-
84880564138
-
Multiple products from microRNA transcripts
-
Marco A., et al. Multiple products from microRNA transcripts. Biochem. Soc. Trans. 2013, 41:850-854.
-
(2013)
Biochem. Soc. Trans.
, vol.41
, pp. 850-854
-
-
Marco, A.1
-
22
-
-
84866695456
-
Enemy or partner: relationship between intronic microRNAs and their host genes
-
Gao X., et al. Enemy or partner: relationship between intronic microRNAs and their host genes. IUBMB Life 2012, 64:835-840.
-
(2012)
IUBMB Life
, vol.64
, pp. 835-840
-
-
Gao, X.1
-
23
-
-
2342450524
-
Molecular evolution of a microRNA cluster
-
Tanzer A., et al. Molecular evolution of a microRNA cluster. J. Mol. Biol. 2004, 339:327-335.
-
(2004)
J. Mol. Biol.
, vol.339
, pp. 327-335
-
-
Tanzer, A.1
-
24
-
-
18344369543
-
MicroRNA biogenesis: coordinated cropping and dicing
-
Kim V.N. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 2005, 6:376-385.
-
(2005)
Nat. Rev. Mol. Cell Biol.
, vol.6
, pp. 376-385
-
-
Kim, V.N.1
-
25
-
-
84879852051
-
An SREBP-responsive microRNA operon contributes to a regulatory loop for intracellular lipid homeostasis
-
Jeon T.I., et al. An SREBP-responsive microRNA operon contributes to a regulatory loop for intracellular lipid homeostasis. Cell Metab. 2013, 18:51-61.
-
(2013)
Cell Metab.
, vol.18
, pp. 51-61
-
-
Jeon, T.I.1
-
26
-
-
84891856209
-
Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets
-
Kameswaran V., et al. Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab. 2014, 19:135-145.
-
(2014)
Cell Metab.
, vol.19
, pp. 135-145
-
-
Kameswaran, V.1
-
27
-
-
84880447792
-
Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates
-
Karginov F.V., et al. Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates. Genes Dev. 2013, 27:1624-1632.
-
(2013)
Genes Dev.
, vol.27
, pp. 1624-1632
-
-
Karginov, F.V.1
-
28
-
-
84905389814
-
MicroRNA directly enhances mitochondrial translation during muscle differentiation
-
Zhang X., et al. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 2014, 158:607-619.
-
(2014)
Cell
, vol.158
, pp. 607-619
-
-
Zhang, X.1
-
29
-
-
84922422451
-
In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA
-
La Rocca G., et al. In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:767-772.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 767-772
-
-
La Rocca, G.1
-
30
-
-
84879531857
-
Akt-mediated phosphorylation of Argonaute 2 downregulates cleavage and upregulates translational repression of microRNA targets
-
Horman S.R., et al. Akt-mediated phosphorylation of Argonaute 2 downregulates cleavage and upregulates translational repression of microRNA targets. Mol. Cell 2013, 50:356-367.
-
(2013)
Mol. Cell
, vol.50
, pp. 356-367
-
-
Horman, S.R.1
-
31
-
-
84900510730
-
TRIM65 regulates microRNA activity by ubiquitination of TNRC6
-
Li S., et al. TRIM65 regulates microRNA activity by ubiquitination of TNRC6. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:6970-6975.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 6970-6975
-
-
Li, S.1
-
32
-
-
84858379476
-
MicroRNAs in stress signaling and human disease
-
Mendell J.T., et al. MicroRNAs in stress signaling and human disease. Cell 2012, 148:1172-1187.
-
(2012)
Cell
, vol.148
, pp. 1172-1187
-
-
Mendell, J.T.1
-
33
-
-
84930751975
-
The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes
-
Belgardt B.F., et al. The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes. Nat. Med. 2015, 21:619-627.
-
(2015)
Nat. Med.
, vol.21
, pp. 619-627
-
-
Belgardt, B.F.1
-
34
-
-
84900797916
-
MicroRNA-7a regulates pancreatic beta cell function
-
Latreille M., et al. MicroRNA-7a regulates pancreatic beta cell function. J. Clin. Invest. 2014, 124:2722-2735.
