메뉴 건너뛰기




Volumn 11, Issue 5, 2015, Pages 276-288

MicroRNA regulatory networks in human adipose tissue and obesity

Author keywords

[No Author keywords available]

Indexed keywords

MICRORNA; CCL2 PROTEIN, HUMAN; MONOCYTE CHEMOTACTIC PROTEIN 1; TRANSCRIPTION FACTOR;

EID: 84929965189     PISSN: 17595029     EISSN: 17595037     Source Type: Journal    
DOI: 10.1038/nrendo.2015.25     Document Type: Review
Times cited : (360)

References (163)
  • 1
    • 25844457693 scopus 로고    scopus 로고
    • Obesity
    • Haslam, D. W. & James, W. P. Obesity. Lancet 366, 1197-1209 (2005).
    • (2005) Lancet , vol.366 , pp. 1197-1209
    • Haslam, D.W.1    James, W.P.2
  • 2
    • 84858702540 scopus 로고    scopus 로고
    • The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives
    • Chen, L., Magliano, D. J. & Zimmet, P. Z. The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives. Nat. Rev. Endocrinol. 8, 228-236 (2012).
    • (2012) Nat. Rev. Endocrinol. , vol.8 , pp. 228-236
    • Chen, L.1    Magliano, D.J.2    Zimmet, P.Z.3
  • 3
    • 32144455202 scopus 로고    scopus 로고
    • The emerging epidemic of obesity in developing countries
    • Prentice, A. M. The emerging epidemic of obesity in developing countries. Int. J. Epidemiol. 35, 93-99 (2006).
    • (2006) Int. J. Epidemiol. , vol.35 , pp. 93-99
    • Prentice, A.M.1
  • 4
    • 0034611784 scopus 로고    scopus 로고
    • Medicinal strategies in the treatment of obesity
    • Bray, G. A. & Tartaglia, L. A. Medicinal strategies in the treatment of obesity. Nature 404, 672-677 (2000).
    • (2000) Nature , vol.404 , pp. 672-677
    • Bray, G.A.1    Tartaglia, L.A.2
  • 5
    • 33845325476 scopus 로고    scopus 로고
    • Adipocyte differentiation from the inside out
    • Rosen, E. D. & MacDougald, O. A. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7, 885-896 (2006).
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 885-896
    • Rosen, E.D.1    MacDougald, O.A.2
  • 6
    • 84887294069 scopus 로고    scopus 로고
    • Health and obesity: Not just skin deep
    • Arner, E. & Arner, P. Health and obesity: not just skin deep. Science 342, 558-559 (2013).
    • (2013) Science , vol.342 , pp. 558-559
    • Arner, E.1    Arner, P.2
  • 7
    • 0032474246 scopus 로고    scopus 로고
    • Not all fat is alike
    • Arner, P. Not all fat is alike. Lancet 351, 1301-1302 (1998).
    • (1998) Lancet , vol.351 , pp. 1301-1302
    • Arner, P.1
  • 8
    • 84899489259 scopus 로고    scopus 로고
    • Lipolysis in lipid turnover, cancer cachexia, and obesity-induced insulin resistance
    • Arner, P. & Langin, D. Lipolysis in lipid turnover, cancer cachexia, and obesity-induced insulin resistance. Trends Endocrinol. Metab. 25, 255-262 (2014).
    • (2014) Trends Endocrinol. Metab. , vol.25 , pp. 255-262
    • Arner, P.1    Langin, D.2
  • 9
    • 84874045511 scopus 로고    scopus 로고
    • The origins and drivers of insulin resistance
    • Johnson, A. M. & Olefsky, J. M. The origins and drivers of insulin resistance. Cell 152, 673-684 (2013).
    • (2013) Cell , vol.152 , pp. 673-684
    • Johnson, A.M.1    Olefsky, J.M.2
  • 10
    • 84866133825 scopus 로고    scopus 로고
    • Adiponectin: Mechanistic insights and clinical implications
    • Turer, A. T. & Scherer, P. E. Adiponectin: mechanistic insights and clinical implications. Diabetologia 55, 2319-2326 (2012).
    • (2012) Diabetologia , vol.55 , pp. 2319-2326
    • Turer, A.T.1    Scherer, P.E.2
  • 11
    • 33845866857 scopus 로고    scopus 로고
    • Inflammation and metabolic disorders
    • Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860-867 (2006).
    • (2006) Nature , vol.444 , pp. 860-867
    • Hotamisligil, G.S.1
  • 13
    • 80053927990 scopus 로고    scopus 로고
    • Dynamics of human adipose lipid turnover in health and metabolic disease
    • Arner, P. et al. Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 478, 110-113 (2011).
    • (2011) Nature , vol.478 , pp. 110-113
    • Arner, P.1
  • 14
    • 84884167565 scopus 로고    scopus 로고
    • Adipocyte triglyceride turnover and lipolysis in lean and overweight subjects
    • Ryden, M., Andersson, D. P., Bernard, S., Spalding, K. & Arner, P. Adipocyte triglyceride turnover and lipolysis in lean and overweight subjects. J. Lipid Res. 54, 2909-2913 (2013).
    • (2013) J. Lipid Res. , vol.54 , pp. 2909-2913
    • Ryden, M.1    Andersson, D.P.2    Bernard, S.3    Spalding, K.4    Arner, P.5
  • 15
    • 0347989317 scopus 로고    scopus 로고
    • Brown adipose tissue: Function and physiological significance
    • Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277-359 (2004).
    • (2004) Physiol. Rev. , vol.84 , pp. 277-359
    • Cannon, B.1    Nedergaard, J.2
  • 16
    • 84890125542 scopus 로고    scopus 로고
    • Brown adipose tissue thermogenesis in humans
    • Nuutila, P. Brown adipose tissue thermogenesis in humans. Diabetologia 56, 2110-2112 (2013).
    • (2013) Diabetologia , vol.56 , pp. 2110-2112
    • Nuutila, P.1
  • 17
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: Target recognition and regulatory functions
    • Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233 (2009).
    • (2009) Cell , vol.136 , pp. 215-233
    • Bartel, D.P.1
  • 18
    • 49949116902 scopus 로고    scopus 로고
    • The impact of microRNAs on protein output
    • Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64-71 (2008).
    • (2008) Nature , vol.455 , pp. 64-71
    • Baek, D.1
  • 19
    • 49949117302 scopus 로고    scopus 로고
    • Widespread changes in protein synthesis induced by microRNAs
    • Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58-63 (2008).
    • (2008) Nature , vol.455 , pp. 58-63
    • Selbach, M.1
  • 20
    • 80052266532 scopus 로고    scopus 로고
    • MicroRNAs can generate thresholds in target gene expression
    • Mukherji, S. et al. MicroRNAs can generate thresholds in target gene expression. Nat. Genet. 43, 854-859 (2011).
    • (2011) Nat. Genet. , vol.43 , pp. 854-859
    • Mukherji, S.1
  • 21
    • 84863555312 scopus 로고    scopus 로고
    • Impact of microRNA regulation on variation in human gene expression
    • Lu, J. & Clark, A. G. Impact of microRNA regulation on variation in human gene expression. Genome Res. 22, 1243-1254 (2012).
    • (2012) Genome Res , vol.22 , pp. 1243-1254
    • Lu, J.1    Clark, A.G.2
  • 22
    • 78651293534 scopus 로고    scopus 로고
    • MiRBase: Integrating microRNA annotation and deep-sequencing data
    • Kozomara, A. & Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152-D157 (2011).
    • (2011) Nucleic Acids Res , vol.39 , pp. D152-D157
    • Kozomara, A.1    Griffiths-Jones, S.2
  • 23
    • 36749005527 scopus 로고    scopus 로고
    • Using expression profiling data to identify human microRNA targets
    • Huang, J. C. et al. Using expression profiling data to identify human microRNA targets. Nat. Methods 4, 1045-1049 (2007).
