메뉴 건너뛰기




Volumn 36, Issue , 2015, Pages 137-145

DNA excision repair at telomeres

Author keywords

Base excision repair; Genome stability; Mismatch repair; Nucleotide excision repair; Telomere

Indexed keywords

DNA; DNA GLYCOSYLTRANSFERASE; EXCISION REPAIR CROSS COMPLEMENTING PROTEIN 1; XERODERMA PIGMENTOSUM GROUP C PROTEIN; XERODERMA PIGMENTOSUM GROUP D PROTEIN;

EID: 84945324840     PISSN: 15687864     EISSN: 15687856     Source Type: Journal    
DOI: 10.1016/j.dnarep.2015.09.017     Document Type: Review
Times cited : (38)

References (122)
  • 1
    • 0029563009 scopus 로고
    • Telomeres: beginning to understand the end
    • Zakian V.A. Telomeres: beginning to understand the end. Science 1995, 270:1601-1607.
    • (1995) Science , vol.270 , pp. 1601-1607
    • Zakian, V.A.1
  • 2
    • 24944460598 scopus 로고    scopus 로고
    • Shelterin: the protein complex that shapes and safeguards human telomeres
    • de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005, 19:2100-2110.
    • (2005) Genes Dev. , vol.19 , pp. 2100-2110
    • de Lange, T.1
  • 3
    • 80052398381 scopus 로고    scopus 로고
    • How shelterin solves the telomere end-protection problem
    • de Lange T. How shelterin solves the telomere end-protection problem. Cold Spring Harb. Symp. Quant. Biol. 2010, 75:167-177.
    • (2010) Cold Spring Harb. Symp. Quant. Biol. , vol.75 , pp. 167-177
    • de Lange, T.1
  • 4
    • 46249125488 scopus 로고    scopus 로고
    • How shelterin protects mammalian telomeres
    • Palm W., de Lange T. How shelterin protects mammalian telomeres. Annu. Rev. Genet. 2008, 42:301-334.
    • (2008) Annu. Rev. Genet. , vol.42 , pp. 301-334
    • Palm, W.1    de Lange, T.2
  • 5
    • 0038799736 scopus 로고    scopus 로고
    • Oxidative DNA damage: mechanisms, mutation, and disease
    • Cooke M.S. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003, 17:1195-1214.
    • (2003) FASEB J. , vol.17 , pp. 1195-1214
    • Cooke, M.S.1
  • 6
    • 0141757479 scopus 로고    scopus 로고
    • DNA damage checkpoint control in cells exposed to ionizing radiation
    • Iliakis G., Wang Y., Guan J., Wang H. DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 2003, 22:5834-5847.
    • (2003) Oncogene , vol.22 , pp. 5834-5847
    • Iliakis, G.1    Wang, Y.2    Guan, J.3    Wang, H.4
  • 7
    • 84875935346 scopus 로고    scopus 로고
    • Chemical-induced DNA damage and human cancer risk
    • Poirier M.C. Chemical-induced DNA damage and human cancer risk. Discov. Med. 2012, 14:283-288.
    • (2012) Discov. Med. , vol.14 , pp. 283-288
    • Poirier, M.C.1
  • 8
    • 84919390877 scopus 로고    scopus 로고
    • The role of double-strand break repair pathways at functional and dysfunctional telomeres
    • Doksani Y., de Lange T. The role of double-strand break repair pathways at functional and dysfunctional telomeres. Cold Spring Harb. Perspect. Biol. 2014, 6:a016576.
    • (2014) Cold Spring Harb. Perspect. Biol. , vol.6 , pp. a016576
    • Doksani, Y.1    de Lange, T.2
  • 9
    • 38349073475 scopus 로고    scopus 로고
    • DNA damage response at functional and dysfunctional telomeres
    • Longhese M.P. DNA damage response at functional and dysfunctional telomeres. Genes Dev. 2008, 22:125-140.
    • (2008) Genes Dev. , vol.22 , pp. 125-140
    • Longhese, M.P.1
  • 10
    • 84902073074 scopus 로고    scopus 로고
    • Base excision repair: a critical player in many games
