메뉴 건너뛰기




Volumn 29, Issue 7, 2015, Pages 1067-1079

DICER inactivation identifies pancreatic β-cell “disallowed” genes targeted by microRNAs

Author keywords

[No Author keywords available]

Indexed keywords

DICER; FC RECEPTOR; INSULIN; LUCIFERASE; MICRORNA; MONOCARBOXYLATE TRANSPORTER 1; PLATELET DERIVED GROWTH FACTOR ALPHA RECEPTOR; RIBONUCLEASE III; SOMATOMEDIN BINDING PROTEIN 4; TRANSCRIPTION FACTOR MAF; TRANSCRIPTION FACTOR PDX 1; CRE RECOMBINASE; GLUCOSE; HOMEODOMAIN PROTEIN; INTEGRASE; PANCREATIC AND DUODENAL HOMEOBOX 1 PROTEIN; TAMOXIFEN; TRANSACTIVATOR PROTEIN;

EID: 84936123498     PISSN: 08888809     EISSN: 19449917     Source Type: Journal    
DOI: 10.1210/me.2015-1059     Document Type: Article
Times cited : (59)

References (63)
  • 2
    • 84923148964 scopus 로고    scopus 로고
    • Pancreatic β cell identity, glucose sensing and the control of insulin secretion
    • Rutter GA, Pullen TJ, Hodson DJ, Martinez-Sanchez A. Pancreatic β cell identity, glucose sensing and the control of insulin secretion. Biochem J. 2015;466:202–218.
    • (2015) Biochem J , vol.466 , pp. 202-218
    • Rutter, G.A.1    Pullen, T.J.2    Hodson, D.J.3    Martinez-Sanchez, A.4
  • 3
    • 64149126546 scopus 로고    scopus 로고
    • Regulation of insulin secretion: A matter of phase control and amplitude modulation
    • Henquin JC. Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia. 2009;52:739–751.
    • (2009) Diabetologia , vol.52 , pp. 739-751
    • Henquin, J.C.1
  • 4
    • 84881367782 scopus 로고    scopus 로고
    • Metabolic signaling in fuel-induced insulin secretion
    • Prentki M, Matschinsky FM, Madiraju SR. Metabolic signaling in fuel-induced insulin secretion. Cell Metab. 2013;18:162–185.
    • (2013) Cell Metab , vol.18 , pp. 162-185
    • Prentki, M.1    Matschinsky, F.M.2    Madiraju, S.R.3
  • 5
    • 84877601932 scopus 로고    scopus 로고
    • When less is more: The forbidden fruits of gene repression in the adult β-cell
    • Pullen TJ, Rutter GA. When less is more: the forbidden fruits of gene repression in the adult β-cell. Diabetes Obes Metab. 2013;15: 503–512.
    • (2013) Diabetes Obes Metab , vol.15 , pp. 503-512
    • Pullen, T.J.1    Rutter, G.A.2
  • 7
    • 78651472654 scopus 로고    scopus 로고
    • Tissue-specific disallowance of housekeeping genes: The other face of cell differentiation
    • Thorrez L, Laudadio I, Van Deun K, et al. Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation. Genome Res. 2011;21:95–105.
    • (2011) Genome Res , vol.21 , pp. 95-105
    • Thorrez, L.1    Laudadio, I.2    Van Deun, K.3
  • 9
    • 12044255619 scopus 로고
    • Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic β-cell. Potential role in nutrient sensing
    • Sekine N, Cirulli V, Regazzi R, et al. Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic β-cell. Potential role in nutrient sensing. J Biol Chem. 1994; 269:4895–4902.
    • (1994) J Biol Chem , vol.269 , pp. 4895-4902
    • Sekine, N.1    Cirulli, V.2    Regazzi, R.3
  • 10
    • 34548204386 scopus 로고    scopus 로고
    • Physical exerciseinduced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic β cells
    • Otonkoski T, Jiao H, Kaminen-Ahola N, et al. Physical exerciseinduced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic β cells. Am J Hum Genet. 2007;81: 467–474.