    • (2007) Nat. Methods , vol.4 , pp. 1045-1049
    • Huang, J.C.1
  • 24
    • 77956117850 scopus 로고    scopus 로고
    • Towards computational prediction of microRNA function and activity
    • Ulitsky, I., Laurent, L. C. & Shamir, R. Towards computational prediction of microRNA function and activity. Nucleic Acids Res. 38, e160 (2010).
    • (2010) Nucleic Acids Res. , vol.38 , pp. e160
    • Ulitsky, I.1    Laurent, L.C.2    Shamir, R.3
  • 25
    • 84861909720 scopus 로고    scopus 로고
    • Identification of microRNA-regulated gene networks by expression analysis of target genes
    • Gennarino, V. A. et al. Identification of microRNA-regulated gene networks by expression analysis of target genes. Genome Res. 22, 1163-1172 (2012).
    • (2012) Genome Res. , vol.22 , pp. 1163-1172
    • Gennarino, V.A.1
  • 26
    • 79959997653 scopus 로고    scopus 로고
    • V. MirConnX: Condition-specific mRNA-microRNA network integrator
    • Huang, G. T., Athanassiou, C. & Benos, P. V. mirConnX: condition-specific mRNA-microRNA network integrator. Nucleic Acids Res. 39, W416-W423 (2011).
    • (2011) Nucleic Acids Res. , vol.39 , pp. W416-W423
    • Huang, G.T.1    Athanassiou, C.2    Benos, P.3
  • 27
    • 79952199699 scopus 로고    scopus 로고
    • Identification of microRNA-mRNA modules using microarray data
    • Jayaswal, V., Lutherborrow, M., Ma, D. D. & Yang, Y. H. Identification of microRNA-mRNA modules using microarray data. BMC Genomics 12, 138 (2011).
    • (2011) BMC Genomics , vol.12 , pp. 138
    • Jayaswal, V.1    Lutherborrow, M.2    Ma, D.D.3    Yang, Y.H.4
  • 28
    • 79952198386 scopus 로고    scopus 로고
    • MIR@NT@N: A framework integrating transcription factors, microRNAs and their targets to identify sub-network motifs in a meta-regulation network model
    • Le Bechec, A. et al. MIR@NT@N: a framework integrating transcription factors, microRNAs and their targets to identify sub-network motifs in a meta-regulation network model. BMC Bioinformatics 12, 67 (2011).
    • (2011) BMC Bioinformatics , vol.12 , pp. 67
    • Le Bechec, A.1
  • 29
    • 79951570957 scopus 로고    scopus 로고
    • MiRNA-miRNA synergistic network: Construction via co-regulating functional modules and disease miRNA topological features
    • Xu, J. et al. MiRNA-miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features. Nucleic Acids Res. 39, 825-836 (2011).
    • (2011) Nucleic Acids Res. , vol.39 , pp. 825-836
    • Xu, J.1
  • 30
    • 37349042903 scopus 로고    scopus 로고
    • Experimental validation of miRNA targets
    • Kuhn, D. E. et al. Experimental validation of miRNA targets. Methods 44, 47-54 (2008).
    • (2008) Methods , vol.44 , pp. 47-54
    • Kuhn, D.E.1
  • 31
    • 65549144017 scopus 로고    scopus 로고
    • MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity
    • Xie, H., Lim, B. & Lodish, H. F. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 58, 1050-1057 (2009).
    • (2009) Diabetes , vol.58 , pp. 1050-1057
    • Xie, H.1    Lim, B.2    Lodish, H.F.3
  • 32
    • 84864383359 scopus 로고    scopus 로고
    • Adipose tissue microRNAs as regulators of CCL2 production in human obesity
    • Arner, E. et al. Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes 61, 1986-1993 (2012).
    • (2012) Diabetes , vol.61 , pp. 1986-1993
    • Arner, E.1
  • 33
    • 79955671859 scopus 로고    scopus 로고
    • Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers
    • Heneghan, H. M., Miller, N., McAnena, O. J., O'Brien, T. & Kerin, M. J. Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers. J. Clin. Endocrinol. Metab. 96, E846-E850 (2011).
    • (2011) J. Clin. Endocrinol. Metab. , vol.96 , pp. E846-E850
    • Heneghan, H.M.1    Miller, N.2    McAnena, O.J.3    O'Brien, T.4    Kerin, M.J.5
  • 34
    • 79953078936 scopus 로고    scopus 로고
    • Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity
    • Keller, P. et al. Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity. BMC Endocr. Disord. 11, 7 (2011).
    • (2011) BMC Endocr. Disord. , vol.11 , pp. 7
    • Keller, P.1
  • 35
    • 78049317991 scopus 로고    scopus 로고
    • MiR-519d overexpression is associated with human obesity
    • Martinelli, R. et al. miR-519d overexpression is associated with human obesity. Obesity (Silver Spring) 18, 2170-2176 (2010).
    • (2010) Obesity (Silver Spring) , vol.18 , pp. 2170-2176
    • Martinelli, R.1
  • 36
    • 84881614241 scopus 로고    scopus 로고
    • Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF
    • Meerson, A. et al. Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF. Diabetologia 56, 1971-1979 (2013).
    • (2013) Diabetologia , vol.56 , pp. 1971-1979
    • Meerson, A.1
  • 37
    • 77749299066 scopus 로고    scopus 로고
    • MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation
    • Ortega, F. J. et al. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS ONE 5, e9022 (2010).
    • (2010) PLoS ONE , vol.5 , pp. e9022
    • Ortega, F.J.1
  • 38
    • 84861837622 scopus 로고    scopus 로고
    • MiRNA and protein expression profiles of visceral adipose tissue reveal miR-141/YWHAG and miR-520e/RAB11A as two potential miRNA/protein target pairs associated with severe obesity
    • Capobianco, V. et al. miRNA and protein expression profiles of visceral adipose tissue reveal miR-141/YWHAG and miR-520e/RAB11A as two potential miRNA/protein target pairs associated with severe obesity. J. Proteome Res. 11, 3358-3369 (2012).
    • (2012) J. Proteome Res. , vol.11 , pp. 3358-3369
    • Capobianco, V.1
  • 39
    • 84903398045 scopus 로고    scopus 로고
    • MiR-146b is a regulator of human visceral preadipocyte proliferation and differentiation and its expression is altered in human obesity
    • Chen, L. et al. MiR-146b is a regulator of human visceral preadipocyte proliferation and differentiation and its expression is altered in human obesity. Mol. Cell. Endocrinol. 393, 65-74 (2014).
    • (2014) Mol. Cell. Endocrinol. , vol.393 , pp. 65-74
    • Chen, L.1
  • 40
    • 84880181397 scopus 로고    scopus 로고
    • Decreased microRNA-221 is associated with high levels of TNF in human adipose tissue-derived mesenchymal stem cells from obese woman
    • Chou, W. W. et al. Decreased microRNA-221 is associated with high levels of TNF in human adipose tissue-derived mesenchymal stem cells from obese woman. Cell Physiol. Biochem. 32, 127-137 (2013).
    • (2013) Cell Physiol. Biochem. , vol.32 , pp. 127-137
    • Chou, W.W.1
  • 41
    • 84899839946 scopus 로고    scopus 로고
    • Adaptive expression of microRNA-125a in adipose tissue in response to obesity in mice and men
    • Diawara, M. R. et al. Adaptive expression of microRNA-125a in adipose tissue in response to obesity in mice and men. PLoS ONE 9, e91375 (2014).
