-
1
-
-
84895832615
-
Global estimates of diabetes prevalence for 2013 and projections for 2035
-
Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103:137–149.
-
(2014)
Diabetes Res Clin Pract
, vol.103
, pp. 137-149
-
-
Guariguata, L.1
Whiting, D.R.2
Hambleton, I.3
Beagley, J.4
Linnenkamp, U.5
Shaw, J.E.6
-
2
-
-
84923148964
-
Pancreatic β cell identity, glucose sensing and the control of insulin secretion
-
Rutter GA, Pullen TJ, Hodson DJ, Martinez-Sanchez A. Pancreatic β cell identity, glucose sensing and the control of insulin secretion. Biochem J. 2015;466:202–218.
-
(2015)
Biochem J
, vol.466
, pp. 202-218
-
-
Rutter, G.A.1
Pullen, T.J.2
Hodson, D.J.3
Martinez-Sanchez, A.4
-
3
-
-
64149126546
-
Regulation of insulin secretion: A matter of phase control and amplitude modulation
-
Henquin JC. Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia. 2009;52:739–751.
-
(2009)
Diabetologia
, vol.52
, pp. 739-751
-
-
Henquin, J.C.1
-
4
-
-
84881367782
-
Metabolic signaling in fuel-induced insulin secretion
-
Prentki M, Matschinsky FM, Madiraju SR. Metabolic signaling in fuel-induced insulin secretion. Cell Metab. 2013;18:162–185.
-
(2013)
Cell Metab
, vol.18
, pp. 162-185
-
-
Prentki, M.1
Matschinsky, F.M.2
Madiraju, S.R.3
-
5
-
-
84877601932
-
When less is more: The forbidden fruits of gene repression in the adult β-cell
-
Pullen TJ, Rutter GA. When less is more: the forbidden fruits of gene repression in the adult β-cell. Diabetes Obes Metab. 2013;15: 503–512.
-
(2013)
Diabetes Obes Metab
, vol.15
, pp. 503-512
-
-
Pullen, T.J.1
Rutter, G.A.2
-
6
-
-
77953429949
-
Identification of genes selectively disallowed in the pancreatic islet
-
Pullen TJ, Khan AM, Barton G, Butcher SA, Sun G, Rutter GA. Identification of genes selectively disallowed in the pancreatic islet. Islets. 2010;2:89–95.
-
(2010)
Islets
, vol.2
, pp. 89-95
-
-
Pullen, T.J.1
Khan, A.M.2
Barton, G.3
Butcher, S.A.4
Sun, G.5
Rutter, G.A.6
-
7
-
-
78651472654
-
Tissue-specific disallowance of housekeeping genes: The other face of cell differentiation
-
Thorrez L, Laudadio I, Van Deun K, et al. Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation. Genome Res. 2011;21:95–105.
-
(2011)
Genome Res
, vol.21
, pp. 95-105
-
-
Thorrez, L.1
Laudadio, I.2
Van Deun, K.3
-
9
-
-
12044255619
-
Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic β-cell. Potential role in nutrient sensing
-
Sekine N, Cirulli V, Regazzi R, et al. Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic β-cell. Potential role in nutrient sensing. J Biol Chem. 1994; 269:4895–4902.
-
(1994)
J Biol Chem
, vol.269
, pp. 4895-4902
-
-
Sekine, N.1
Cirulli, V.2
Regazzi, R.3
-
10
-
-
34548204386
-
Physical exerciseinduced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic β cells
-
Otonkoski T, Jiao H, Kaminen-Ahola N, et al. Physical exerciseinduced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic β cells. Am J Hum Genet. 2007;81: 467–474.
-
(2007)
Am J Hum Genet
, vol.81
, pp. 467-474
-
-
Otonkoski, T.1
Jiao, H.2
Kaminen-Ahola, N.3
-
11
-
-
84863214806
-
Overexpression of monocarboxylate transporter-1 (Slc16a1) in mouse pancreatic β-cells leads to relative hyperinsulinism during exercise
-
Pullen TJ, Sylow L, Sun G, Halestrap AP, Richter EA, Rutter GA. Overexpression of monocarboxylate transporter-1 (Slc16a1) in mouse pancreatic β-cells leads to relative hyperinsulinism during exercise. Diabetes. 2012;61:1719–1725.