    • (2007) Am J Hum Genet , vol.81 , pp. 467-474
    • Otonkoski, T.1    Jiao, H.2    Kaminen-Ahola, N.3
  • 11
    • 84863214806 scopus 로고    scopus 로고
    • Overexpression of monocarboxylate transporter-1 (Slc16a1) in mouse pancreatic β-cells leads to relative hyperinsulinism during exercise
    • Pullen TJ, Sylow L, Sun G, Halestrap AP, Richter EA, Rutter GA. Overexpression of monocarboxylate transporter-1 (Slc16a1) in mouse pancreatic β-cells leads to relative hyperinsulinism during exercise. Diabetes. 2012;61:1719–1725.
    • (2012) Diabetes , vol.61 , pp. 1719-1725
    • Pullen, T.J.1    Sylow, L.2    Sun, G.3    Halestrap, A.P.4    Richter, E.A.5    Rutter, G.A.6
  • 12
    • 65249093130 scopus 로고    scopus 로고
    • MiR-375 maintains normal pancreatic β- and β-cell mass
    • Poy MN, Hausser J, Trajkovski M, et al. miR-375 maintains normal pancreatic β- and β-cell mass. Proc Natl Acad Sci USA. 2009; 106:5813–5818.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 5813-5818
    • Poy, M.N.1    Hausser, J.2    Trajkovski, M.3
  • 13
    • 84883116249 scopus 로고    scopus 로고
    • Jeyaseelan K. MiR-25 and miR-92a regulate insulin I biosynthesis in rats
    • Setyowati Karolina D, Sepramaniam S, Tan HZ, Armugam A, Jeyaseelan K. miR-25 and miR-92a regulate insulin I biosynthesis in rats. RNA Biol. 2013;10:1365–1378.
    • (2013) RNA Biol , vol.10 , pp. 1365-1378
    • Setyowati Karolina, D.1    Sepramaniam, S.2    Tan, H.Z.3    Armugam, A.4
  • 14
    • 84883793279 scopus 로고    scopus 로고
    • Thioredoxin-interacting protein regulates insulin transcription through microRNA-204
    • Xu G, Chen J, Jing G, Shalev A. Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat Med. 2013;19:1141–1146.
    • (2013) Nat Med , vol.19 , pp. 1141-1146
    • Xu, G.1    Chen, J.2    Jing, G.3    Shalev, A.4
  • 15
    • 80051800915 scopus 로고    scopus 로고
    • MicroRNA-19b downregulates insulin 1 through targeting transcription factor NeuroD 1
    • Zhang ZW, Zhang LQ, Ding L, et al. MicroRNA-19b downregulates insulin 1 through targeting transcription factor NeuroD 1. FEBS Lett. 2011;585:2592–2598.
    • (2011) FEBS Lett , vol.585 , pp. 2592-2598
    • Zhang, Z.W.1    Zhang, L.Q.2    Ding, L.3
  • 16
    • 79952259862 scopus 로고    scopus 로고
    • MiRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors
    • Melkman-Zehavi T, Oren R, Kredo-Russo S, et al. miRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors. EMBO J. 2011;30:835–845.
    • (2011) EMBO J , vol.30 , pp. 835-845
    • Melkman-Zehavi, T.1    Oren, R.2    Kredo-Russo, S.3
  • 17
    • 84868132259 scopus 로고    scopus 로고
    • Antisense miR-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds
    • Nieto M, Hevia P, Garcia E, et al. Antisense miR-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds. Cell Transplant. 2012;21:1761–1774.
    • (2012) Cell Transplant , vol.21 , pp. 1761-1774
    • Nieto, M.1    Hevia, P.2    Garcia, E.3
  • 18
    • 40149083894 scopus 로고    scopus 로고
    • Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs
    • Lovis P, Gattesco S, Regazzi R. Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem. 2008;389:305–312.
    • (2008) Biol Chem , vol.389 , pp. 305-312
    • Lovis, P.1    Gattesco, S.2    Regazzi, R.3
  • 19
    • 84900797916 scopus 로고    scopus 로고
    • MicroRNA-7a regulates pancreatic β cell function
    • Latreille M, Hausser J, Stützer I, et al. MicroRNA-7a regulates pancreatic β cell function. J Clin Invest. 2014;124:2722–2735.