    • (2014) PLoS ONE , vol.9 , pp. e91375
    • Diawara, M.R.1
  • 42
    • 84905836996 scopus 로고    scopus 로고
    • Cell-specific dysregulation of microRNA expression in obese white adipose tissue
    • Oger, F. et al. Cell-specific dysregulation of microRNA expression in obese white adipose tissue. J. Clin. Endocrinol. Metab. 99, 2821-2833 (2014).
    • (2014) J. Clin. Endocrinol. Metab. , vol.99 , pp. 2821-2833
    • Oger, F.1
  • 43
    • 33748305621 scopus 로고    scopus 로고
    • Downregulation of electron transport chain genes in visceral adipose tissue in type 2 diabetes independent of obesity and possibly involving tumor necrosis factor
    • Dahlman, I. et al. Downregulation of electron transport chain genes in visceral adipose tissue in type 2 diabetes independent of obesity and possibly involving tumor necrosis factor. Diabetes 55, 1792-1799 (2006).
    • (2006) Diabetes , vol.55 , pp. 1792-1799
    • Dahlman, I.1
  • 44
    • 78650882667 scopus 로고    scopus 로고
    • Worsening of obesity and metabolic status yields similar molecular adaptations in human subcutaneous and visceral adipose tissue: Decreased metabolism and increased immune response
    • Klimcakova, E. et al. Worsening of obesity and metabolic status yields similar molecular adaptations in human subcutaneous and visceral adipose tissue: decreased metabolism and increased immune response. J. Clin. Endocrinol. Metab. 96, E73-E82 (2011).
    • (2011) J. Clin. Endocrinol. Metab. , vol.96 , pp. E73-E82
    • Klimcakova, E.1
  • 45
    • 84875224308 scopus 로고    scopus 로고
    • MicroRNAs in adipose tissue: Their role in adipogenesis and obesity
    • Hilton, C., Neville, M. J. & Karpe, F. MicroRNAs in adipose tissue: their role in adipogenesis and obesity. Int. J. Obesity 37, 325-332 (2013).
    • (2013) Int. J. Obesity , vol.37 , pp. 325-332
    • Hilton, C.1    Neville, M.J.2    Karpe, F.3
  • 46
    • 79953207645 scopus 로고    scopus 로고
    • Comprehensive human adipose tissue mRNA and microRNA endogenous control selection for quantitative real-time-PCR normalization
    • Neville, M. J., Collins, J. M., Gloyn, A. L., McCarthy, M. I. & Karpe, F. Comprehensive human adipose tissue mRNA and microRNA endogenous control selection for quantitative real-time-PCR normalization. Obesity (Silver Spring) 19, 888-892 (2011).
    • (2011) Obesity (Silver Spring) , vol.19 , pp. 888-892
    • Neville, M.J.1    Collins, J.M.2    Gloyn, A.L.3    McCarthy, M.I.4    Karpe, F.5
  • 47
    • 84880254076 scopus 로고    scopus 로고
    • Genetic regulation of human adipose microRNA expression and its consequences for metabolic traits
    • Civelek, M. et al. Genetic regulation of human adipose microRNA expression and its consequences for metabolic traits. Hum. Mol. Genet. 22, 3023-3037 (2013).
    • (2013) Hum. Mol. Genet. , vol.22 , pp. 3023-3037
    • Civelek, M.1
  • 48
    • 6344260341 scopus 로고    scopus 로고
    • A survey of genes differentially expressed in subcutaneous and visceral adipose tissue in men
    • Vohl, M. C. et al. A survey of genes differentially expressed in subcutaneous and visceral adipose tissue in men. Obes. Res. 12, 1217-1222 (2004).
    • (2004) Obes. Res. , vol.12 , pp. 1217-1222
    • Vohl, M.C.1
  • 49
    • 62249144948 scopus 로고    scopus 로고
    • MicroRNA expression in human omental and subcutaneous adipose tissue
    • Kloting, N. et al. MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS ONE 4, e4699 (2009).
    • (2009) PLoS ONE , vol.4 , pp. e4699
    • Kloting, N.1
  • 50
    • 84901475804 scopus 로고    scopus 로고
    • Expression profiling of PPAR-regulated microRNAs in human subcutaneous and visceral adipogenesis in both genders
    • Yu, J. et al. Expression profiling of PPAR-regulated microRNAs in human subcutaneous and visceral adipogenesis in both genders. Endocrinology 155, 2155-2165 (2014).
    • (2014) Endocrinology , vol.155 , pp. 2155-2165
    • Yu, J.1
  • 51
    • 84860604907 scopus 로고    scopus 로고
    • MicroRNA expression in abdominal and gluteal adipose tissue is associated with mRNA expression levels and partly genetically driven
    • Rantalainen, M. et al. MicroRNA expression in abdominal and gluteal adipose tissue is associated with mRNA expression levels and partly genetically driven. PLoS ONE 6, e27338 (2011).
    • (2011) PLoS ONE , vol.6 , pp. e27338
    • Rantalainen, M.1
  • 53
    • 84858776574 scopus 로고    scopus 로고
    • MicroRNAs in metabolism and metabolic disorders
    • Rottiers, V. & Naar, A. M. MicroRNAs in metabolism and metabolic disorders. Nat. Rev. Mol. Cell Biol. 13, 239-250 (2012).
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 239-250
    • Rottiers, V.1    Naar, A.M.2
  • 54
    • 84916598840 scopus 로고    scopus 로고
    • The expression of the miR-25/93/106b family of micro-RNAs in the adipose tissue of women with polycystic ovary syndrome
    • Wu, H. L. et al. The expression of the miR-25/93/106b family of micro-RNAs in the adipose tissue of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 99, E2754-E2761 (2014).
    • (2014) J. Clin. Endocrinol. Metab. , vol.99 , pp. E2754-E2761
    • Wu, H.L.1
  • 55
    • 85047687699 scopus 로고    scopus 로고
    • MiRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance
    • Chen, Y. H. et al. miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes 62, 2278-2286 (2013).
    • (2013) Diabetes , vol.62 , pp. 2278-2286
    • Chen, Y.H.1
  • 56
    • 84899792206 scopus 로고    scopus 로고
    • MicroRNAs regulate human adipocyte lipolysis: Effects of miR-145 are linked to TNF
    • Lorente-Cebrian, S. et al. MicroRNAs regulate human adipocyte lipolysis: effects of miR-145 are linked to TNF. PLoS ONE 9, e86800 (2014).
    • (2014) PLoS ONE , vol.9 , pp. e86800
    • Lorente-Cebrian, S.1
  • 57
    • 84901353696 scopus 로고    scopus 로고
    • KSRP and microRNA 145 are negative regulators of lipolysis in white adipose tissue
    • Lin, Y. Y. et al. KSRP and microRNA 145 are negative regulators of lipolysis in white adipose tissue. Mol. Cell. Biol. 34, 2339-2349 (2014).
    • (2014) Mol. Cell. Biol. , vol.34 , pp. 2339-2349
    • Lin, Y.Y.1
  • 58
    • 84881129444 scopus 로고    scopus 로고
    • Role of microRNA-21 in regulating 3T3-L1 adipocyte differentiation and adiponectin expression
    • Kang, M. et al. Role of microRNA-21 in regulating 3T3-L1 adipocyte differentiation and adiponectin expression. Mol. Biol. Rep. 40, 5027-5034 (2013).
    • (2013) Mol. Biol. Rep. , vol.40 , pp. 5027-5034
    • Kang, M.1
  • 59
    • 84899460786 scopus 로고    scopus 로고
    • Differential expression of microRNAs in omental adipose tissue from gestational diabetes mellitus subjects reveals miR-222 as a regulator of ER expression in estrogen-induced insulin resistance
    • Shi, Z. et al. Differential expression of microRNAs in omental adipose tissue from gestational diabetes mellitus subjects reveals miR-222 as a regulator of ER expression in estrogen-induced insulin resistance. Endocrinology 155, 1982-1990 (2014).
