메뉴 건너뛰기




Volumn 5, Issue , 2014, Pages

MicroRNA-378 controls classical brown fat expansion to counteract obesity

Author keywords

[No Author keywords available]

Indexed keywords

ISOBUTYLMETHYLXANTHINE; MICRORNA; MICRORNA 378; PHOSPHODIESTERASE; PHOSPHODIESTERASE PDE1B; UNCLASSIFIED DRUG; CYCLIC NUCLEOTIDE PHOSPHODIESTERASE 1; MIRN378 MICRORNA, MOUSE; PDE1B PROTEIN, MOUSE;

EID: 84907377132     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms5725     Document Type: Article
Times cited : (111)

References (70)
  • 1
    • 0347989317 scopus 로고    scopus 로고
    • Brown adipose tissue: Function and physiological significance
    • Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277-359 (2004).
    • (2004) Physiol. Rev. , vol.84 , pp. 277-359
    • Cannon, B.1    Nedergaard, J.2
  • 2
    • 0027051199 scopus 로고
    • Occurrence of brown adipocytes in rat white adipose tissue: Molecular and morphological characterization
    • Cousin, B. et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J. Cell. Sci. 103(Pt 4): 931-942 (1992).
    • (1992) J. Cell. Sci. , vol.103 , Issue.PART. 4 , pp. 931-942
    • Cousin, B.1
  • 3
    • 0032528169 scopus 로고    scopus 로고
    • Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity
    • Guerra, C., Koza, R. A., Yamashita, H., Walsh, K. & Kozak, L. P. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J. Clin. Invest. 102, 412-420 (1998).
    • (1998) J. Clin. Invest. , vol.102 , pp. 412-420
    • Guerra, C.1    Koza, R.A.2    Yamashita, H.3    Walsh, K.4    Kozak, L.P.5
  • 4
    • 77950226740 scopus 로고    scopus 로고
    • Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent UCP1-containing adipocytes molecularly distinct from classic brown adipocytes
    • Petrovic, N. et al. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J. Biol. Chem. 285, 7153-7164 (2010).
    • (2010) J. Biol. Chem. , vol.285 , pp. 7153-7164
    • Petrovic, N.1
  • 5
    • 84858039282 scopus 로고    scopus 로고
    • PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein
    • Ohno, H., Shinoda, K., Spiegelman, B. M. & Kajimura, S. PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 15, 395-404 (2012).
    • (2012) Cell Metab. , vol.15 , pp. 395-404
    • Ohno, H.1    Shinoda, K.2    Spiegelman, B.M.3    Kajimura, S.4
  • 6
    • 84864287504 scopus 로고    scopus 로고
    • Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human
    • Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366-376 (2012).
    • (2012) Cell , vol.150 , pp. 366-376
    • Wu, J.1
  • 7
    • 84877331455 scopus 로고    scopus 로고
    • Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat
    • Cypess, A. M. et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat. Med. 19, 635-639 (2013).
    • (2013) Nat. Med. , vol.19 , pp. 635-639
    • Cypess, A.M.1
  • 8
    • 64349105205 scopus 로고    scopus 로고
    • Identification and importance of brown adipose tissue in adult humans
    • Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. New Engl. J. Med. 360, 1509-1517 (2009).
    • (2009) New Engl. J. Med. , vol.360 , pp. 1509-1517
    • Cypess, A.M.1
  • 10
    • 64349095231 scopus 로고    scopus 로고
    • Cold-activated brown adipose tissue in healthy men
    • van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. New Engl. J. Med. 360, 1500-1508 (2009).
    • (2009) New Engl. J. Med. , vol.360 , pp. 1500-1508
    • Van Marken Lichtenbelt, W.D.1
  • 11
    • 64349123664 scopus 로고    scopus 로고
    • Functional brown adipose tissue in healthy adults
    • Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. New Engl. J. Med. 360, 1518-1525 (2009).
    • (2009) New Engl. J. Med. , vol.360 , pp. 1518-1525
    • Virtanen, K.A.1
  • 12
    • 70349334680 scopus 로고    scopus 로고
    • The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue
    • Zingaretti, M. C. et al. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J. 23, 3113-3120 (2009).
    • (2009) FASEB J. , vol.23 , pp. 3113-3120
    • Zingaretti, M.C.1
  • 13
    • 67650242165 scopus 로고    scopus 로고
    • High incidence of metabolically active brown adipose tissue in healthy adult humans: Effects of cold exposure and adiposity
    • Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526-1531 (2009).