    • (2014) J Clin Invest , vol.124 , pp. 2722-2735
    • Latreille, M.1    Hausser, J.2    Stützer, I.3
  • 20
    • 84891867862 scopus 로고    scopus 로고
    • Argonaute2 mediates compensatory expansion of the pancreatic β cell
    • Tattikota SG, Rathjen T, McAnulty SJ, et al. Argonaute2 mediates compensatory expansion of the pancreatic β cell. Cell Metab. 2014; 19:122–134.
    • (2014) Cell Metab , vol.19 , pp. 122-134
    • Tattikota, S.G.1    Rathjen, T.2    McAnulty, S.J.3
  • 21
    • 79961065195 scopus 로고    scopus 로고
    • The microRNA-21- PDCD4 axis prevents type 1 diabetes by blocking pancreatic β cell death
    • Ruan Q, Wang T, Kameswaran V, et al. The microRNA-21- PDCD4 axis prevents type 1 diabetes by blocking pancreatic β cell death. Proc Natl Acad Sci USA. 2011;108:12030–12035.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 12030-12035
    • Ruan, Q.1    Wang, T.2    Kameswaran, V.3
  • 22
    • 58149350340 scopus 로고    scopus 로고
    • Alterations in microRNA expression contribute to fatty acid-induced pancreatic β-cell dysfunction
    • Lovis P, Roggli E, Laybutt DR, et al. Alterations in microRNA expression contribute to fatty acid-induced pancreatic β-cell dysfunction. Diabetes. 2008;57:2728–2736.
    • (2008) Diabetes , vol.57 , pp. 2728-2736
    • Lovis, P.1    Roggli, E.2    Laybutt, D.R.3
  • 24
    • 84455161954 scopus 로고    scopus 로고
    • β-Cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus
    • Kalis M, Bolmeson C, Esguerra JL, et al. β-Cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS One. 2011;6:e29166.
    • (2011) Plos One , pp. 6
    • Kalis, M.1    Bolmeson, C.2    Esguerra, J.L.3
  • 25
    • 84867028085 scopus 로고    scopus 로고
    • Dysregulation of dicer1 in β cells impairs islet architecture and glucose metabolism
    • Mandelbaum AD, Melkman-Zehavi T, Oren R, et al. Dysregulation of dicer1 in β cells impairs islet architecture and glucose metabolism. Exp Diabetes Res. 2012;2012:470302.
    • (2012) Exp Diabetes Res , pp. 2012
    • Mandelbaum, A.D.1    Melkman-Zehavi, T.2    Oren, R.3
  • 26
    • 84865581182 scopus 로고    scopus 로고
    • Emerging roles of non-coding RNAs in pancreatic β-cell function and dysfunction
    • Guay C, Jacovetti C, Nesca V, et al. Emerging roles of non-coding RNAs in pancreatic β-cell function and dysfunction. Diabetes Obes Metab. 2012;14(Suppl 3):12–21.
    • (2012) Diabetes Obes Metab , vol.14 , pp. 12-21
    • Guay, C.1    Jacovetti, C.2    Nesca, V.3
  • 27
    • 84872478906 scopus 로고    scopus 로고
    • Ring1b bookmarks genes in pancreatic embryonic progenitors for repression in adult β cells
    • van Arensbergen J, García-Hurtado J, Maestro MA, et al. Ring1b bookmarks genes in pancreatic embryonic progenitors for repression in adult β cells. Genes Dev. 2013;27:52–63.
    • (2013) Genes Dev , vol.27 , pp. 52-63
    • Van Arensbergen, J.1    García-Hurtado, J.2    Maestro, M.A.3
  • 28
    • 0036340074 scopus 로고    scopus 로고
    • Direct evidence for the pancreatic lineage: NGN3β cells are islet progenitors and are distinct from duct progenitors
    • Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3β cells are islet progenitors and are distinct from duct progenitors. Development. 2002;129:2447–2457.
    • (2002) Development , vol.129 , pp. 2447-2457
    • Gu, G.1    Dubauskaite, J.2    Melton, D.A.3
  • 29
    • 73649093422 scopus 로고    scopus 로고
    • Rfx6 is an Ngn3-dependent winged helix transcription factor required for pancreatic islet cell development
    • Soyer J, Flasse L, Raffelsberger W, et al. Rfx6 is an Ngn3-dependent winged helix transcription factor required for pancreatic islet cell development. Development. 2010;137:203–212.