    • (2014) Endocrinology , vol.155 , pp. 1982-1990
    • Shi, Z.1
  • 61
    • 70350188297 scopus 로고    scopus 로고
    • Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome
    • Maury, E. & Brichard, S. M. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol. Cell. Endocrinol. 314, 1-16 (2010).
    • (2010) Mol. Cell. Endocrinol. , vol.314 , pp. 1-16
    • Maury, E.1    Brichard, S.M.2
  • 63
    • 84899500112 scopus 로고    scopus 로고
    • MicroRNAs as a new mechanism regulating adipose tissue inflammation in obesity and as a novel therapeutic strategy in the metabolic syndrome
    • Ge, Q., Brichard, S., Yi, X. & Li, Q. microRNAs as a new mechanism regulating adipose tissue inflammation in obesity and as a novel therapeutic strategy in the metabolic syndrome. J. Immunol. Res. 2014, 987285 (2014).
    • (2014) J. Immunol. Res. , vol.2014 , pp. 987285
    • Ge, Q.1    Brichard, S.2    Yi, X.3    Li, Q.4
  • 64
    • 79960175448 scopus 로고    scopus 로고
    • MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis
    • Hulsmans, M., De Keyzer, D. & Holvoet, P. MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis. FASEB J. 25, 2515-2527 (2011).
    • (2011) FASEB J. , vol.25 , pp. 2515-2527
    • Hulsmans, M.1    De Keyzer, D.2    Holvoet, P.3
  • 65
    • 70350436694 scopus 로고    scopus 로고
    • MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1
    • Strum, J. C. et al. MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol. Endocrinol. 23, 1876-1884 (2009).
    • (2009) Mol. Endocrinol. , vol.23 , pp. 1876-1884
    • Strum, J.C.1
  • 66
    • 84862150859 scopus 로고    scopus 로고
    • A novel regulator of macrophage activation: MiR-223 in obesity-associated adipose tissue inflammation
    • Zhuang, G. et al. A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation 125, 2892-2903 (2012).
    • (2012) Circulation , vol.125 , pp. 2892-2903
    • Zhuang, G.1
  • 67
    • 84900337523 scopus 로고    scopus 로고
    • IL-6 and TNF induced obesity-related inflammatory response through transcriptional regulation of miR-146b
    • Shi, C. et al. IL-6 and TNF induced obesity-related inflammatory response through transcriptional regulation of miR-146b. J. Interferon Cytokine Res. 34, 342-348 (2014).
    • (2014) J. Interferon Cytokine Res. , vol.34 , pp. 342-348
    • Shi, C.1
  • 68
    • 84893929382 scopus 로고    scopus 로고
    • MiR-335, an adipogenesis-related microRNA, is involved in adipose tissue inflammation
    • Zhu, L. et al. MiR-335, an adipogenesis-related microRNA, is involved in adipose tissue inflammation. Cell Biochem. Biophys. 68, 283-290 (2014).
    • (2014) Cell Biochem. Biophys. , vol.68 , pp. 283-290
    • Zhu, L.1
  • 69
    • 84887903155 scopus 로고    scopus 로고
    • TNF-induced miR-130 resulted in adipocyte dysfunction during obesity-related inflammation
    • Kim, C. et al. TNF-induced miR-130 resulted in adipocyte dysfunction during obesity-related inflammation. FEBS Lett. 587, 3853-3858 (2013).
    • (2013) FEBS Lett. , vol.587 , pp. 3853-3858
    • Kim, C.1
  • 70
    • 84867783362 scopus 로고    scopus 로고
    • MicroRNAs regulated by adiponectin as novel targets for controlling adipose tissue inflammation
    • Ge, Q., Gerard, J., Noel, L., Scroyen, I. & Brichard, S. M. MicroRNAs regulated by adiponectin as novel targets for controlling adipose tissue inflammation. Endocrinology 153, 5285-5296 (2012).
    • (2012) Endocrinology , vol.153 , pp. 5285-5296
    • Ge, Q.1    Gerard, J.2    Noel, L.3    Scroyen, I.4    Brichard, S.M.5
  • 71
    • 84886951145 scopus 로고    scopus 로고
    • Autocrine and paracrine modulation of microRNA-155 expression by globular adiponectin in RAW 264.7 macrophages: Involvement of MAPK/NF-B pathway
    • Subedi, A. & Park, P. H. Autocrine and paracrine modulation of microRNA-155 expression by globular adiponectin in RAW 264.7 macrophages: involvement of MAPK/NF-B pathway. Cytokine 64, 638-641 (2013).
    • (2013) Cytokine , vol.64 , pp. 638-641
    • Subedi, A.1    Park, P.H.2
  • 72
    • 77958597552 scopus 로고    scopus 로고
    • Expression of adipose microRNAs is sensitive to dietary conjugated linoleic acid treatment in mice
    • Parra, P., Serra, F. & Palou, A. Expression of adipose microRNAs is sensitive to dietary conjugated linoleic acid treatment in mice. PLoS ONE 5, e13005 (2010).
    • (2010) PLoS ONE , vol.5 , pp. e13005
    • Parra, P.1    Serra, F.2    Palou, A.3
  • 74
    • 57449119515 scopus 로고    scopus 로고
    • Human multipotent stromal cells from bone marrow and microRNA: Regulation of differentiation and leukemia inhibitory factor expression
    • Oskowitz, A. Z. et al. Human multipotent stromal cells from bone marrow and microRNA: regulation of differentiation and leukemia inhibitory factor expression. Proc. Natl Acad. Sci. USA 105, 18372-18377 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 18372-18377
    • Oskowitz, A.Z.1
  • 75
    • 77954102558 scopus 로고    scopus 로고
    • An essential role for Dicer in adipocyte differentiation
    • Mudhasani, R., Imbalzano, A. N. & Jones, S. N. An essential role for Dicer in adipocyte differentiation. J. Cell. Biochem. 110, 812-816 (2010).
    • (2010) J. Cell. Biochem. , vol.110 , pp. 812-816
    • Mudhasani, R.1    Imbalzano, A.N.2    Jones, S.N.3
  • 76
    • 79958121735 scopus 로고    scopus 로고
    • MicroRNAs in the regulation of adipogenesis and obesity
    • McGregor, R. A. & Choi, M. S. microRNAs in the regulation of adipogenesis and obesity. Curr. Mol. Med. 11, 304-316 (2011).
    • (2011) Curr. Mol. Med. , vol.11 , pp. 304-316
    • McGregor, R.A.1    Choi, M.S.2
  • 77
    • 84880656840 scopus 로고    scopus 로고
    • The physiological and pathophysiological roles of adipocyte miRNAs
    • Ling, H. et al. The physiological and pathophysiological roles of adipocyte miRNAs. Biochem. Cell Biol. 91, 195-202 (2013).
    • (2013) Biochem. Cell Biol. , vol.91 , pp. 195-202
    • Ling, H.1
  • 78
    • 84901852980 scopus 로고    scopus 로고
    • MicroRNAs: Emerging roles in adipogenesis and obesity
    • Peng, Y. et al. MicroRNAs: Emerging roles in adipogenesis and obesity. Cell. Signal. 26, 1888-1896 (2014).
    • (2014) Cell. Signal. , vol.26 , pp. 1888-1896
    • Peng, Y.1
  • 79
    • 79954532462 scopus 로고    scopus 로고
    • MicroRNAs in adipogenesis and as therapeutic targets for obesity
    • Alexander, R., Lodish, H. & Sun, L. MicroRNAs in adipogenesis and as therapeutic targets for obesity. Expert Opin. Ther. Targets 15, 623-636 (2011).