    • (2009) Diabetes , vol.58 , pp. 1526-1531
    • Saito, M.1
  • 14
    • 84877263632 scopus 로고    scopus 로고
    • A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans
    • Jespersen, N. Z. et al. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab. 17, 798-805 (2013).
    • (2013) Cell Metab. , vol.17 , pp. 798-805
    • Jespersen, N.Z.1
  • 15
    • 84877340732 scopus 로고    scopus 로고
    • Evidence for two types of brown adipose tissue in humans
    • Lidell, M. E. et al. Evidence for two types of brown adipose tissue in humans. Nat. Med. 19, 631-634 (2013).
    • (2013) Nat. Med. , vol.19 , pp. 631-634
    • Lidell, M.E.1
  • 16
    • 84869233588 scopus 로고    scopus 로고
    • Human BAT possesses molecular signatures that resemble beige/brite cells
    • Sharp, L. Z. et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS ONE 7, e49452 (2012).
    • (2012) PLoS ONE , vol.7
    • Sharp, L.Z.1
  • 17
    • 84873518501 scopus 로고    scopus 로고
    • Adaptive thermogenesis in adipocytes: Is beige the new brown
    • Wu, J., Cohen, P. & Spiegelman, B. M. Adaptive thermogenesis in adipocytes: is beige the new brownGenes Dev. 27, 234-250 (2013).
    • (2013) Genes Dev. , vol.27 , pp. 234-250
    • Wu, J.1    Cohen, P.2    Spiegelman, B.M.3
  • 18
    • 84887431711 scopus 로고    scopus 로고
    • Brown and beige fat: Development, function and therapeutic potential
    • Harms, M. & Seale, P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19, 1252-1263 (2013).
    • (2013) Nat. Med. , vol.19 , pp. 1252-1263
    • Harms, M.1    Seale, P.2
  • 19
    • 84894132767 scopus 로고    scopus 로고
    • A new era in brown adipose tissue biology: Molecular control of brown fat development and energy homeostasis
    • Kajimura, S. & Saito, M. A new era in brown adipose tissue biology: molecular control of brown fat development and energy homeostasis. Annu. Rev. Physiol. 76, 225-249 (2013).
    • (2013) Annu. Rev. Physiol. , vol.76 , pp. 225-249
    • Kajimura, S.1    Saito, M.2
  • 20
    • 77950237717 scopus 로고    scopus 로고
    • The changed metabolic world with human brown adipose tissue: Therapeutic visions
    • Nedergaard, J. & Cannon, B. The changed metabolic world with human brown adipose tissue: therapeutic visions. Cell Metab. 11, 268-272 (2010).
    • (2010) Cell Metab. , vol.11 , pp. 268-272
    • Nedergaard, J.1    Cannon, B.2
  • 21
    • 33748942837 scopus 로고    scopus 로고
    • Transcriptional control of adipocyte formation
    • Farmer, S. R. Transcriptional control of adipocyte formation. Cell Metab. 4, 263-273 (2006).
    • (2006) Cell Metab. , vol.4 , pp. 263-273
    • Farmer, S.R.1
  • 22
    • 33845325476 scopus 로고    scopus 로고
    • Adipocyte differentiation from the inside out
    • Rosen, E. D. & MacDougald, O. A. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7, 885-896 (2006).
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 885-896
    • Rosen, E.D.1    MacDougald, O.A.2
  • 23
    • 80054911514 scopus 로고    scopus 로고
    • Forming functional fat: A growing understanding of adipocyte differentiation
    • Cristancho, A. G. & Lazar, M. A. Forming functional fat: a growing understanding of adipocyte differentiation. Nat. Rev. Mol. Cell Biol. 12, 722-734 (2011).
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 722-734
    • Cristancho, A.G.1    Lazar, M.A.2
  • 24
    • 50649097541 scopus 로고    scopus 로고
    • Fat and beyond: The diverse biology of PPARgamma
    • Tontonoz, P. & Spiegelman, B. M. Fat and beyond: the diverse biology of PPARgamma. Annu. Rev. Biochem. 77, 289-312 (2008).
    • (2008) Annu. Rev. Biochem. , vol.77 , pp. 289-312
    • Tontonoz, P.1    Spiegelman, B.M.2
  • 25
    • 79955664087 scopus 로고    scopus 로고
    • Mammalian cyclic nucleotide phosphodiesterases: Molecular mechanisms and physiological functions
    • Francis, S. H., Blount, M. A. & Corbin, J. D. Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol. Rev. 91, 651-690 (2011).