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 2722-2735
-
-
Latreille, M.1
-
35
-
-
65249093130
-
MiR-375 maintains normal pancreatic alpha- and beta-cell mass
-
Poy M.N., et al. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:5813-5818.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 5813-5818
-
-
Poy, M.N.1
-
36
-
-
9144270691
-
A pancreatic islet-specific microRNA regulates insulin secretion
-
Poy M.N., et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004, 432:226-230.
-
(2004)
Nature
, vol.432
, pp. 226-230
-
-
Poy, M.N.1
-
37
-
-
84919820315
-
MicroRNA-200 is induced by thioredoxin-interacting protein and regulates Zeb1 protein signaling and beta cell apoptosis
-
Filios S.R., et al. MicroRNA-200 is induced by thioredoxin-interacting protein and regulates Zeb1 protein signaling and beta cell apoptosis. J. Biol. Chem. 2014, 289:36275-36283.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 36275-36283
-
-
Filios, S.R.1
-
38
-
-
84918819322
-
Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease
-
Shulman G.I. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N. Engl. J. Med. 2014, 371:2237-2238.
-
(2014)
N. Engl. J. Med.
, vol.371
, pp. 2237-2238
-
-
Shulman, G.I.1
-
39
-
-
0036251153
-
SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
-
Horton J.D., et al. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 2002, 109:1125-1131.
-
(2002)
J. Clin. Invest.
, vol.109
, pp. 1125-1131
-
-
Horton, J.D.1
-
40
-
-
80054971110
-
Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides
-
Rayner K.J., et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 2011, 478:404-407.
-
(2011)
Nature
, vol.478
, pp. 404-407
-
-
Rayner, K.J.1
-
41
-
-
84924561760
-
Hepatitis C virus RNA functionally sequesters miR-122
-
Luna J.M., et al. Hepatitis C virus RNA functionally sequesters miR-122. Cell 2015, 160:1099-1110.
-
(2015)
Cell
, vol.160
, pp. 1099-1110
-
-
Luna, J.M.1
-
42
-
-
33645075443
-
MiR-122 regulation of lipid metabolism revealed by in vivo antisense targeting
-
Esau C., et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006, 3:87-98.
-
(2006)
Cell Metab.
, vol.3
, pp. 87-98
-
-
Esau, C.1
-
43
-
-
84930405027
-
MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids
-
Fu X., et al. MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids. J. Clin. Invest. 2015, 125:2497-2509.
-
(2015)
J. Clin. Invest.
, vol.125
, pp. 2497-2509
-
-
Fu, X.1
-
44
-
-
84855518254
-
Control of glucose homeostasis and insulin sensitivity by the let-7 family of microRNAs
-
Frost R.J., et al. Control of glucose homeostasis and insulin sensitivity by the let-7 family of microRNAs. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:21075-21080.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 21075-21080
-
-
Frost, R.J.1
-
45
-
-
80053481600
-
The Lin28/let-7 axis regulates glucose metabolism
-
Zhu H., et al. The Lin28/let-7 axis regulates glucose metabolism. Cell 2011, 147:81-94.
-
(2011)
Cell
, vol.147
, pp. 81-94
-
-
Zhu, H.1
-
46
-
-
84924904421
-
The cell biology of fat expansion
-
Rutkowski J.M., et al. The cell biology of fat expansion. J. Cell Biol. 2015, 208:501-512.
-
(2015)
J. Cell Biol.
, vol.208
, pp. 501-512
-
-
Rutkowski, J.M.1
-
47
-
-
84860441011
-
Inflammation and lipid signaling in the etiology of insulin resistance
-
Glass C.K., et al. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab. 2012, 15:635-645.
-
(2012)
Cell Metab.
, vol.15
, pp. 635-645
-
-
Glass, C.K.1
-
48
-
-
84864383359
-
Adipose tissue microRNAs as regulators of CCL2 production in human obesity
-
Arner E., et al. Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes 2012, 61:1986-1993.
-
(2012)
Diabetes
, vol.61
, pp. 1986-1993
-
-
Arner, E.1
-
49
-
-
84899792206
-
MicroRNAs regulate human adipocyte lipolysis: effects of miR-145 are linked to TNF-α
-
Lorente-Cebrian S., et al. MicroRNAs regulate human adipocyte lipolysis: effects of miR-145 are linked to TNF-α. PLoS ONE 2014, 9:e86800.