    • (2011) Expert Opin. Ther. Targets , vol.15 , pp. 623-636
    • Alexander, R.1    Lodish, H.2    Sun, L.3
  • 80
    • 84975729774 scopus 로고    scopus 로고
    • Regulation of adipocyte differentiation via microRNAs
    • Son, Y. H., Ka, S., Kim, A. Y. & Kim, J. B. Regulation of adipocyte differentiation via microRNAs. Endocrinol. Metab. (Seoul) 29, 122-135 (2014).
    • (2014) Endocrinol. Metab. (Seoul) , vol.29 , pp. 122-135
    • Son, Y.H.1    Ka, S.2    Kim, A.Y.3    Kim, J.B.4
  • 81
    • 34247565615 scopus 로고    scopus 로고
    • The tumor suppressor microRNA let-7 represses the HMGA2 oncogene
    • Lee, Y. S. & Dutta, A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. 21, 1025-1030 (2007).
    • (2007) Genes Dev. , vol.21 , pp. 1025-1030
    • Lee, Y.S.1    Dutta, A.2
  • 83
    • 73349117464 scopus 로고    scopus 로고
    • MiR-21 regulates adipogenic differentiation through the modulation of TGF signaling in mesenchymal stem cells derived from human adipose tissue
    • Kim, Y. J., Hwang, S. J., Bae, Y. C. & Jung, J. S. MiR-21 regulates adipogenic differentiation through the modulation of TGF signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells 27, 3093-3102 (2009).
    • (2009) Stem Cells , vol.27 , pp. 3093-3102
    • Kim, Y.J.1    Hwang, S.J.2    Bae, Y.C.3    Jung, J.S.4
  • 84
    • 84864281323 scopus 로고    scopus 로고
    • Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression
    • Huang, S. et al. Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression. Stem Cells Dev. 21, 2531-2540 (2012).
    • (2012) Stem Cells Dev. , vol.21 , pp. 2531-2540
    • Huang, S.1
  • 85
    • 70350125874 scopus 로고    scopus 로고
    • MicroRNA miR-27b impairs human adipocyte differentiation and targets PPAR
    • Karbiener, M. et al. microRNA miR-27b impairs human adipocyte differentiation and targets PPAR. Biochem. Biophys. Res. Commun. 390, 247-251 (2009).
    • (2009) Biochem. Biophys. Res. Commun. , vol.390 , pp. 247-251
    • Karbiener, M.1
  • 86
    • 63049108381 scopus 로고    scopus 로고
    • A role of miR-27 in the regulation of adipogenesis
    • Lin, Q., Gao, Z., Alarcon, R. M., Ye, J. & Yun, Z. A role of miR-27 in the regulation of adipogenesis. FEBS J. 276, 2348-2358 (2009).
    • (2009) FEBS J. , vol.276 , pp. 2348-2358
    • Lin, Q.1    Gao, Z.2    Alarcon, R.M.3    Ye, J.4    Yun, Z.5
  • 87
    • 60549103514 scopus 로고    scopus 로고
    • Characterization of function and regulation of miR-24-1 and miR-31
    • Sun, F. et al. Characterization of function and regulation of miR-24-1 and miR-31. Biochem. Biophys. Res. Commun. 380, 660-665 (2009).
    • (2009) Biochem. Biophys. Res. Commun. , vol.380 , pp. 660-665
    • Sun, F.1
  • 88
    • 69249129109 scopus 로고    scopus 로고
    • Expression of miR-31, miR-125b-5p, and miR-326 in the adipogenic differentiation process of adipose-derived stem cells
    • Tang, Y. F. et al. Expression of miR-31, miR-125b-5p, and miR-326 in the adipogenic differentiation process of adipose-derived stem cells. OMICS 13, 331-336 (2009).
    • (2009) OMICS , vol.13 , pp. 331-336
    • Tang, Y.F.1
  • 89
    • 79251544878 scopus 로고    scopus 로고
    • MiR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor expression
    • Lee, E. K. et al. miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor expression. Mol. Cell Biol. 31, 626-638 (2011).
    • (2011) Mol. Cell Biol. , vol.31 , pp. 626-638
    • Lee, E.K.1
  • 90
    • 78951474461 scopus 로고    scopus 로고
    • MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1
    • Yang, Z. et al. MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1. Stem Cells Dev. 20, 259-267 (2011).
    • (2011) Stem Cells Dev. , vol.20 , pp. 259-267
    • Yang, Z.1
  • 91
    • 84869826672 scopus 로고    scopus 로고
    • Up-regulated miR-145 expression inhibits porcine preadipocytes differentiation by targeting IRS1
    • Guo, Y., Chen, Y., Zhang, Y., Chen, L. & Mo, D. Up-regulated miR-145 expression inhibits porcine preadipocytes differentiation by targeting IRS1. Int. J. Biol. Sci. 8, 1408-1417 (2012).
    • (2012) Int. J. Biol. Sci. , vol.8 , pp. 1408-1417
    • Guo, Y.1    Chen, Y.2    Zhang, Y.3    Chen, L.4    Mo, D.5
  • 92
    • 80054918892 scopus 로고    scopus 로고
    • TNF-induced up-regulation of miR-155 inhibits adipogenesis by down-regulating early adipogenic transcription factors
    • Liu, S., Yang, Y. & Wu, J. TNF-induced up-regulation of miR-155 inhibits adipogenesis by down-regulating early adipogenic transcription factors. Biochem. Biophys. Res. Commun. 414, 618-624 (2011).
    • (2011) Biochem. Biophys. Res. Commun. , vol.414 , pp. 618-624
    • Liu, S.1    Yang, Y.2    Wu, J.3
  • 93
    • 84879042710 scopus 로고    scopus 로고
    • MiR-224 impairs adipocyte early differentiation and regulates fatty acid metabolism
    • Peng, Y. et al. MiR-224 impairs adipocyte early differentiation and regulates fatty acid metabolism. Int. J. Biochem. Cell Biol. 45, 1585-1593 (2013).
    • (2013) Int. J. Biochem. Cell Biol. , vol.45 , pp. 1585-1593
    • Peng, Y.1
  • 94
    • 79958741808 scopus 로고    scopus 로고
    • Adipogenic differentiation of human mesenchymal stromal cells is down-regulated by microRNA-369-5p and up-regulated by microRNA-371
    • Bork, S. et al. Adipogenic differentiation of human mesenchymal stromal cells is down-regulated by microRNA-369-5p and up-regulated by microRNA-371. J. Cell Physiol. 226, 2226-2234 (2011).
    • (2011) J. Cell Physiol. , vol.226 , pp. 2226-2234
    • Bork, S.1
  • 95
    • 77957364237 scopus 로고    scopus 로고
    • Regulation of adipocyte differentiation by activation of serotonin (5-HT) receptors 5-HT2AR and 5-HT2CR and involvement of microRNA-448-mediated repression of KLF5
    • Kinoshita, M. et al. Regulation of adipocyte differentiation by activation of serotonin (5-HT) receptors 5-HT2AR and 5-HT2CR and involvement of microRNA-448-mediated repression of KLF5. Mol. Endocrinol. 24, 1978-1987 (2010).
    • (2010) Mol. Endocrinol. , vol.24 , pp. 1978-1987
    • Kinoshita, M.1
  • 96
    • 42949093218 scopus 로고    scopus 로고
    • MiR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130
    • Wang, Q. et al. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc. Natl Acad. Sci. USA 105, 2889-2894 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 2889-2894
    • Wang, Q.1
  • 97
    • 10344243662 scopus 로고    scopus 로고
    • MicroRNA-143 regulates adipocyte differentiation
    • Esau, C. et al. MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem. 279, 52361-52365 (2004).
    • (2004) J. Biol. Chem. , vol.279 , pp. 52361-52365
    • Esau, C.1
  • 98
    • 84893001928 scopus 로고    scopus 로고
    • MicroRNA-143 regulates adipogenesis by modulating the MAP2K5-ERK5 signaling
    • Chen, L. et al. MicroRNA-143 regulates adipogenesis by modulating the MAP2K5-ERK5 signaling. Sci. Rep. 4, 3819 (2014).