    • (2011) Physiol. Rev. , vol.91 , pp. 651-690
    • Francis, S.H.1    Blount, M.A.2    Corbin, J.D.3
  • 26
    • 84875900015 scopus 로고    scopus 로고
    • EBF2 determines and maintains brown adipocyte identity
    • Rajakumari, S. et al. EBF2 determines and maintains brown adipocyte identity. Cell Metab. 17, 562-574 (2013).
    • (2013) Cell Metab. , vol.17 , pp. 562-574
    • Rajakumari, S.1
  • 27
    • 69349088117 scopus 로고    scopus 로고
    • Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex
    • Kajimura, S. et al. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 460, 1154-1158 (2009).
    • (2009) Nature , vol.460 , pp. 1154-1158
    • Kajimura, S.1
  • 28
    • 50049122271 scopus 로고    scopus 로고
    • PRDM16 controls a brown fat/skeletal muscle switch
    • Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961-967 (2008).
    • (2008) Nature , vol.454 , pp. 961-967
    • Seale, P.1
  • 29
    • 50049127055 scopus 로고    scopus 로고
    • New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure
    • Tseng, Y. H. et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454, 1000-1004 (2008).
    • (2008) Nature , vol.454 , pp. 1000-1004
    • Tseng, Y.H.1
  • 30
    • 80455176995 scopus 로고    scopus 로고
    • Plac8 is an inducer of C/EBPbeta required for brown fat differentiation, thermoregulation, and control of body weight
    • Jimenez-Preitner, M. et al. Plac8 is an inducer of C/EBPbeta required for brown fat differentiation, thermoregulation, and control of body weight. Cell Metab. 14, 658-670 (2011).
    • (2011) Cell Metab. , vol.14 , pp. 658-670
    • Jimenez-Preitner, M.1
  • 31
    • 80053928150 scopus 로고    scopus 로고
    • Orexin is required for brown adipose tissue development, differentiation, and function
    • Sellayah, D., Bharaj, P. & Sikder, D. Orexin is required for brown adipose tissue development, differentiation, and function. Cell Metab. 14, 478-490 (2011).
    • (2011) Cell Metab. , vol.14 , pp. 478-490
    • Sellayah, D.1    Bharaj, P.2    Sikder, D.3
  • 32
    • 84889604511 scopus 로고    scopus 로고
    • EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex
    • Ohno, H., Shinoda, K., Ohyama, K., Sharp, L. Z. & Kajimura, S. EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature 504, 163-167 (2013).
    • (2013) Nature , vol.504 , pp. 163-167
    • Ohno, H.1    Shinoda, K.2    Ohyama, K.3    Sharp, L.Z.4    Kajimura, S.5
  • 33
    • 84875358826 scopus 로고    scopus 로고
    • Adipose subtype-selective recruitment of TLE3 or Prdm16 by PPARgamma specifies lipid storage versus thermogenic gene programs
    • Villanueva, C. J. et al. Adipose subtype-selective recruitment of TLE3 or Prdm16 by PPARgamma specifies lipid storage versus thermogenic gene programs. Cell Metab. 17, 423-435 (2013).
    • (2013) Cell Metab. , vol.17 , pp. 423-435
    • Villanueva, C.J.1
  • 34
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: Target recognition and regulatory functions
    • Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233 (2009).
    • (2009) Cell , vol.136 , pp. 215-233
    • Bartel, D.P.1
  • 35
    • 77955644289 scopus 로고    scopus 로고
    • Mammalian microRNAs predominantly act to decrease target mRNA levels
    • Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835-840 (2010).
    • (2010) Nature , vol.466 , pp. 835-840
    • Guo, H.1    Ingolia, N.T.2    Weissman, J.S.3    Bartel, D.P.4
  • 36
    • 84858379476 scopus 로고    scopus 로고
    • MicroRNAs in stress signaling and human disease
    • Mendell, J. T. & Olson, E. N. MicroRNAs in stress signaling and human disease. Cell 148, 1172-1187 (2012).
    • (2012) Cell , vol.148 , pp. 1172-1187
    • Mendell, J.T.1    Olson, E.N.2
  • 37
    • 78751660177 scopus 로고    scopus 로고
    • Pervasive roles of microRNAs in cardiovascular biology
    • Small, E. M. & Olson, E. N. Pervasive roles of microRNAs in cardiovascular biology. Nature 469, 336-342 (2011).