-
(2012)
Diabetes
, vol.61
, pp. 1719-1725
-
-
Pullen, T.J.1
Sylow, L.2
Sun, G.3
Halestrap, A.P.4
Richter, E.A.5
Rutter, G.A.6
-
12
-
-
65249093130
-
MiR-375 maintains normal pancreatic β- and β-cell mass
-
Poy MN, Hausser J, Trajkovski M, et al. miR-375 maintains normal pancreatic β- and β-cell mass. Proc Natl Acad Sci USA. 2009; 106:5813–5818.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 5813-5818
-
-
Poy, M.N.1
Hausser, J.2
Trajkovski, M.3
-
13
-
-
84883116249
-
Jeyaseelan K. MiR-25 and miR-92a regulate insulin I biosynthesis in rats
-
Setyowati Karolina D, Sepramaniam S, Tan HZ, Armugam A, Jeyaseelan K. miR-25 and miR-92a regulate insulin I biosynthesis in rats. RNA Biol. 2013;10:1365–1378.
-
(2013)
RNA Biol
, vol.10
, pp. 1365-1378
-
-
Setyowati Karolina, D.1
Sepramaniam, S.2
Tan, H.Z.3
Armugam, A.4
-
14
-
-
84883793279
-
Thioredoxin-interacting protein regulates insulin transcription through microRNA-204
-
Xu G, Chen J, Jing G, Shalev A. Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat Med. 2013;19:1141–1146.
-
(2013)
Nat Med
, vol.19
, pp. 1141-1146
-
-
Xu, G.1
Chen, J.2
Jing, G.3
Shalev, A.4
-
15
-
-
80051800915
-
MicroRNA-19b downregulates insulin 1 through targeting transcription factor NeuroD 1
-
Zhang ZW, Zhang LQ, Ding L, et al. MicroRNA-19b downregulates insulin 1 through targeting transcription factor NeuroD 1. FEBS Lett. 2011;585:2592–2598.
-
(2011)
FEBS Lett
, vol.585
, pp. 2592-2598
-
-
Zhang, Z.W.1
Zhang, L.Q.2
Ding, L.3
-
16
-
-
79952259862
-
MiRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors
-
Melkman-Zehavi T, Oren R, Kredo-Russo S, et al. miRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors. EMBO J. 2011;30:835–845.
-
(2011)
EMBO J
, vol.30
, pp. 835-845
-
-
Melkman-Zehavi, T.1
Oren, R.2
Kredo-Russo, S.3
-
17
-
-
84868132259
-
Antisense miR-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds
-
Nieto M, Hevia P, Garcia E, et al. Antisense miR-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds. Cell Transplant. 2012;21:1761–1774.
-
(2012)
Cell Transplant
, vol.21
, pp. 1761-1774
-
-
Nieto, M.1
Hevia, P.2
Garcia, E.3
-
18
-
-
40149083894
-
Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs
-
Lovis P, Gattesco S, Regazzi R. Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem. 2008;389:305–312.
-
(2008)
Biol Chem
, vol.389
, pp. 305-312
-
-
Lovis, P.1
Gattesco, S.2
Regazzi, R.3
-
19
-
-
84900797916
-
MicroRNA-7a regulates pancreatic β cell function
-
Latreille M, Hausser J, Stützer I, et al. MicroRNA-7a regulates pancreatic β cell function. J Clin Invest. 2014;124:2722–2735.
-
(2014)
J Clin Invest
, vol.124
, pp. 2722-2735
-
-
Latreille, M.1
Hausser, J.2
Stützer, I.3
-
20
-
-
84891867862
-
Argonaute2 mediates compensatory expansion of the pancreatic β cell
-
Tattikota SG, Rathjen T, McAnulty SJ, et al. Argonaute2 mediates compensatory expansion of the pancreatic β cell. Cell Metab. 2014; 19:122–134.