    • Wallace S.S. Base excision repair: a critical player in many games. DNA Repair 2014, 19:14-26.
    • (2014) DNA Repair , vol.19 , pp. 14-26
    • Wallace, S.S.1
  • 11
    • 0036629255 scopus 로고    scopus 로고
    • Oxidative stress shortens telomeres
    • von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem. Sci. 2002, 27:339-344.
    • (2002) Trends Biochem. Sci. , vol.27 , pp. 339-344
    • von Zglinicki, T.1
  • 12
    • 0036236630 scopus 로고    scopus 로고
    • Replicative aging, telomeres, and oxidative stress
    • Saretzki G., Von Zglinicki T. Replicative aging, telomeres, and oxidative stress. Ann. N. Y. Acad. Sci. 2002, 959:24-29.
    • (2002) Ann. N. Y. Acad. Sci. , vol.959 , pp. 24-29
    • Saretzki, G.1    Von Zglinicki, T.2
  • 14
    • 84929121141 scopus 로고    scopus 로고
    • Nanopore detection of 8-oxoguanine in the human telomere repeat sequence
    • An N., Fleming A.M., White H.S., Burrows C.J. Nanopore detection of 8-oxoguanine in the human telomere repeat sequence. ACS Nano 2015, 9:4296-4307.
    • (2015) ACS Nano , vol.9 , pp. 4296-4307
    • An, N.1    Fleming, A.M.2    White, H.S.3    Burrows, C.J.4
  • 15
    • 0032772792 scopus 로고    scopus 로고
    • Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening
    • Oikawa S., Kawanishi S. Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening. FEBS Lett. 1999, 453:365-368.
    • (1999) FEBS Lett. , vol.453 , pp. 365-368
    • Oikawa, S.1    Kawanishi, S.2
  • 17
    • 14844354067 scopus 로고    scopus 로고
    • Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2
    • Opresko J., Fan S., Wilson V.A. Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2. Nucleic Acids Res. 2005, 33:1230-1239.
    • (2005) Nucleic Acids Res. , vol.33 , pp. 1230-1239
    • Opresko, J.1    Fan, S.2    Wilson, V.A.3
  • 18
    • 78650419603 scopus 로고    scopus 로고
    • Factors that influence telomeric oxidative base damage and repair by DNA glycosylase OGG1
    • Rhee D.B., Ghosh A., Lu J., Bohr V.A., Liu Y. Factors that influence telomeric oxidative base damage and repair by DNA glycosylase OGG1. DNA Repair 2011, 10:34-44.
    • (2011) DNA Repair , vol.10 , pp. 34-44
    • Rhee, D.B.1    Ghosh, A.2    Lu, J.3    Bohr, V.A.4    Liu, Y.5
  • 19
    • 84880822108 scopus 로고    scopus 로고
    • Defective repair of oxidative base lesions by the DNA glycosylase Nth1 associates with multiple telomere defects
    • Vallabhaneni H., O'Callaghan N., Sidorova J., Liu Y. Defective repair of oxidative base lesions by the DNA glycosylase Nth1 associates with multiple telomere defects. PLoS Genet. 2013, 9:e1003639.
    • (2013) PLoS Genet. , vol.9
    • Vallabhaneni, H.1    O'Callaghan, N.2    Sidorova, J.3    Liu, Y.4
  • 20
    • 84884538097 scopus 로고    scopus 로고
    • Neil3 and NEIL1 DNA glycosylases remove oxidative damages from quadruplex DNA and exhibit preferences for lesions in the telomeric sequence context
    • Zhou J., Liu M., Fleming A.M., Burrows C.J., Wallace S.S. Neil3 and NEIL1 DNA glycosylases remove oxidative damages from quadruplex DNA and exhibit preferences for lesions in the telomeric sequence context. J. Biol. Chem. 2013, 288:27263-27272.
    • (2013) J. Biol. Chem. , vol.288 , pp. 27263-27272
    • Zhou, J.1    Liu, M.2    Fleming, A.M.3    Burrows, C.J.4    Wallace, S.S.5
  • 21
    • 84930225329 scopus 로고    scopus 로고