    • (2010) Development , vol.137 , pp. 203-212
    • Soyer, J.1    Flasse, L.2    Raffelsberger, W.3
  • 30
    • 84919846858 scopus 로고    scopus 로고
    • Rfx6 maintains the functional identity of adult pancreatic β-cells
    • Piccand J, Strasser P, Hodson DJ, et al. Rfx6 maintains the functional identity of adult pancreatic β-cells. Cell Rep. 2014;9:2219–2232.
    • (2014) Cell Rep , vol.9 , pp. 2219-2232
    • Piccand, J.1    Strasser, P.2    Hodson, D.J.3
  • 31
    • 79960322580 scopus 로고    scopus 로고
    • Rutter GA. MiR-29a and miR-29b contribute to pancreatic β-cell-specific silencing of monocarboxylate transporter 1 (Mct1)
    • Pullen TJ, da Silva Xavier G, Kelsey G, Rutter GA. miR-29a and miR-29b contribute to pancreatic β-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol Cell Biol. 2011;31:3182–3194.
    • (2011) Mol Cell Biol , vol.31 , pp. 3182-3194
    • Pullen, T.J.1    Da Silva Xavier, G.2    Kelsey, G.3
  • 32
    • 0034114786 scopus 로고    scopus 로고
    • Mosaic Cre-mediated recombination in pancreas using the pdx-1 enhancer/promoter
    • Gannon M, Herrera PL, Wright CV. Mosaic Cre-mediated recombination in pancreas using the pdx-1 enhancer/promoter. Genesis. 2000;26:143–144.
    • (2000) Genesis , vol.26 , pp. 143-144
    • Gannon, M.1    Herrera, P.L.2    Wright, C.V.3
  • 33
    • 0034101423 scopus 로고    scopus 로고
    • Analysis of the Cre-mediated recombination driven by rat insulin promoter in embryonic and adult mouse pancreas
    • Gannon M, Shiota C, Postic C, Wright CV, Magnuson M. Analysis of the Cre-mediated recombination driven by rat insulin promoter in embryonic and adult mouse pancreas. Genesis. 2000;26:139–142.
    • (2000) Genesis , vol.26 , pp. 139-142
    • Gannon, M.1    Shiota, C.2    Postic, C.3    Wright, C.V.4    Magnuson, M.5
  • 34
    • 84876530204 scopus 로고    scopus 로고
    • Dicer1 is required to repress neuronal fate during endocrine cell maturation
    • Kanji MS, Martin MG, Bhushan A. Dicer1 is required to repress neuronal fate during endocrine cell maturation. Diabetes. 2013;62: 1602–1611.
    • (2013) Diabetes , vol.62 , pp. 1602-1611
    • Kanji, M.S.1    Martin, M.G.2    Bhushan, A.3
  • 35
    • 78049446505 scopus 로고    scopus 로고
    • Conditional gene targeting in mouse pancreatic β-cells: Analysis of ectopic Cre transgene expression in the brain
    • Wicksteed B, Brissova M, Yan W, et al. Conditional gene targeting in mouse pancreatic β-cells: analysis of ectopic Cre transgene expression in the brain. Diabetes. 2010;59:3090–3098.
    • (2010) Diabetes , vol.59 , pp. 3090-3098
    • Wicksteed, B.1    Brissova, M.2    Yan, W.3
  • 36
    • 20844432885 scopus 로고    scopus 로고
    • T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer
    • Cobb BS, Nesterova TB, Thompson E, et al. T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J Exp Med. 2005;201:1367–1373.
    • (2005) J Exp Med , vol.201 , pp. 1367-1373
    • Cobb, B.S.1    Nesterova, T.B.2    Thompson, E.3
  • 37
    • 77952979342 scopus 로고    scopus 로고
    • Isolation and culture of mouse pancreatic islets for ex vivo imaging studies with trappable or recombinant fluorescent probes
    • Ravier MA, Rutter GA. Isolation and culture of mouse pancreatic islets for ex vivo imaging studies with trappable or recombinant fluorescent probes. Methods Mol Biol. 2010;633:171–184.