-
(2014)
Cell Metab
, vol.19
, pp. 122-134
-
-
Tattikota, S.G.1
Rathjen, T.2
McAnulty, S.J.3
-
21
-
-
79961065195
-
The microRNA-21- PDCD4 axis prevents type 1 diabetes by blocking pancreatic β cell death
-
Ruan Q, Wang T, Kameswaran V, et al. The microRNA-21- PDCD4 axis prevents type 1 diabetes by blocking pancreatic β cell death. Proc Natl Acad Sci USA. 2011;108:12030–12035.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 12030-12035
-
-
Ruan, Q.1
Wang, T.2
Kameswaran, V.3
-
22
-
-
58149350340
-
Alterations in microRNA expression contribute to fatty acid-induced pancreatic β-cell dysfunction
-
Lovis P, Roggli E, Laybutt DR, et al. Alterations in microRNA expression contribute to fatty acid-induced pancreatic β-cell dysfunction. Diabetes. 2008;57:2728–2736.
-
(2008)
Diabetes
, vol.57
, pp. 2728-2736
-
-
Lovis, P.1
Roggli, E.2
Laybutt, D.R.3
-
23
-
-
36248978699
-
MicroRNA expression is required for pancreatic islet cell genesis in the mouse
-
Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes. 2007;56:2938–2945.
-
(2007)
Diabetes
, vol.56
, pp. 2938-2945
-
-
Lynn, F.C.1
Skewes-Cox, P.2
Kosaka, Y.3
McManus, M.T.4
Harfe, B.D.5
German, M.S.6
-
24
-
-
84455161954
-
β-Cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus
-
Kalis M, Bolmeson C, Esguerra JL, et al. β-Cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS One. 2011;6:e29166.
-
(2011)
Plos One
, pp. 6
-
-
Kalis, M.1
Bolmeson, C.2
Esguerra, J.L.3
-
25
-
-
84867028085
-
Dysregulation of dicer1 in β cells impairs islet architecture and glucose metabolism
-
Mandelbaum AD, Melkman-Zehavi T, Oren R, et al. Dysregulation of dicer1 in β cells impairs islet architecture and glucose metabolism. Exp Diabetes Res. 2012;2012:470302.
-
(2012)
Exp Diabetes Res
, pp. 2012
-
-
Mandelbaum, A.D.1
Melkman-Zehavi, T.2
Oren, R.3
-
26
-
-
84865581182
-
Emerging roles of non-coding RNAs in pancreatic β-cell function and dysfunction
-
Guay C, Jacovetti C, Nesca V, et al. Emerging roles of non-coding RNAs in pancreatic β-cell function and dysfunction. Diabetes Obes Metab. 2012;14(Suppl 3):12–21.
-
(2012)
Diabetes Obes Metab
, vol.14
, pp. 12-21
-
-
Guay, C.1
Jacovetti, C.2
Nesca, V.3
-
27
-
-
84872478906
-
Ring1b bookmarks genes in pancreatic embryonic progenitors for repression in adult β cells
-
van Arensbergen J, García-Hurtado J, Maestro MA, et al. Ring1b bookmarks genes in pancreatic embryonic progenitors for repression in adult β cells. Genes Dev. 2013;27:52–63.
-
(2013)
Genes Dev
, vol.27
, pp. 52-63
-
-
Van Arensbergen, J.1
García-Hurtado, J.2
Maestro, M.A.3
-
28
-
-
0036340074
-
Direct evidence for the pancreatic lineage: NGN3β cells are islet progenitors and are distinct from duct progenitors
-
Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3β cells are islet progenitors and are distinct from duct progenitors. Development. 2002;129:2447–2457.
-
(2002)
Development
, vol.129
, pp. 2447-2457
-
-
Gu, G.1
Dubauskaite, J.2
Melton, D.A.3
-
29
-
-
73649093422
-
Rfx6 is an Ngn3-dependent winged helix transcription factor required for pancreatic islet cell development
-
Soyer J, Flasse L, Raffelsberger W, et al. Rfx6 is an Ngn3-dependent winged helix transcription factor required for pancreatic islet cell development. Development. 2010;137:203–212.