    • The NEIL glycosylases remove oxidized guanine lesions from telomeric and promoter quadruplex DNA structures
    • Zhou J., Fleming A.M., Averill A.M., Burrows C.J., Wallace S.S. The NEIL glycosylases remove oxidized guanine lesions from telomeric and promoter quadruplex DNA structures. Nucleic Acids Res. 2015, 43:4039-4054.
    • (2015) Nucleic Acids Res. , vol.43 , pp. 4039-4054
    • Zhou, J.1    Fleming, A.M.2    Averill, A.M.3    Burrows, C.J.4    Wallace, S.S.5
  • 22
    • 58149085861 scopus 로고    scopus 로고
    • Purification of proteins associated with specific genomic Loci
    • Dejardin J., Kingston R.E. Purification of proteins associated with specific genomic Loci. Cell 2009, 136:175-186.
    • (2009) Cell , vol.136 , pp. 175-186
    • Dejardin, J.1    Kingston, R.E.2
  • 25
    • 84868035470 scopus 로고    scopus 로고
    • Rules of engagement for base excision repair in chromatin
    • Odell I.D., Wallace S.S., Pederson D.S. Rules of engagement for base excision repair in chromatin. J. Cell. Physiol. 2013, 228:258-266.
    • (2013) J. Cell. Physiol. , vol.228 , pp. 258-266
    • Odell, I.D.1    Wallace, S.S.2    Pederson, D.S.3
  • 26
    • 31544482730 scopus 로고    scopus 로고
    • Telomere repeat binding factor 2 interacts with base excision repair proteins and stimulates DNA synthesis by DNA polymerase beta
    • Muftuoglu M., Wong H.K., Imam S.Z., Wilson D.M., Bohr V.A., Opresko P.L. Telomere repeat binding factor 2 interacts with base excision repair proteins and stimulates DNA synthesis by DNA polymerase beta. Cancer Res. 2006, 66:113-124.
    • (2006) Cancer Res. , vol.66 , pp. 113-124
    • Muftuoglu, M.1    Wong, H.K.2    Imam, S.Z.3    Wilson, D.M.4    Bohr, V.A.5    Opresko, P.L.6
  • 27
    • 84857957437 scopus 로고    scopus 로고
    • Telomere proteins POT1, TRF1 and TRF2 augment long-patch base excision repair in vitro
    • Miller A.S., Balakrishnan L., Buncher N.A., Opresko P.L., Bambara R.A. Telomere proteins POT1, TRF1 and TRF2 augment long-patch base excision repair in vitro. Cell Cycle 2012, 11:998-1007.
    • (2012) Cell Cycle , vol.11 , pp. 998-1007
    • Miller, A.S.1    Balakrishnan, L.2    Buncher, N.A.3    Opresko, P.L.4    Bambara, R.A.5
  • 28
    • 58549092574 scopus 로고    scopus 로고
    • DNA repair deficiency and neurological disease
    • McKinnon P.J. DNA repair deficiency and neurological disease. Nat. Rev. Neurosci. 2009, 10:100-112.
    • (2009) Nat. Rev. Neurosci. , vol.10 , pp. 100-112
    • McKinnon, P.J.1
  • 29
    • 32644450616 scopus 로고    scopus 로고
    • Molecular mechanisms of mammalian global genome nucleotide excision repair
    • Gillet L.C., Scharer O.D. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem. Rev. 2006, 106:253-276.
    • (2006) Chem. Rev. , vol.106 , pp. 253-276
    • Gillet, L.C.1    Scharer, O.D.2
  • 30
    • 75749144248 scopus 로고    scopus 로고
    • Regulation of damage recognition in mammalian global genomic nucleotide excision repair
    • Sugasawa K. Regulation of damage recognition in mammalian global genomic nucleotide excision repair. Mutat. Res. 2010, 685:29-37.
    • (2010) Mutat. Res. , vol.685 , pp. 29-37
    • Sugasawa, K.1
  • 32
    • 0033118354 scopus 로고    scopus 로고
    • Molecular mechanism of nucleotide excision repair
    • de Laat W.L., Jaspers N.G., Hoeijmakers J.H. Molecular mechanism of nucleotide excision repair. Genes Dev. 1999, 13:768-785.