-
(2014)
PLoS ONE
, vol.9
, pp. e86800
-
-
Lorente-Cebrian, S.1
-
50
-
-
79951560291
-
Between brown and white: novel aspects of adipocyte differentiation
-
Cinti S. Between brown and white: novel aspects of adipocyte differentiation. Ann. Med. 2011, 43:104-115.
-
(2011)
Ann. Med.
, vol.43
, pp. 104-115
-
-
Cinti, S.1
-
51
-
-
84864287504
-
Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human
-
Wu J., et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012, 150:366-376.
-
(2012)
Cell
, vol.150
, pp. 366-376
-
-
Wu, J.1
-
52
-
-
84892702771
-
Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch
-
Cohen P., et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 2014, 156:304-316.
-
(2014)
Cell
, vol.156
, pp. 304-316
-
-
Cohen, P.1
-
53
-
-
84929965189
-
MicroRNA regulatory networks in human adipose tissue and obesity
-
Arner P., et al. MicroRNA regulatory networks in human adipose tissue and obesity. Nat. Rev. Endocrinol. 2015, 11:276-288.
-
(2015)
Nat. Rev. Endocrinol.
, vol.11
, pp. 276-288
-
-
Arner, P.1
-
54
-
-
79960984113
-
MiR-193b-365 is essential for brown fat differentiation
-
Sun L., et al. miR-193b-365 is essential for brown fat differentiation. Nat. Cell Biol. 2011, 13:958-964.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 958-964
-
-
Sun, L.1
-
55
-
-
84907377132
-
MicroRNA-378 controls classical brown fat expansion to counteract obesity
-
Pan D., et al. MicroRNA-378 controls classical brown fat expansion to counteract obesity. Nat. Commun. 2014, 5:4725.
-
(2014)
Nat. Commun.
, vol.5
, pp. 4725
-
-
Pan, D.1
-
56
-
-
84981516812
-
MiR-30 promotes thermogenesis and the development of beige fat by targeting RIP140
-
Hu F., et al. miR-30 promotes thermogenesis and the development of beige fat by targeting RIP140. Diabetes 2015, 64:2056-2068.
-
(2015)
Diabetes
, vol.64
, pp. 2056-2068
-
-
Hu, F.1
-
57
-
-
84870595878
-
MyomiR-133 regulates brown fat differentiation through Prdm16
-
Trajkovski M., et al. myomiR-133 regulates brown fat differentiation through Prdm16. Nat. Cell Biol. 2012, 14:1330-1335.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 1330-1335
-
-
Trajkovski, M.1
-
58
-
-
84921928542
-
Glucocorticoids transcriptionally regulate miR-27b expression promoting body fat accumulation via suppressing the browning of white adipose tissue
-
Kong X., et al. Glucocorticoids transcriptionally regulate miR-27b expression promoting body fat accumulation via suppressing the browning of white adipose tissue. Diabetes 2015, 64:393-404.
-
(2015)
Diabetes
, vol.64
, pp. 393-404
-
-
Kong, X.1
-
59
-
-
84880812042
-
MiR-133a regulates adipocyte browning in vivo
-
Liu W., et al. miR-133a regulates adipocyte browning in vivo. PLoS Genet. 2013, 9:e1003626.
-
(2013)
PLoS Genet.
, vol.9
, pp. e1003626
-
-
Liu, W.1
-
60
-
-
84860009214
-
Essential role for miR-196a in brown adipogenesis of white fat progenitor cells
-
Mori M., et al. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol. 2012, 10:e1001314.
-
(2012)
PLoS Biol.
, vol.10
, pp. e1001314
-
-
Mori, M.1
-
61
-
-
84873327762
-
MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16
-
Yin H., et al. MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell Metab. 2013, 17:210-224.
-
(2013)
Cell Metab.
, vol.17
, pp. 210-224
-
-
Yin, H.1
-
62
-
-
78650945931
-
Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice
-
Seale P., et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J. Clin. Invest. 2011, 121:96-105.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 96-105
-
-
Seale, P.1
-
63
-
-
84877747920
-
MiR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit
-
Chen Y., et al. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat. Commun. 2013, 4:1769.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1769
-
-
Chen, Y.1
-
64
-
-
84866546187
-
Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*
-
Carrer M., et al. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:15330-15335.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 15330-15335
-
-
Carrer, M.1
-
65
-
-
84911879597
-
MicroRNAs are required for the feature maintenance and differentiation of brown adipocytes
-
Kim H.J., et al. MicroRNAs are required for the feature maintenance and differentiation of brown adipocytes. Diabetes 2014, 63:4045-4056.