    • (2014) Sci. Rep. , vol.4 , pp. 3819
    • Chen, L.1
  • 99
    • 85046981444 scopus 로고    scopus 로고
    • MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2
    • Karbiener, M. et al. MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2. RNA Biol. 8, 850-860 (2011).
    • (2011) RNA Biol. , vol.8 , pp. 850-860
    • Karbiener, M.1
  • 100
    • 79960565215 scopus 로고    scopus 로고
    • Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis
    • Zaragosi, L. E. et al. Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biol. 12, R64 (2011).
    • (2011) Genome Biol. , vol.12 , pp. R64
    • Zaragosi, L.E.1
  • 101
    • 76349089521 scopus 로고    scopus 로고
    • MiR-27a is a negative regulator of adipocyte differentiation via suppressing PPAR expression
    • Kim, S. Y. et al. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPAR expression. Biochem. Biophys. Res. Commun. 392, 323-328 (2010).
    • (2010) Biochem. Biophys. Res. Commun. , vol.392 , pp. 323-328
    • Kim, S.Y.1
  • 102
    • 80655125005 scopus 로고    scopus 로고
    • MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix
    • Zhang, J. F. et al. MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix. Mol. Biol. Cell 22, 3955-3961 (2011).
    • (2011) Mol. Biol. Cell , vol.22 , pp. 3955-3961
    • Zhang, J.F.1
  • 103
    • 84859394657 scopus 로고    scopus 로고
    • Adipocyte differentiation of human bone marrow-derived stromal cells is modulated by microRNA-155, microRNA-221, and microRNA-222
    • Skarn, M. et al. Adipocyte differentiation of human bone marrow-derived stromal cells is modulated by microRNA-155, microRNA-221, and microRNA-222. Stem Cells Dev. 21, 873-883 (2012).
    • (2012) Stem Cells Dev. , vol.21 , pp. 873-883
    • Skarn, M.1
  • 104
  • 105
    • 84875819876 scopus 로고    scopus 로고
    • In vitro brown and brite/beige adipogenesis: Human cellular models and molecular aspects
    • Beranger, G. E. et al. In vitro brown and "brite"/"beige" adipogenesis: human cellular models and molecular aspects. Biochim. Biophys. Acta 1831, 905-914 (2013).
    • (2013) Biochim. Biophys. Acta , vol.1831 , pp. 905-914
    • Beranger, G.E.1
  • 106
    • 84883149316 scopus 로고    scopus 로고
    • MicroRNA networks regulate development of brown adipocytes
    • Trajkovski, M. & Lodish, H. MicroRNA networks regulate development of brown adipocytes. Trends Endocrinol. Metab. 24, 442-450 (2013).
    • (2013) Trends Endocrinol. Metab. , vol.24 , pp. 442-450
    • Trajkovski, M.1    Lodish, H.2
  • 107
    • 84901423103 scopus 로고    scopus 로고
    • MicroRNA-26 family is required for human adipogenesis and drives characteristics of brown adipocytes
    • Karbiener, M. et al. MicroRNA-26 family is required for human adipogenesis and drives characteristics of brown adipocytes. Stem Cells 32, 1578-1590 (2014).
    • (2014) Stem Cells , vol.32 , pp. 1578-1590
    • Karbiener, M.1
  • 108
    • 84860009214 scopus 로고    scopus 로고
    • Essential role for miR-196a in brown adipogenesis of white fat progenitor cells
    • Mori, M., Nakagami, H., Rodriguez-Araujo, G., Nimura, K. & Kaneda, Y. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol. 10, e1001314 (2012).
    • (2012) PLoS Biol. , vol.10 , pp. e1001314
    • Mori, M.1    Nakagami, H.2    Rodriguez-Araujo, G.3    Nimura, K.4    Kaneda, Y.5
  • 109
    • 84877747920 scopus 로고    scopus 로고
    • MiR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit
    • Chen, Y. et al. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat. Commun. 4, 1769 (2013).
    • (2013) Nat. Commun. , vol.4 , pp. 1769
    • Chen, Y.1
  • 110
    • 84880812042 scopus 로고    scopus 로고
    • MiR-133a regulates adipocyte browning in vivo
    • Liu, W. et al. miR-133a regulates adipocyte browning in vivo. PLoS Genet. 9, e1003626 (2013).
    • (2013) PLoS Genet. , vol.9 , pp. e1003626
    • Liu, W.1
  • 111
    • 65449151411 scopus 로고    scopus 로고
    • The interplay between transcription factors and microRNAs in genome-scale regulatory networks
    • Martinez, N. J. & Walhout, A. J. The interplay between transcription factors and microRNAs in genome-scale regulatory networks. Bioessays 31, 435-445 (2009).
    • (2009) Bioessays , vol.31 , pp. 435-445
    • Martinez, N.J.1    Walhout, A.J.2
  • 112
    • 70249134919 scopus 로고    scopus 로고
    • Molecular networks as sensors and drivers of common human diseases
    • Schadt, E. E. Molecular networks as sensors and drivers of common human diseases. Nature 461, 218-223 (2009).
    • (2009) Nature , vol.461 , pp. 218-223
    • Schadt, E.E.1
  • 113
    • 34548427938 scopus 로고    scopus 로고
    • Moving toward a system genetics view of disease
    • Sieberts, S. K. & Schadt, E. E. Moving toward a system genetics view of disease. Mamm. Genome 18, 389-401 (2007).
    • (2007) Mamm. Genome , vol.18 , pp. 389-401
    • Sieberts, S.K.1    Schadt, E.E.2
  • 116
    • 48849117482 scopus 로고    scopus 로고
    • MicroRNA control of cell-cell signaling during development and disease
    • Hagen, J. W. & Lai, E. C. microRNA control of cell-cell signaling during development and disease. Cell Cycle 7, 2327-2332 (2008).
    • (2008) Cell Cycle , vol.7 , pp. 2327-2332
    • Hagen, J.W.1    Lai, E.C.2
  • 117
    • 79955608010 scopus 로고    scopus 로고
    • MiRNAs and regulation of cell signaling
    • Ichimura, A., Ruike, Y., Terasawa, K. & Tsujimoto, G. miRNAs and regulation of cell signaling. FEBS J. 278, 1610-1618 (2011).
    • (2011) FEBS J , vol.278 , pp. 1610-1618
    • Ichimura, A.1    Ruike, Y.2    Terasawa, K.3    Tsujimoto, G.4
  • 118
    • 77954517267 scopus 로고    scopus 로고
    • MicroRNAs and gene regulatory networks: Managing the impact of noise in biological systems
    • Herranz, H. & Cohen, S. M. MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. Genes Dev. 24, 1339-1344 (2010).
    • (2010) Genes Dev. , vol.24 , pp. 1339-1344
    • Herranz, H.1    Cohen, S.M.2
  • 119
    • 84883533072 scopus 로고    scopus 로고
    • A review of computational tools in microRNA discovery
    • Gomes, C. P. et al. A review of computational tools in microRNA discovery. Front. Genet. 4, 81 (2013).
    • (2013) Front. Genet. , vol.4 , pp. 81
    • Gomes, C.P.1
  • 120
    • 84921424760 scopus 로고    scopus 로고
    • Posttranscriptional regulatory networks: From expression profiling to integrative analysis of mRNA and microRNA data
    • Meyer, S. U. et al. Posttranscriptional regulatory networks: from expression profiling to integrative analysis of mRNA and microRNA data. Methods Mol. Biol. 1160, 165-188 (2014).