-
(2010)
Development
, vol.137
, pp. 203-212
-
-
Soyer, J.1
Flasse, L.2
Raffelsberger, W.3
-
30
-
-
84919846858
-
Rfx6 maintains the functional identity of adult pancreatic β-cells
-
Piccand J, Strasser P, Hodson DJ, et al. Rfx6 maintains the functional identity of adult pancreatic β-cells. Cell Rep. 2014;9:2219–2232.
-
(2014)
Cell Rep
, vol.9
, pp. 2219-2232
-
-
Piccand, J.1
Strasser, P.2
Hodson, D.J.3
-
31
-
-
79960322580
-
Rutter GA. MiR-29a and miR-29b contribute to pancreatic β-cell-specific silencing of monocarboxylate transporter 1 (Mct1)
-
Pullen TJ, da Silva Xavier G, Kelsey G, Rutter GA. miR-29a and miR-29b contribute to pancreatic β-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol Cell Biol. 2011;31:3182–3194.
-
(2011)
Mol Cell Biol
, vol.31
, pp. 3182-3194
-
-
Pullen, T.J.1
Da Silva Xavier, G.2
Kelsey, G.3
-
32
-
-
0034114786
-
Mosaic Cre-mediated recombination in pancreas using the pdx-1 enhancer/promoter
-
Gannon M, Herrera PL, Wright CV. Mosaic Cre-mediated recombination in pancreas using the pdx-1 enhancer/promoter. Genesis. 2000;26:143–144.
-
(2000)
Genesis
, vol.26
, pp. 143-144
-
-
Gannon, M.1
Herrera, P.L.2
Wright, C.V.3
-
33
-
-
0034101423
-
Analysis of the Cre-mediated recombination driven by rat insulin promoter in embryonic and adult mouse pancreas
-
Gannon M, Shiota C, Postic C, Wright CV, Magnuson M. Analysis of the Cre-mediated recombination driven by rat insulin promoter in embryonic and adult mouse pancreas. Genesis. 2000;26:139–142.
-
(2000)
Genesis
, vol.26
, pp. 139-142
-
-
Gannon, M.1
Shiota, C.2
Postic, C.3
Wright, C.V.4
Magnuson, M.5
-
34
-
-
84876530204
-
Dicer1 is required to repress neuronal fate during endocrine cell maturation
-
Kanji MS, Martin MG, Bhushan A. Dicer1 is required to repress neuronal fate during endocrine cell maturation. Diabetes. 2013;62: 1602–1611.
-
(2013)
Diabetes
, vol.62
, pp. 1602-1611
-
-
Kanji, M.S.1
Martin, M.G.2
Bhushan, A.3
-
35
-
-
78049446505
-
Conditional gene targeting in mouse pancreatic β-cells: Analysis of ectopic Cre transgene expression in the brain
-
Wicksteed B, Brissova M, Yan W, et al. Conditional gene targeting in mouse pancreatic β-cells: analysis of ectopic Cre transgene expression in the brain. Diabetes. 2010;59:3090–3098.
-
(2010)
Diabetes
, vol.59
, pp. 3090-3098
-
-
Wicksteed, B.1
Brissova, M.2
Yan, W.3
-
36
-
-
20844432885
-
T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer
-
Cobb BS, Nesterova TB, Thompson E, et al. T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J Exp Med. 2005;201:1367–1373.
-
(2005)
J Exp Med
, vol.201
, pp. 1367-1373
-
-
Cobb, B.S.1
Nesterova, T.B.2
Thompson, E.3
-
37
-
-
77952979342
-
Isolation and culture of mouse pancreatic islets for ex vivo imaging studies with trappable or recombinant fluorescent probes
-
Ravier MA, Rutter GA. Isolation and culture of mouse pancreatic islets for ex vivo imaging studies with trappable or recombinant fluorescent probes. Methods Mol Biol. 2010;633:171–184.