    • (2010) Methods Mol Biol , vol.633 , pp. 171-184
    • Ravier, M.A.1    Rutter, G.A.2
  • 38
    • 77952587385 scopus 로고    scopus 로고
    • LKB1 deletion with the RIP2.Cre transgene modifies pancreatic β-cell morphology and enhances insulin secretion in vivo
    • Sun G, Tarasov AI, McGinty JA, et al. LKB1 deletion with the RIP2.Cre transgene modifies pancreatic β-cell morphology and enhances insulin secretion in vivo. Am J Physiol Endocrinol Metab. 2010;298:E1261–E1273.
    • (2010) Am J Physiol Endocrinol Metab , vol.298 , pp. 1261-1273
    • Sun, G.1    Tarasov, A.I.2    McGinty, J.A.3
  • 39
    • 84904985459 scopus 로고    scopus 로고
    • Regulation of microRNA biogenesis
    • Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15:509–524.
    • (2014) Nat Rev Mol Cell Biol , vol.15 , pp. 509-524
    • Ha, M.1    Kim, V.N.2
  • 40
    • 84912006450 scopus 로고    scopus 로고
    • LKB1 and AMPK differentially regulate pancreatic β-cell identity
    • Kone M, Pullen TJ, Sun G, et al. LKB1 and AMPK differentially regulate pancreatic β-cell identity. FASEB J. 2014;28:4972–4985.
    • (2014) FASEB J , vol.28 , pp. 4972-4985
    • Kone, M.1    Pullen, T.J.2    Sun, G.3
  • 41
    • 84873815396 scopus 로고    scopus 로고
    • MicroRNA expression in β andβ cells of human pancreatic islets
    • Klein D, Misawa R, Bravo-Egana V, et al. MicroRNA expression in β andβ cells of human pancreatic islets. PLoS One. 2013;8:e55064.
    • (2013) Plos One , vol.8
    • Klein, D.1    Misawa, R.2    Bravo-Egana, V.3
  • 42
    • 84890494543 scopus 로고    scopus 로고
    • Role of reduced β-cell mass versus impaired β-cell function in the pathogenesis of type 2 diabetes
    • Meier JJ, Bonadonna RC. Role of reduced β-cell mass versus impaired β-cell function in the pathogenesis of type 2 diabetes. Diabetes Care. 2013;36(Suppl 2):S113–S119.
    • (2013) Diabetes Care , vol.36 , pp. 113-119
    • Meier, J.J.1    Bonadonna, R.C.2
  • 43
    • 84866389264 scopus 로고    scopus 로고
    • Pancreatic β celldedifferentiation as a mechanism of diabetic β cell failure
    • Talchai C, Xuan S, Lin HV, Sussel L, Accili D. Pancreatic β celldedifferentiation as a mechanism of diabetic β cell failure. Cell. 2012;150:1223–1234.
    • (2012) Cell , vol.150 , pp. 1223-1234
    • Talchai, C.1    Xuan, S.2    Lin, H.V.3    Sussel, L.4    Accili, D.5
  • 44
    • 62649123872 scopus 로고    scopus 로고
    • Dicer is required for maintaining adult pancreas
    • Morita S, Hara A, Kojima I, et al. Dicer is required for maintaining adult pancreas. PLoS One. 2009;4:e4212.
    • (2009) Plos One , pp. 4
    • Morita, S.1    Hara, A.2    Kojima, I.3
  • 45
    • 77956863085 scopus 로고    scopus 로고
    • MicroRNA signature of the human developing pancreas
    • Rosero S, Bravo-Egana V, Jiang Z, et al. MicroRNA signature of the human developing pancreas. BMC Genomics. 2010;11:509.
    • (2010) BMC Genomics , vol.11 , pp. 509
    • Rosero, S.1    Bravo-Egana, V.2    Jiang, Z.3
  • 46
    • 84923189105 scopus 로고    scopus 로고
    • The role of microRNAs in the pancreatic differentiation of pluripotent stem cells
    • Francis N, Moore M, Rutter GA, Burns C. The role of microRNAs in the pancreatic differentiation of pluripotent stem cells. Microrna. 2014;3:54–63.
    • (2014) Microrna , vol.3 , pp. 54-63
    • Francis, N.1    Moore, M.2    Rutter, G.A.3    Burns, C.4
  • 47
    • 9144270691 scopus 로고    scopus 로고
    • A pancreatic islet-specific microRNA regulates insulin secretion
    • Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432:226–230.