    • (2011) Nature , vol.469 , pp. 336-342
    • Small, E.M.1    Olson, E.N.2
  • 38
    • 84877747920 scopus 로고    scopus 로고
    • MiR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit
    • Chen, Y. et al. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat. Commun. 4, 1769 (2013).
    • (2013) Nat. Commun. , vol.4 , pp. 1769
    • Chen, Y.1
  • 39
    • 84870595878 scopus 로고    scopus 로고
    • MyomiR-133 regulates brown fat differentiation through Prdm16
    • Trajkovski, M., Ahmed, K., Esau, C. C. & Stoffel, M. MyomiR-133 regulates brown fat differentiation through Prdm16. Nat. Cell Biol. 14, 1330-1335 (2012).
    • (2012) Nat. Cell Biol. , vol.14 , pp. 1330-1335
    • Trajkovski, M.1    Ahmed, K.2    Esau, C.C.3    Stoffel, M.4
  • 40
    • 84873327762 scopus 로고    scopus 로고
    • MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16
    • Yin, H. et al. MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell Metab. 17, 210-224 (2013).
    • (2013) Cell Metab. , vol.17 , pp. 210-224
    • Yin, H.1
  • 41
    • 84880812042 scopus 로고    scopus 로고
    • MiR-133a regulates adipocyte browning in vivo
    • Liu, W. et al. miR-133a regulates adipocyte browning in vivo. PLoS Genet. 9, e1003626 (2013).
    • (2013) PLoS Genet. , vol.9
    • Liu, W.1
  • 42
    • 79960984113 scopus 로고    scopus 로고
    • Mir193b-365 is essential for brown fat differentiation
    • Sun, L. et al. Mir193b-365 is essential for brown fat differentiation. Nat. Cell Biol. 13, 958-965 (2011).
    • (2011) Nat. Cell Biol. , vol.13 , pp. 958-965
    • Sun, L.1
  • 43
    • 58149217061 scopus 로고    scopus 로고
    • Distinct expression of muscle-specific microRNAs (myomirs) in brown adipocytes
    • Walden, T. B., Timmons, J. A., Keller, P., Nedergaard, J. & Cannon, B. Distinct expression of muscle-specific microRNAs (myomirs) in brown adipocytes. J. Cell. Physiol. 218, 444-449 (2009).
    • (2009) J. Cell. Physiol. , vol.218 , pp. 444-449
    • Walden, T.B.1    Timmons, J.A.2    Keller, P.3    Nedergaard, J.4    Cannon, B.5
  • 44
    • 33646124709 scopus 로고    scopus 로고
    • Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation
    • Uldry, M. et al. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab. 3, 333-341 (2006).
    • (2006) Cell Metab. , vol.3 , pp. 333-341
    • Uldry, M.1
  • 45
    • 0026693222 scopus 로고
    • Identification of a fat cell enhancer: Analysis of requirements for adipose tissuespecific gene expression
    • Graves, R. A., Tontonoz, P., Platt, K. A., Ross, S. R. & Spiegelman, B. M. Identification of a fat cell enhancer: analysis of requirements for adipose tissuespecific gene expression. J. Cell. Biochem. 49, 219-224 (1992).
    • (1992) J. Cell. Biochem. , vol.49 , pp. 219-224
    • Graves, R.A.1    Tontonoz, P.2    Platt, K.A.3    Ross, S.R.4    Spiegelman, B.M.5
  • 46
    • 84875367849 scopus 로고    scopus 로고
    • Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat
    • Schulz, T. J. et al. Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature 495, 379-383 (2013).
    • (2013) Nature , vol.495 , pp. 379-383
    • Schulz, T.J.1
  • 47
    • 78650945931 scopus 로고    scopus 로고
    • Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice
    • Seale, P. et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J. Clin. Invest. 121, 96-105 (2011).
    • (2011) J. Clin. Invest. , vol.121 , pp. 96-105
    • Seale, P.1
  • 48
    • 34347326271 scopus 로고    scopus 로고
    • Transcriptional control of brown fat determination by PRDM16
    • Seale, P. et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 6, 38-54 (2007).
    • (2007) Cell Metab. , vol.6 , pp. 38-54
    • Seale, P.1
  • 49
    • 84887338975 scopus 로고    scopus 로고
    • Interleukin-18 activates skeletal muscle AMPK and reduces weight gain and insulin resistance in mice
    • Lindegaard, B. et al. Interleukin-18 activates skeletal muscle AMPK and reduces weight gain and insulin resistance in mice. Diabetes 62, 3064-3074 (2013).