-
(2010)
Methods Mol Biol
, vol.633
, pp. 171-184
-
-
Ravier, M.A.1
Rutter, G.A.2
-
38
-
-
77952587385
-
LKB1 deletion with the RIP2.Cre transgene modifies pancreatic β-cell morphology and enhances insulin secretion in vivo
-
Sun G, Tarasov AI, McGinty JA, et al. LKB1 deletion with the RIP2.Cre transgene modifies pancreatic β-cell morphology and enhances insulin secretion in vivo. Am J Physiol Endocrinol Metab. 2010;298:E1261–E1273.
-
(2010)
Am J Physiol Endocrinol Metab
, vol.298
, pp. 1261-1273
-
-
Sun, G.1
Tarasov, A.I.2
McGinty, J.A.3
-
39
-
-
84904985459
-
Regulation of microRNA biogenesis
-
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15:509–524.
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, pp. 509-524
-
-
Ha, M.1
Kim, V.N.2
-
40
-
-
84912006450
-
LKB1 and AMPK differentially regulate pancreatic β-cell identity
-
Kone M, Pullen TJ, Sun G, et al. LKB1 and AMPK differentially regulate pancreatic β-cell identity. FASEB J. 2014;28:4972–4985.
-
(2014)
FASEB J
, vol.28
, pp. 4972-4985
-
-
Kone, M.1
Pullen, T.J.2
Sun, G.3
-
41
-
-
84873815396
-
MicroRNA expression in β andβ cells of human pancreatic islets
-
Klein D, Misawa R, Bravo-Egana V, et al. MicroRNA expression in β andβ cells of human pancreatic islets. PLoS One. 2013;8:e55064.
-
(2013)
Plos One
, vol.8
-
-
Klein, D.1
Misawa, R.2
Bravo-Egana, V.3
-
42
-
-
84890494543
-
Role of reduced β-cell mass versus impaired β-cell function in the pathogenesis of type 2 diabetes
-
Meier JJ, Bonadonna RC. Role of reduced β-cell mass versus impaired β-cell function in the pathogenesis of type 2 diabetes. Diabetes Care. 2013;36(Suppl 2):S113–S119.
-
(2013)
Diabetes Care
, vol.36
, pp. 113-119
-
-
Meier, J.J.1
Bonadonna, R.C.2
-
43
-
-
84866389264
-
Pancreatic β celldedifferentiation as a mechanism of diabetic β cell failure
-
Talchai C, Xuan S, Lin HV, Sussel L, Accili D. Pancreatic β celldedifferentiation as a mechanism of diabetic β cell failure. Cell. 2012;150:1223–1234.
-
(2012)
Cell
, vol.150
, pp. 1223-1234
-
-
Talchai, C.1
Xuan, S.2
Lin, H.V.3
Sussel, L.4
Accili, D.5
-
44
-
-
62649123872
-
Dicer is required for maintaining adult pancreas
-
Morita S, Hara A, Kojima I, et al. Dicer is required for maintaining adult pancreas. PLoS One. 2009;4:e4212.
-
(2009)
Plos One
, pp. 4
-
-
Morita, S.1
Hara, A.2
Kojima, I.3
-
45
-
-
77956863085
-
MicroRNA signature of the human developing pancreas
-
Rosero S, Bravo-Egana V, Jiang Z, et al. MicroRNA signature of the human developing pancreas. BMC Genomics. 2010;11:509.
-
(2010)
BMC Genomics
, vol.11
, pp. 509
-
-
Rosero, S.1
Bravo-Egana, V.2
Jiang, Z.3
-
46
-
-
84923189105
-
The role of microRNAs in the pancreatic differentiation of pluripotent stem cells
-
Francis N, Moore M, Rutter GA, Burns C. The role of microRNAs in the pancreatic differentiation of pluripotent stem cells. Microrna. 2014;3:54–63.
-
(2014)
Microrna
, vol.3
, pp. 54-63
-
-
Francis, N.1
Moore, M.2
Rutter, G.A.3
Burns, C.4
-
47
-
-
9144270691
-
A pancreatic islet-specific microRNA regulates insulin secretion
-
Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432:226–230.