    • (2014) Methods Mol. Biol. , vol.1160 , pp. 165-188
    • Meyer, S.U.1
  • 121
    • 77950348609 scopus 로고    scopus 로고
    • Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures
    • Tsang, J. S., Ebert, M. S. & van Oudenaarden, A. Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. Mol. Cell 38, 140-153 (2010).
    • (2010) Mol. Cell , vol.38 , pp. 140-153
    • Tsang, J.S.1    Ebert, M.S.2    Van Oudenaarden, A.3
  • 122
    • 34249819336 scopus 로고    scopus 로고
    • MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals
    • Tsang, J., Zhu, J. & van Oudenaarden, A. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol. Cell 26, 753-767 (2007).
    • (2007) Mol. Cell , vol.26 , pp. 753-767
    • Tsang, J.1    Zhu, J.2    Van Oudenaarden, A.3
  • 123
    • 84886002994 scopus 로고    scopus 로고
    • MicroRNAs act complementarily to regulate disease-related mRNA modules in human diseases
    • Chavali, S. et al. MicroRNAs act complementarily to regulate disease-related mRNA modules in human diseases. RNA 19, 1552-1562 (2013).
    • (2013) RNA , vol.19 , pp. 1552-1562
    • Chavali, S.1
  • 124
    • 84897873913 scopus 로고    scopus 로고
    • Additive effects of miRNAs and transcription factors on CCL2 production in human white adipose tissue
    • Kulyté, A. et al. Additive effects of miRNAs and transcription factors on CCL2 production in human white adipose tissue. Diabetes 63, 1248-1258 (2014).
    • (2014) Diabetes , vol.63 , pp. 1248-1258
    • Kulyté, A.1
  • 126
    • 79953202200 scopus 로고    scopus 로고
    • Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma
    • Arroyo, J. D. et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl Acad. Sci. USA 108, 5003-5008 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 5003-5008
    • Arroyo, J.D.1
  • 128
    • 77956404647 scopus 로고    scopus 로고
    • Exosomes: Extracellular organelles important in intercellular communication
    • Mathivanan, S., Ji, H. & Simpson, R. J. Exosomes: extracellular organelles important in intercellular communication. J. Proteomics 73, 1907-1920 (2010).
    • (2010) J. Proteomics , vol.73 , pp. 1907-1920
    • Mathivanan, S.1    Ji, H.2    Simpson, R.J.3
  • 129
    • 84867569522 scopus 로고    scopus 로고
    • Argonaute 2 complexes selectively protect the circulating microRNAs in cell-secreted microvesicles
    • Li, L. et al. Argonaute 2 complexes selectively protect the circulating microRNAs in cell-secreted microvesicles. PLoS ONE 7, e46957 (2012).
    • (2012) PLoS ONE , vol.7 , pp. e46957
    • Li, L.1
  • 130
    • 84877298502 scopus 로고    scopus 로고
    • Characterization of human plasma-derived exosomal RNAs by deep sequencing
    • Huang, X. et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 14, 319 (2013).
    • (2013) BMC Genomics , vol.14 , pp. 319
    • Huang, X.1
  • 131
    • 84875033024 scopus 로고    scopus 로고
    • Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations
    • Williams, Z. et al. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proc. Natl Acad. Sci. USA 110, 4255-4260 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 4255-4260
    • Williams, Z.1
  • 132
    • 84876386633 scopus 로고    scopus 로고
    • Assessing sample and miRNA profile quality in serum and plasma or other biofluids
    • Blondal, T. et al. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods 59, S1-S6 (2013).
    • (2013) Methods , vol.59 , pp. S1-S6
    • Blondal, T.1
  • 133
    • 77950498821 scopus 로고    scopus 로고
    • Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer
    • Hu, Z. et al. Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J. Clin. Oncol. 28, 1721-1726 (2010).
    • (2010) J. Clin. Oncol. , vol.28 , pp. 1721-1726
    • Hu, Z.1
  • 134
    • 77955415911 scopus 로고    scopus 로고
    • Adipocyte-derived microvesicles contain RNA that is transported into macrophages and might be secreted into blood circulation
    • Ogawa, R. et al. Adipocyte-derived microvesicles contain RNA that is transported into macrophages and might be secreted into blood circulation. Biochem. Biophys. Res. Commun. 398, 723-729 (2010).
    • (2010) Biochem. Biophys. Res. Commun. , vol.398 , pp. 723-729
    • Ogawa, R.1
  • 135
    • 79954424525 scopus 로고    scopus 로고
    • Microvesicles released from rat adipocytes and harboring glycosylphosphatidylinositol-anchored proteins transfer RNA stimulating lipid synthesis
    • Muller, G., Schneider, M., Biemer-Daub, G. & Wied, S. Microvesicles released from rat adipocytes and harboring glycosylphosphatidylinositol-anchored proteins transfer RNA stimulating lipid synthesis. Cell Signal 23, 1207-1223 (2011).
    • (2011) Cell Signal , vol.23 , pp. 1207-1223
    • Muller, G.1    Schneider, M.2    Biemer-Daub, G.3    Wied, S.4
  • 136
    • 84890129748 scopus 로고    scopus 로고
    • Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity
    • Wang, Y. C. et al. Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity. Diabetologia 56, 2275-2285 (2013).
    • (2013) Diabetologia , vol.56 , pp. 2275-2285
    • Wang, Y.C.1
  • 137
    • 70350542786 scopus 로고    scopus 로고
    • Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance
    • Deng, Z. B. et al. Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes 58, 2498-2505 (2009).
    • (2009) Diabetes , vol.58 , pp. 2498-2505
    • Deng, Z.B.1
  • 138
    • 84912102867 scopus 로고    scopus 로고
    • Adipocyte exosomes induce transforming growth factor pathway dysregulation in hepatocytes: A novel paradigm for obesity-related liver disease
    • Koeck, E. S. et al. Adipocyte exosomes induce transforming growth factor pathway dysregulation in hepatocytes: a novel paradigm for obesity-related liver disease. J. Surg. Res. 192, 268-275 (2014).
    • (2014) J. Surg. Res. , vol.192 , pp. 268-275
    • Koeck, E.S.1
  • 139
    • 84882693149 scopus 로고    scopus 로고
    • Circulating microRNAs as novel biomarkers for diabetes mellitus
    • Guay, C. & Regazzi, R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat. Rev. Endocrinol. 9, 513-521 (2013).
    • (2013) Nat. Rev. Endocrinol. , vol.9 , pp. 513-521
    • Guay, C.1    Regazzi, R.2
  • 140
    • 84886091915 scopus 로고    scopus 로고
    • Are extracellular microRNAs involved in type 2 diabetes and related pathologies Clin
    • Rome, S. Are extracellular microRNAs involved in type 2 diabetes and related pathologies Clin. Biochem. 46, 937-945 (2013).
    • (2013) Biochem , vol.46 , pp. 937-945
    • Rome, S.1
  • 141
    • 84870746025 scopus 로고    scopus 로고
    • Circulating miRNA profiles in patients with metabolic syndrome
    • Karolina, D. S. et al. Circulating miRNA profiles in patients with metabolic syndrome. J. Clin. Endocrinol. Metab. 97, E2271-E2276 (2012).
    • (2012) J. Clin. Endocrinol. Metab. , vol.97 , pp. E2271-E2276
    • Karolina, D.S.1
  • 142
    • 84899081933 scopus 로고    scopus 로고
    • Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization
    • Ortega, F. J. et al. Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care 37, 1375-1383 (2014).
    • (2014) Diabetes Care , vol.37 , pp. 1375-1383
    • Ortega, F.J.1
  • 143
    • 77957259803 scopus 로고    scopus 로고
    • Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes
    • Zampetaki, A. et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ. Res. 107, 810-817 (2010).