    • (2013) Diabetes , vol.62 , pp. 3064-3074
    • Lindegaard, B.1
  • 50
    • 84892702771 scopus 로고    scopus 로고
    • Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch
    • Cohen, P. et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156, 304-316 (2014).
    • (2014) Cell , vol.156 , pp. 304-316
    • Cohen, P.1
  • 51
    • 33845399894 scopus 로고    scopus 로고
    • Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha
    • Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127, 1109-1122 (2006).
    • (2006) Cell , vol.127 , pp. 1109-1122
    • Lagouge, M.1
  • 52
    • 77449101244 scopus 로고    scopus 로고
    • A recurring problem with the analysis of energy expenditure in genetic models expressing lean and obese phenotypes
    • Butler, A. A. & Kozak, L. P. A recurring problem with the analysis of energy expenditure in genetic models expressing lean and obese phenotypes. Diabetes 59, 323-329 (2010).
    • (2010) Diabetes , vol.59 , pp. 323-329
    • Butler, A.A.1    Kozak, L.P.2
  • 53
    • 77950361100 scopus 로고    scopus 로고
    • Protein kinase G controls brown fat cell differentiation and mitochondrial biogenesis
    • Haas, B. et al. Protein kinase G controls brown fat cell differentiation and mitochondrial biogenesis. Sci. Signal. 2, ra78 (2009).
    • (2009) Sci. Signal. , vol.2 , pp. 78
    • Haas, B.1
  • 54
    • 84863091438 scopus 로고    scopus 로고
    • Genetic association of phosphodiesterase 1B (PDE1B) with carcass traits in Korean cattle
    • Shin, S., Heo, J., Yeo, J., Lee, C. & Chung, E. Genetic association of phosphodiesterase 1B (PDE1B) with carcass traits in Korean cattle. Mol. Biol. Rep. 39, 4869-4874 (2012).
    • (2012) Mol. Biol. Rep. , vol.39 , pp. 4869-4874
    • Shin, S.1    Heo, J.2    Yeo, J.3    Lee, C.4    Chung, E.5
  • 55
    • 25444486610 scopus 로고    scopus 로고
    • Identification of genetic markers for fat deposition and meat tenderness on bovine chromosome 5: Development of a low-density single nucleotide polymorphism map
    • Stone, R. T. et al. Identification of genetic markers for fat deposition and meat tenderness on bovine chromosome 5: development of a low-density single nucleotide polymorphism map. J. Anim. Sci. 83, 2280-2288 (2005).
    • (2005) J. Anim. Sci. , vol.83 , pp. 2280-2288
    • Stone, R.T.1
  • 56
    • 84859762591 scopus 로고    scopus 로고
    • A novel cardiomyocyte-enriched microRNA, miR-378, targets insulin-like growth factor 1 receptor: Implications in postnatal cardiac remodeling and cell survival
    • Knezevic, I. et al. A novel cardiomyocyte-enriched microRNA, miR-378, targets insulin-like growth factor 1 receptor: implications in postnatal cardiac remodeling and cell survival. J. Biol. Chem. 287, 12913-12926 (2012).
    • (2012) J. Biol. Chem. , vol.287 , pp. 12913-12926
    • Knezevic, I.1
  • 57
    • 84866546187 scopus 로고    scopus 로고
    • Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378
    • Carrer, M. et al. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378. Proc. Natl Acad. Sci. USA 109, 15330-15335 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 15330-15335
    • Carrer, M.1
  • 58
    • 77957656146 scopus 로고    scopus 로고
    • MiR-378 mediates metabolic shift in breast cancer cells via the PGC-1beta/ERRgamma transcriptional pathway
    • Eichner, L. J. et al. miR-378 mediates metabolic shift in breast cancer cells via the PGC-1beta/ERRgamma transcriptional pathway. Cell Metab. 12, 352-361 (2010).
    • (2010) Cell Metab. , vol.12 , pp. 352-361
    • Eichner, L.J.1
  • 59
    • 84883149316 scopus 로고    scopus 로고
    • MicroRNA networks regulate development of brown adipocytes
    • Trajkovski, M. & Lodish, H. MicroRNA networks regulate development of brown adipocytes. Trends Endocrinol. Metab. 24, 442-450 (2013).