-
(2004)
Nature
, vol.432
, pp. 226-230
-
-
Poy, M.N.1
Eliasson, L.2
Krutzfeldt, J.3
-
48
-
-
33748749597
-
MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells
-
Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem. 2006;281:26932–26942.
-
(2006)
J Biol Chem
, vol.281
, pp. 26932-26942
-
-
Plaisance, V.1
Abderrahmani, A.2
Perret-Menoud, V.3
Jacquemin, P.4
Lemaigre, F.5
Regazzi, R.6
-
49
-
-
84890124194
-
Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes
-
Nesca V, Guay C, Jacovetti C, et al. Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia. 2013;56:2203–2212.
-
(2013)
Diabetologia
, vol.56
, pp. 2203-2212
-
-
Nesca, V.1
Guay, C.2
Jacovetti, C.3
-
50
-
-
1542271011
-
Differentially expressed Maf family transcription factors, c-Maf and MafA, activate glucagon and insulin gene expression in pancreatic islet β- and β-cells
-
Kataoka K, Shioda S, Ando K, Sakagami K, Handa H, Yasuda K. Differentially expressed Maf family transcription factors, c-Maf and MafA, activate glucagon and insulin gene expression in pancreatic islet β- and β-cells. J Mol Endocrinol. 2004;32:9–20.
-
(2004)
J Mol Endocrinol
, vol.32
, pp. 9-20
-
-
Kataoka, K.1
Shioda, S.2
O, K.3
Sakagami, K.4
Handa, H.5
Yasuda, K.6
-
51
-
-
79961198913
-
Glucagon gene expression in the endocrine pancreas: The role of the transcription factor Pax6 in β-cell differentiation, glucagon biosynthesis and secretion
-
Gosmain Y, Cheyssac C, Heddad Masson M, Dibner C, Philippe J. Glucagon gene expression in the endocrine pancreas: the role of the transcription factor Pax6 in β-cell differentiation, glucagon biosynthesis and secretion. Diabetes Obes Metab. 2011;13(Suppl 1):31–38.
-
(2011)
Diabetes Obes Metab
, vol.13
, pp. 31-38
-
-
Gosmain, Y.1
Cheyssac, C.2
Heddad Masson, M.3
Dibner, C.4
Philippe, J.5
-
52
-
-
37649021046
-
Identification of human microRNA targets from isolated argonaute protein complexes
-
Beitzinger M, Peters L, Zhu JY, Kremmer E, Meister G. Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol. 2007;4:76–84.
-
(2007)
RNA Biol
, vol.4
, pp. 76-84
-
-
Beitzinger, M.1
Peters, L.2
Zhu, J.Y.3
Kremmer, E.4
Meister, G.5
-
53
-
-
34547126004
-
MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic β-cell lines
-
Baroukh N, Ravier MA, Loder MK, et al. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic β-cell lines. J Biol Chem. 2007;282:19575–19588.
-
(2007)
J Biol Chem
, vol.282
, pp. 19575-19588
-
-
Baroukh, N.1
Ravier, M.A.2
Loder, M.K.3
-
54
-
-
84876484626
-
MiRNA-30a–5p-mediated silencing of Beta2/NeuroD expression is an important initial event of glucotoxicity- induced β cell dysfunction in rodent models
-
Kim JW, You YH, Jung S, et al. miRNA-30a–5p-mediated silencing of Beta2/NeuroD expression is an important initial event of glucotoxicity- induced β cell dysfunction in rodent models. Diabetologia. 2013;56:847–855.
-
(2013)
Diabetologia
, vol.56
, pp. 847-855
-
-
Kim, J.W.1
You, Y.H.2
Jung, S.3
-
55
-
-
84863214806
-
Overexpression of monocarboxylate transporter-1 (Slc16a1) in mouse pancreatic β-cells leads to relative hyperinsulinism during exercise
-
Pullen TJ, Sylow L, Sun G, Halestrap AP, Richter EA, Rutter GA. Overexpression of monocarboxylate transporter-1 (Slc16a1) in mouse pancreatic β-cells leads to relative hyperinsulinism during exercise. Diabetes. 2012;61:1719–1725.