    • (2010) Circ. Res. , vol.107 , pp. 810-817
    • Zampetaki, A.1
  • 144
    • 84876940768 scopus 로고    scopus 로고
    • Targeting the circulating microRNA signature of obesity
    • Ortega, F. J. et al. Targeting the circulating microRNA signature of obesity. Clin. Chem. 59, 781-792 (2013).
    • (2013) Clin. Chem. , vol.59 , pp. 781-792
    • Ortega, F.J.1
  • 145
    • 84884950704 scopus 로고    scopus 로고
    • Circulating microRNAs have a sex-specific association with metabolic syndrome
    • Wang, Y. T., Tsai, P. C., Liao, Y. C., Hsu, C. Y. & Juo, S. H. Circulating microRNAs have a sex-specific association with metabolic syndrome. J. Biomed. Sci. 20, 72 (2013).
    • (2013) J. Biomed. Sci. , vol.20 , pp. 72
    • Wang, Y.T.1    Tsai, P.C.2    Liao, Y.C.3    Hsu, C.Y.4    Juo, S.H.5
  • 146
    • 84885235330 scopus 로고    scopus 로고
    • Changes in circulating microRNAs are associated with childhood obesity
    • Prats-Puig, A. et al. Changes in circulating microRNAs are associated with childhood obesity. J. Clin. Endocrinol. Metab. 98, E1655-E1660 (2013).
    • (2013) J. Clin. Endocrinol. Metab. , vol.98 , pp. E1655-E1660
    • Prats-Puig, A.1
  • 147
    • 28444469246 scopus 로고    scopus 로고
    • Silencing of microRNAs in vivo with 'antagomirs'
    • Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685-689 (2005).
    • (2005) Nature , vol.438 , pp. 685-689
    • Krutzfeldt, J.1
  • 148
    • 33645075443 scopus 로고    scopus 로고
    • MiR-122 regulation of lipid metabolism revealed by in vivo antisense targeting
    • Esau, C. et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3, 87-98 (2006).
    • (2006) Cell Metab. , vol.3 , pp. 87-98
    • Esau, C.1
  • 149
    • 42249093319 scopus 로고    scopus 로고
    • LNA-mediated microRNA silencing in non-human primates
    • Elmen, J. et al. LNA-mediated microRNA silencing in non-human primates. Nature 452, 896-899 (2008).
    • (2008) Nature , vol.452 , pp. 896-899
    • Elmen, J.1
  • 150
    • 77956476392 scopus 로고    scopus 로고
    • MicroRNAs: Synthesis mechanism, function, and recent clinical trials
    • Wahid, F., Shehzad, A., Khan, T. & Kim, Y. Y. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim. Biophys. Acta 1803, 1231-1243 (2010).
    • (2010) Biochim. Biophys. Acta , vol.1803 , pp. 1231-1243
    • Wahid, F.1    Shehzad, A.2    Khan, T.3    Kim, Y.Y.4
  • 151
    • 37249013214 scopus 로고    scopus 로고
    • US National Institutes of Health [online]
    • US National Institutes of Health. ClinicalTrials.gov [online], https://www.clinicaltrials.gov/ct2/show/NCT01829971term=mirna+therapeutics&rank=115 (2014).
    • (2014) ClinicalTrials.gov
  • 152
  • 153
    • 75849165542 scopus 로고    scopus 로고
    • Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases
    • Cao, Y. Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat. Rev. Drug Discov. 9, 107-115 (2010).
    • (2010) Nat. Rev. Drug Discov. , vol.9 , pp. 107-115
    • Cao, Y.1
  • 154
    • 85027933914 scopus 로고    scopus 로고
    • RNAi-based therapeutic strategies for metabolic disease
    • Czech, M. P., Aouadi, M. & Tesz, G. J. RNAi-based therapeutic strategies for metabolic disease. Nat. Rev. Endocrinol. 7, 473-484 (2011).
    • (2011) Nat. Rev. Endocrinol. , vol.7 , pp. 473-484
    • Czech, M.P.1    Aouadi, M.2    Tesz, G.J.3
  • 155
    • 84905503012 scopus 로고    scopus 로고
    • Therapeutic targeting of microRNAs: Current status and future challenges
    • Li, Z. & Rana, T. M. Therapeutic targeting of microRNAs: current status and future challenges. Nat. Rev. Drug Discov. 13, 622-638 (2014).
    • (2014) Nat. Rev. Drug Discov. , vol.13 , pp. 622-638
    • Li, Z.1    Rana, T.M.2
  • 156
    • 84878401701 scopus 로고    scopus 로고
    • Modulation of hsa-miR-26b levels following adipokine stimulation
    • Xu, G. et al. Modulation of hsa-miR-26b levels following adipokine stimulation. Mol. Biol. Rep. 40, 3577-3582 (2013).
    • (2013) Mol. Biol. Rep. , vol.40 , pp. 3577-3582
    • Xu, G.1
  • 157
    • 67649349865 scopus 로고    scopus 로고
    • MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages
    • Chen, T. et al. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc. Res. 83, 131-139 (2009).
    • (2009) Cardiovasc. Res. , vol.83 , pp. 131-139
    • Chen, T.1
  • 158
    • 77954342986 scopus 로고    scopus 로고
    • Differential expression of miRNAs in the visceral adipose tissue of patients with non-alcoholic fatty liver disease
    • Estep, M. et al. Differential expression of miRNAs in the visceral adipose tissue of patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 32, 487-497 (2010).
    • (2010) Aliment. Pharmacol. Ther. , vol.32 , pp. 487-497
    • Estep, M.1
  • 159
    • 84892775303 scopus 로고    scopus 로고
    • FFAs and adipokine-mediated regulation of hsa-miR-143 expression in human adipocytes
    • Zhu, L. et al. FFAs and adipokine-mediated regulation of hsa-miR-143 expression in human adipocytes. Mol. Biol. Rep. 40, 5669-5675 (2013).
    • (2013) Mol. Biol. Rep. , vol.40 , pp. 5669-5675
    • Zhu, L.1
  • 160
    • 84857681898 scopus 로고    scopus 로고
    • Decrease of miR-146b-5p in monocytes during obesity is associated with loss of the anti-inflammatory but not insulin signaling action of adiponectin
    • Hulsmans, M., Van Dooren, E., Mathieu, C. & Holvoet, P. Decrease of miR-146b-5p in monocytes during obesity is associated with loss of the anti-inflammatory but not insulin signaling action of adiponectin. PLoS ONE 7, e32794 (2012).
    • (2012) PLoS ONE , vol.7 , pp. e32794
    • Hulsmans, M.1    Van Dooren, E.2    Mathieu, C.3    Holvoet, P.4
  • 161
    • 78651517001 scopus 로고    scopus 로고
    • MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages
    • Huang, R. S., Hu, G. Q., Lin, B., Lin, Z. Y. & Sun, C. C. MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages. J. Investig. Med. 58, 961-967 (2010).
    • (2010) J. Investig. Med. , vol.58 , pp. 961-967
    • Huang, R.S.1    Hu, G.Q.2    Lin, B.3    Lin, Z.Y.4    Sun, C.C.5
  • 162
    • 52449100144 scopus 로고    scopus 로고
    • Role of microRNAs in vascular diseases, inflammation, and angiogenesis
    • Urbich, C., Kuehbacher, A. & Dimmeler, S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc. Res. 79, 581-588 (2008).
    • (2008) Cardiovasc. Res. , vol.79 , pp. 581-588
    • Urbich, C.1    Kuehbacher, A.2    Dimmeler, S.3
  • 163
    • 84859892863 scopus 로고    scopus 로고
    • MicroRNA profiling: Approaches and considerations
    • Pritchard, C. C., Cheng, H. H. & Tewari, M. MicroRNA profiling: approaches and considerations. Nat. Rev. Genet. 13, 358-369 (2012).
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 358-369
    • Pritchard, C.C.1    Cheng, H.H.2    Tewari, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.