-
(2014)
Diabetes
, vol.63
, pp. 4045-4056
-
-
Kim, H.J.1
-
66
-
-
84905455013
-
Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy
-
Mori M.A., et al. Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy. J. Clin. Invest. 2014, 124:3339-3351.
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 3339-3351
-
-
Mori, M.A.1
-
67
-
-
65549144017
-
MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity
-
Xie H., et al. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 2009, 58:1050-1057.
-
(2009)
Diabetes
, vol.58
, pp. 1050-1057
-
-
Xie, H.1
-
68
-
-
69649109364
-
Circos: an information aesthetic for comparative genomics
-
Krzywinski M., et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009, 19:1639-1645.
-
(2009)
Genome Res.
, vol.19
, pp. 1639-1645
-
-
Krzywinski, M.1
-
69
-
-
79959326172
-
MiR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling
-
Davalos A., et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:9232-9237.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 9232-9237
-
-
Davalos, A.1
-
70
-
-
79953048345
-
The induction of microRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes
-
Ryu H.S., et al. The induction of microRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes. PLoS ONE 2011, 6:e17343.
-
(2011)
PLoS ONE
, vol.6
, pp. e17343
-
-
Ryu, H.S.1
-
71
-
-
84863228519
-
Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice
-
Roggli E., et al. Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice. Diabetes 2012, 61:1742-1751.
-
(2012)
Diabetes
, vol.61
, pp. 1742-1751
-
-
Roggli, E.1
-
72
-
-
84875372911
-
Natural RNA circles function as efficient microRNA sponges
-
Hansen T.B., et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013, 495:384-388.
-
(2013)
Nature
, vol.495
, pp. 384-388
-
-
Hansen, T.B.1
-
73
-
-
41649089309
-
The regulatory activity of microRNA* species has substantial influence on microRNA and 3' UTR evolution
-
Okamura K., et al. The regulatory activity of microRNA* species has substantial influence on microRNA and 3' UTR evolution. Nat. Struct. Mol. Biol. 2008, 15:354-363.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 354-363
-
-
Okamura, K.1
-
74
-
-
84931572130
-
Towards a molecular understanding of microRNA-mediated gene silencing
-
Jonas S., et al. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 2015, 16:421-433.
-
(2015)
Nat. Rev. Genet.
, vol.16
, pp. 421-433
-
-
Jonas, S.1
-
75
-
-
84879414849
-
Argonaute proteins: functional insights and emerging roles
-
Meister G. Argonaute proteins: functional insights and emerging roles. Nat. Rev. Genet. 2013, 14:447-459.
-
(2013)
Nat. Rev. Genet.
, vol.14
, pp. 447-459
-
-
Meister, G.1
-
76
-
-
84861839851
-
PABP and the poly(A) tail augment microRNA repression by facilitated miRISC binding
-
Moretti F., et al. PABP and the poly(A) tail augment microRNA repression by facilitated miRISC binding. Nat. Struct. Mol. Biol. 2012, 19:603-608.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 603-608
-
-
Moretti, F.1
-
77
-
-
84897571308
-
Poly(A)-tail profiling reveals an embryonic switch in translational control
-
Subtelny A.O., et al. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 2014, 508:66-71.
-
(2014)
Nature
, vol.508
, pp. 66-71
-
-
Subtelny, A.O.1
-
78
-
-
84878108145
-
EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2
-
Shen J., et al. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature 2013, 497:383-387.
-
(2013)
Nature
, vol.497
, pp. 383-387
-
-
Shen, J.1
-
79
-
-
79953682552
-
Phosphorylation of human Argonaute proteins affects small RNA binding
-
Rudel S., et al. Phosphorylation of human Argonaute proteins affects small RNA binding. Nucleic Acids Res. 2011, 39:2330-2343.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 2330-2343
-
-
Rudel, S.1
-
80
-
-
0242266620
-
Dicer is essential for mouse development
-
Bernstein E., et al. Dicer is essential for mouse development. Nat. Genet. 2003, 35:215-217.
-
(2003)
Nat. Genet.
, vol.35
, pp. 215-217
-
-
Bernstein, E.1
-
81
-
-
34248156225
-
One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation
-
Morita S., et al. One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics 2007, 89:687-696.