-
(2012)
Diabetes
, vol.61
, pp. 1719-1725
-
-
Pullen, T.J.1
Sylow, L.2
Sun, G.3
Halestrap, A.P.4
Richter, E.A.5
Rutter, G.A.6
-
56
-
-
0032479342
-
Overexpression of lactate dehydrogenase A attenuates glucose-induced insulin secretion in stable MIN-6 β-cell lines
-
Zhao C, Rutter GA. Overexpression of lactate dehydrogenase A attenuates glucose-induced insulin secretion in stable MIN-6 β-cell lines. FEBS Lett. 1998;430:213–216.
-
(1998)
FEBS Lett
, vol.430
, pp. 213-216
-
-
Zhao, C.1
Rutter, G.A.2
-
57
-
-
36849075622
-
Pax-6 and c-Maf functionally interact with the β-cell-specific DNA element G1 in vivo to promote glucagon gene expression
-
Gosmain Y, Avril I, Mamin A, Philippe J. Pax-6 and c-Maf functionally interact with the β-cell-specific DNA element G1 in vivo to promote glucagon gene expression. J Biol Chem. 2007;282:35024–35034.
-
(2007)
J Biol Chem
, vol.282
, pp. 35024-35034
-
-
Gosmain, Y.1
Avril, I.2
Mamin, A.3
Philippe, J.4
-
58
-
-
84905962382
-
The regulatory roles of microRNA- 146b–5p and its target platelet-derived growth factor receptor β (PDGFRA) in erythropoiesis and megakaryocytopoiesis
-
Zhai PF, Wang F, Su R, et al. The regulatory roles of microRNA- 146b–5p and its target platelet-derived growth factor receptor β (PDGFRA) in erythropoiesis and megakaryocytopoiesis. J Biol Chem. 2014;289:22600–22613.
-
(2014)
J Biol Chem
, vol.289
, pp. 22600-22613
-
-
Zhai, P.F.1
Wang, F.2
Su, R.3
-
59
-
-
84879267458
-
MiR-34a/c-dependent PDGFR-β/β downregulation inhibits tumorigenesis and enhances TRAIL-induced apoptosis in lung cancer
-
Garofalo M, Jeon YJ, Nuovo GJ, et al. MiR-34a/c-dependent PDGFR-β/β downregulation inhibits tumorigenesis and enhances TRAIL-induced apoptosis in lung cancer. PLoS One. 2013;8: e67581.
-
(2013)
Plos One
, vol.8
-
-
Garofalo, M.1
Jeon, Y.J.2
Nuovo, G.J.3
-
61
-
-
0033540037
-
Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis
-
Maechler P, Wollheim CB. Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature. 1999;402: 685–689.
-
(1999)
Nature
, vol.402
, pp. 685-689
-
-
Maechler, P.1
Wollheim, C.B.2
-
62
-
-
84919685379
-
Glutamate acts as a key signal linking glucose metabolism to incretin/cAMP action to amplify insulin secretion
-
Gheni G, Ogura M, Iwasaki M, et al. Glutamate acts as a key signal linking glucose metabolism to incretin/cAMP action to amplify insulin secretion. Cell Rep. 2014;9:661–673.
-
(2014)
Cell Rep
, vol.9
, pp. 661-673
-
-
Gheni, G.1
Ogura, M.2
Iwasaki, M.3
-
63
-
-
84919496171
-
Regulation of immune responses by the neonatal fc receptor and its therapeutic implications
-
Rath T, Baker K, Pyzik M, Blumberg RS. Regulation of immune responses by the neonatal fc receptor and its therapeutic implications. Front Immunol. 2014;5:664.
-
(2014)
Front Immunol
, vol.5
, pp. 664
-
-
Rath, T.1
Baker, K.2
Pyzik, M.3
Blumberg, R.S.4
|