    • (2004) Nature , vol.432 , pp. 226-230
    • Poy, M.N.1    Eliasson, L.2    Krutzfeldt, J.3
  • 48
    • 33748749597 scopus 로고    scopus 로고
    • MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells
    • Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem. 2006;281:26932–26942.
    • (2006) J Biol Chem , vol.281 , pp. 26932-26942
    • Plaisance, V.1    Abderrahmani, A.2    Perret-Menoud, V.3    Jacquemin, P.4    Lemaigre, F.5    Regazzi, R.6
  • 49
    • 84890124194 scopus 로고    scopus 로고
    • Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes
    • Nesca V, Guay C, Jacovetti C, et al. Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia. 2013;56:2203–2212.
    • (2013) Diabetologia , vol.56 , pp. 2203-2212
    • Nesca, V.1    Guay, C.2    Jacovetti, C.3
  • 50
    • 1542271011 scopus 로고    scopus 로고
    • Differentially expressed Maf family transcription factors, c-Maf and MafA, activate glucagon and insulin gene expression in pancreatic islet β- and β-cells
    • Kataoka K, Shioda S, Ando K, Sakagami K, Handa H, Yasuda K. Differentially expressed Maf family transcription factors, c-Maf and MafA, activate glucagon and insulin gene expression in pancreatic islet β- and β-cells. J Mol Endocrinol. 2004;32:9–20.
    • (2004) J Mol Endocrinol , vol.32 , pp. 9-20
    • Kataoka, K.1    Shioda, S.2    O, K.3    Sakagami, K.4    Handa, H.5    Yasuda, K.6
  • 51
    • 79961198913 scopus 로고    scopus 로고
    • Glucagon gene expression in the endocrine pancreas: The role of the transcription factor Pax6 in β-cell differentiation, glucagon biosynthesis and secretion
    • Gosmain Y, Cheyssac C, Heddad Masson M, Dibner C, Philippe J. Glucagon gene expression in the endocrine pancreas: the role of the transcription factor Pax6 in β-cell differentiation, glucagon biosynthesis and secretion. Diabetes Obes Metab. 2011;13(Suppl 1):31–38.
    • (2011) Diabetes Obes Metab , vol.13 , pp. 31-38
    • Gosmain, Y.1    Cheyssac, C.2    Heddad Masson, M.3    Dibner, C.4    Philippe, J.5
  • 52
    • 37649021046 scopus 로고    scopus 로고
    • Identification of human microRNA targets from isolated argonaute protein complexes
    • Beitzinger M, Peters L, Zhu JY, Kremmer E, Meister G. Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol. 2007;4:76–84.
    • (2007) RNA Biol , vol.4 , pp. 76-84
    • Beitzinger, M.1    Peters, L.2    Zhu, J.Y.3    Kremmer, E.4    Meister, G.5
  • 53
    • 34547126004 scopus 로고    scopus 로고
    • MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic β-cell lines
    • Baroukh N, Ravier MA, Loder MK, et al. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic β-cell lines. J Biol Chem. 2007;282:19575–19588.
    • (2007) J Biol Chem , vol.282 , pp. 19575-19588
    • Baroukh, N.1    Ravier, M.A.2    Loder, M.K.3
  • 54
    • 84876484626 scopus 로고    scopus 로고
    • MiRNA-30a–5p-mediated silencing of Beta2/NeuroD expression is an important initial event of glucotoxicity- induced β cell dysfunction in rodent models
    • Kim JW, You YH, Jung S, et al. miRNA-30a–5p-mediated silencing of Beta2/NeuroD expression is an important initial event of glucotoxicity- induced β cell dysfunction in rodent models. Diabetologia. 2013;56:847–855.
    • (2013) Diabetologia , vol.56 , pp. 847-855
    • Kim, J.W.1    You, Y.H.2    Jung, S.3
  • 55
    • 84863214806 scopus 로고    scopus 로고
    • Overexpression of monocarboxylate transporter-1 (Slc16a1) in mouse pancreatic β-cells leads to relative hyperinsulinism during exercise
    • Pullen TJ, Sylow L, Sun G, Halestrap AP, Richter EA, Rutter GA. Overexpression of monocarboxylate transporter-1 (Slc16a1) in mouse pancreatic β-cells leads to relative hyperinsulinism during exercise. Diabetes. 2012;61:1719–1725.