-
(2007)
Genomics
, vol.89
, pp. 687-696
-
-
Morita, S.1
-
82
-
-
33847323881
-
DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal
-
Wang Y., et al. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat. Genet. 2007, 39:380-385.
-
(2007)
Nat. Genet.
, vol.39
, pp. 380-385
-
-
Wang, Y.1
-
83
-
-
84865797929
-
Role of microRNA processing in adipose tissue in stress defense and longevity
-
Mori M.A., et al. Role of microRNA processing in adipose tissue in stress defense and longevity. Cell Metab. 2012, 16:336-347.
-
(2012)
Cell Metab.
, vol.16
, pp. 336-347
-
-
Mori, M.A.1
-
84
-
-
23344439006
-
The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb
-
Harfe B.D., et al. The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:10898-10903.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 10898-10903
-
-
Harfe, B.D.1
-
85
-
-
36248978699
-
MicroRNA expression is required for pancreatic islet cell genesis in the mouse
-
Lynn F.C., et al. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 2007, 56:2938-2945.
-
(2007)
Diabetes
, vol.56
, pp. 2938-2945
-
-
Lynn, F.C.1
-
86
-
-
84936123498
-
DICER inactivation identifies pancreatic beta-cell "disallowed" genes targeted by microRNAs
-
Martinez-Sanchez A., et al. DICER inactivation identifies pancreatic beta-cell "disallowed" genes targeted by microRNAs. Mol. Endocrinol. 2015, 29:1067-1079.
-
(2015)
Mol. Endocrinol.
, vol.29
, pp. 1067-1079
-
-
Martinez-Sanchez, A.1
-
87
-
-
79951776196
-
Dicer is required for the formation of white but not brown adipose tissue
-
Mudhasani R., et al. Dicer is required for the formation of white but not brown adipose tissue. J. Cell. Physiol. 2011, 226:1399-1406.
-
(2011)
J. Cell. Physiol.
, vol.226
, pp. 1399-1406
-
-
Mudhasani, R.1
-
88
-
-
23644433363
-
TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing
-
Chendrimada T.P., et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005, 436:740-744.
-
(2005)
Nature
, vol.436
, pp. 740-744
-
-
Chendrimada, T.P.1
-
89
-
-
84905037866
-
Versatile microRNA biogenesis in animals and their viruses
-
Xie M., et al. Versatile microRNA biogenesis in animals and their viruses. RNA Biol. 2014, 11:673-681.
-
(2014)
RNA Biol.
, vol.11
, pp. 673-681
-
-
Xie, M.1
-
90
-
-
80052996141
-
Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants
-
Yang J.S., et al. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol. Cell 2011, 43:892-903.
-
(2011)
Mol. Cell
, vol.43
, pp. 892-903
-
-
Yang, J.S.1
-
91
-
-
54349104464
-
Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, Dicer-dependent small RNAs
-
Babiarz J.E., et al. Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, Dicer-dependent small RNAs. Genes Dev. 2008, 22:2773-2785.
-
(2008)
Genes Dev.
, vol.22
, pp. 2773-2785
-
-
Babiarz, J.E.1
-
92
-
-
84894609055
-
Mammalian 5'-capped microRNA precursors that generate a single microRNA
-
Xie M., et al. Mammalian 5'-capped microRNA precursors that generate a single microRNA. Cell 2013, 155:1568-1580.
-
(2013)
Cell
, vol.155
, pp. 1568-1580
-
-
Xie, M.1
-
93
-
-
77953183812
-
A Dicer-independent miRNA biogenesis pathway that requires Ago catalysis
-
Cheloufi S., et al. A Dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 2010, 465:584-589.
-
(2010)
Nature
, vol.465
, pp. 584-589
-
-
Cheloufi, S.1
-
94
-
-
77953897182
-
A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity
-
Cifuentes D., et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 2010, 328:1694-1698.
-
(2010)
Science
, vol.328
, pp. 1694-1698
-
-
Cifuentes, D.1
-
95
-
-
84929267929
-
Glucose-based regulation of miR-451/AMPK signaling depends on the OCT1 transcription factor
-
Ansari K.I., et al. Glucose-based regulation of miR-451/AMPK signaling depends on the OCT1 transcription factor. Cell Rep. 2015, 11:902-909.
-
(2015)
Cell Rep.
, vol.11
, pp. 902-909
-
-
Ansari, K.I.1
|