    • (2013) Trends Endocrinol. Metab. , vol.24 , pp. 442-450
    • Trajkovski, M.1    Lodish, H.2
  • 60
    • 17944377509 scopus 로고    scopus 로고
    • FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance
    • Cederberg, A. et al. FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 106, 563-573 (2001).
    • (2001) Cell , vol.106 , pp. 563-573
    • Cederberg, A.1
  • 61
    • 77954932826 scopus 로고    scopus 로고
    • Roles for miRNA-378/378 in adipocyte gene expression and lipogenesis
    • Gerin, I. et al. Roles for miRNA-378/378 in adipocyte gene expression and lipogenesis. Am. J. Physiol. Endocrinol. Metab. 299, E198-E206 (2010).
    • (2010) Am. J. Physiol. Endocrinol. Metab. , vol.299
    • Gerin, I.1
  • 62
    • 0033621458 scopus 로고    scopus 로고
    • A dual component analysis explains the distinctive kinetics of cAMP accumulation in brown adipocytes
    • Bronnikov, G. E., Zhang, S. J., Cannon, B. & Nedergaard, J. A dual component analysis explains the distinctive kinetics of cAMP accumulation in brown adipocytes. J. Biol. Chem. 274, 37770-37780 (1999).
    • (1999) J. Biol. Chem. , vol.274 , pp. 37770-37780
    • Bronnikov, G.E.1    Zhang, S.J.2    Cannon, B.3    Nedergaard, J.4
  • 63
    • 84878294979 scopus 로고    scopus 로고
    • MiR-378 controls cardiac hypertrophy by combined repression of MAP kinase pathway factors
    • Ganesan, J. et al. MiR-378 controls cardiac hypertrophy by combined repression of MAP kinase pathway factors. Circulation 127, 2097-2106 (2013).
    • (2013) Circulation , vol.127 , pp. 2097-2106
    • Ganesan, J.1
  • 65
    • 0028865142 scopus 로고
    • Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity
    • Kopecky, J., Clarke, G., Enerback, S., Spiegelman, B. & Kozak, L. P. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J. Clin. Invest. 96, 2914-2923 (1995).
    • (1995) J. Clin. Invest. , vol.96 , pp. 2914-2923
    • Kopecky, J.1    Clarke, G.2    Enerback, S.3    Spiegelman, B.4    Kozak, L.P.5
  • 66
    • 84880679205 scopus 로고    scopus 로고
    • Fat cells directly sense temperature to activate thermogenesis
    • Ye, L. et al. Fat cells directly sense temperature to activate thermogenesis. Proc. Natl Acad. Sci. USA 110, 12480-12485 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 12480-12485
    • Ye, L.1
  • 67
    • 0020693920 scopus 로고
    • Luxuskonsumption diet-induced thermogenesis and brown fat: The case in favour
    • Rothwell, N. J. & Stock, M. J. Luxuskonsumption, diet-induced thermogenesis and brown fat: the case in favour. Clin. Sci. (Lond) 64, 19-23 (1983).
    • (1983) Clin. Sci. (Lond) , vol.64 , pp. 19-23
    • Rothwell, N.J.1    Stock, M.J.2
  • 68
    • 63049083171 scopus 로고    scopus 로고
    • Twist-1 is a PPARdeltainducible, negative-feedback regulator of PGC-1alpha in brown fat metabolism
    • Pan, D., Fujimoto, M., Lopes, A. & Wang, Y. X. Twist-1 is a PPARdeltainducible, negative-feedback regulator of PGC-1alpha in brown fat metabolism. Cell 137, 73-86 (2009).
    • (2009) Cell , vol.137 , pp. 73-86
    • Pan, D.1    Fujimoto, M.2    Lopes, A.3    Wang, Y.X.4
  • 69
    • 68449083213 scopus 로고    scopus 로고
    • A versatile viral system for expression and depletion of proteins in mammalian cells
    • Campeau, E. et al. A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS ONE 4, e6529 (2009).
    • (2009) PLoS ONE , vol.4
    • Campeau, E.1
  • 70
    • 0036136607 scopus 로고    scopus 로고
    • Isolation and differential tissue distribution of two human cDNAs encoding PDE1 splice variants
    • Fidock, M., Miller, M. & Lanfear, J. Isolation and differential tissue distribution of two human cDNAs encoding PDE1 splice variants. Cell. Signal. 14, 53-60 (2002).
    • (2002) Cell. Signal. , vol.14 , pp. 53-60
    • Fidock, M.1    Miller, M.2    Lanfear, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.