    • (2012) Diabetes , vol.61 , pp. 1719-1725
    • Pullen, T.J.1    Sylow, L.2    Sun, G.3    Halestrap, A.P.4    Richter, E.A.5    Rutter, G.A.6
  • 56
    • 0032479342 scopus 로고    scopus 로고
    • Overexpression of lactate dehydrogenase A attenuates glucose-induced insulin secretion in stable MIN-6 β-cell lines
    • Zhao C, Rutter GA. Overexpression of lactate dehydrogenase A attenuates glucose-induced insulin secretion in stable MIN-6 β-cell lines. FEBS Lett. 1998;430:213–216.
    • (1998) FEBS Lett , vol.430 , pp. 213-216
    • Zhao, C.1    Rutter, G.A.2
  • 57
    • 36849075622 scopus 로고    scopus 로고
    • Pax-6 and c-Maf functionally interact with the β-cell-specific DNA element G1 in vivo to promote glucagon gene expression
    • Gosmain Y, Avril I, Mamin A, Philippe J. Pax-6 and c-Maf functionally interact with the β-cell-specific DNA element G1 in vivo to promote glucagon gene expression. J Biol Chem. 2007;282:35024–35034.
    • (2007) J Biol Chem , vol.282 , pp. 35024-35034
    • Gosmain, Y.1    Avril, I.2    Mamin, A.3    Philippe, J.4
  • 58
    • 84905962382 scopus 로고    scopus 로고
    • The regulatory roles of microRNA- 146b–5p and its target platelet-derived growth factor receptor β (PDGFRA) in erythropoiesis and megakaryocytopoiesis
    • Zhai PF, Wang F, Su R, et al. The regulatory roles of microRNA- 146b–5p and its target platelet-derived growth factor receptor β (PDGFRA) in erythropoiesis and megakaryocytopoiesis. J Biol Chem. 2014;289:22600–22613.
    • (2014) J Biol Chem , vol.289 , pp. 22600-22613
    • Zhai, P.F.1    Wang, F.2    Su, R.3
  • 59
    • 84879267458 scopus 로고    scopus 로고
    • MiR-34a/c-dependent PDGFR-β/β downregulation inhibits tumorigenesis and enhances TRAIL-induced apoptosis in lung cancer
    • Garofalo M, Jeon YJ, Nuovo GJ, et al. MiR-34a/c-dependent PDGFR-β/β downregulation inhibits tumorigenesis and enhances TRAIL-induced apoptosis in lung cancer. PLoS One. 2013;8: e67581.
    • (2013) Plos One , vol.8
    • Garofalo, M.1    Jeon, Y.J.2    Nuovo, G.J.3
  • 61
    • 0033540037 scopus 로고    scopus 로고
    • Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis
    • Maechler P, Wollheim CB. Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature. 1999;402: 685–689.
    • (1999) Nature , vol.402 , pp. 685-689
    • Maechler, P.1    Wollheim, C.B.2
  • 62
    • 84919685379 scopus 로고    scopus 로고
    • Glutamate acts as a key signal linking glucose metabolism to incretin/cAMP action to amplify insulin secretion
    • Gheni G, Ogura M, Iwasaki M, et al. Glutamate acts as a key signal linking glucose metabolism to incretin/cAMP action to amplify insulin secretion. Cell Rep. 2014;9:661–673.
    • (2014) Cell Rep , vol.9 , pp. 661-673
    • Gheni, G.1    Ogura, M.2    Iwasaki, M.3
  • 63
    • 84919496171 scopus 로고    scopus 로고
    • Regulation of immune responses by the neonatal fc receptor and its therapeutic implications
    • Rath T, Baker K, Pyzik M, Blumberg RS. Regulation of immune responses by the neonatal fc receptor and its therapeutic implications. Front Immunol. 2014;5:664.
    • (2014) Front Immunol , vol.5 , pp. 664
    • Rath, T.1    Baker, K.2    Pyzik, M.3    Blumberg, R.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.