    • (1999) Genes Dev. , vol.13 , pp. 768-785
    • de Laat, W.L.1    Jaspers, N.G.2    Hoeijmakers, J.H.3
  • 33
    • 0035374836 scopus 로고    scopus 로고
    • Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair
    • Araki M., Masutani C., Takemura M., Uchida A., Sugasawa K., Kondoh J., Ohkuma Y., Hanaoka F. Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J. Biol. Chem. 2001, 276:18665-18672.
    • (2001) J. Biol. Chem. , vol.276 , pp. 18665-18672
    • Araki, M.1    Masutani, C.2    Takemura, M.3    Uchida, A.4    Sugasawa, K.5    Kondoh, J.6    Ohkuma, Y.7    Hanaoka, F.8
  • 34
    • 62349131315 scopus 로고    scopus 로고
    • DNA repair in mammalian cells: Nucleotide excision repair: variations on versatility
    • Nouspikel T. DNA repair in mammalian cells: Nucleotide excision repair: variations on versatility. Cell. Mol. Life Sci. 2009, 66:994-1009.
    • (2009) Cell. Mol. Life Sci. , vol.66 , pp. 994-1009
    • Nouspikel, T.1
  • 35
    • 0025775473 scopus 로고
    • Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes
    • Venema J., van Hoffen A., Karcagi V., Natarajan A.T., van Zeeland A.A., Mullenders L.H. Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes. Mol. Cell. Biol. 1991, 11:4128-4134.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 4128-4134
    • Venema, J.1    van Hoffen, A.2    Karcagi, V.3    Natarajan, A.T.4    van Zeeland, A.A.5    Mullenders, L.H.6
  • 36
    • 0034054019 scopus 로고    scopus 로고
    • Nucleotide excision repair and human syndromes
    • de Boer J., Hoeijmakers J.H. Nucleotide excision repair and human syndromes. Carcinogenesis 2000, 21:453-460.
    • (2000) Carcinogenesis , vol.21 , pp. 453-460
    • de Boer, J.1    Hoeijmakers, J.H.2
  • 37
    • 0027989651 scopus 로고
    • Xeroderma pigmentosum group E binding factor recognizes a broad spectrum of DNA damage
    • Payne A., Chu G. Xeroderma pigmentosum group E binding factor recognizes a broad spectrum of DNA damage. Mutat. Res. 1994, 310:89-102.
    • (1994) Mutat. Res. , vol.310 , pp. 89-102
    • Payne, A.1    Chu, G.2
  • 38
    • 84902081701 scopus 로고    scopus 로고
    • The complex choreography of transcription-coupled repair
    • Spivak G., Ganesan A.K. The complex choreography of transcription-coupled repair. DNA Repair 2014, 19:64-70.
    • (2014) DNA Repair , vol.19 , pp. 64-70
    • Spivak, G.1    Ganesan, A.K.2
  • 39
    • 34347332162 scopus 로고    scopus 로고
    • The molecular mechanism of transcription-coupled DNA repair
    • Savery N.J. The molecular mechanism of transcription-coupled DNA repair. Trends Microbiol. 2007, 15:326-333.
    • (2007) Trends Microbiol. , vol.15 , pp. 326-333
    • Savery, N.J.1
  • 40
    • 56749157389 scopus 로고    scopus 로고
    • Transcription-coupled DNA repair: two decades of progress and surprises
    • Hanawalt P.C., Spivak G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat. Rev. Mol. Cell Biol. 2008, 9:958-970.
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 958-970
    • Hanawalt, P.C.1    Spivak, G.2
  • 41
    • 84878011067 scopus 로고    scopus 로고
    • The role of Cockayne syndrome group A (CSA) protein in transcription-coupled nucleotide excision repair
    • Saijo M. The role of Cockayne syndrome group A (CSA) protein in transcription-coupled nucleotide excision repair. Mech. Ageing Dev. 2013, 134:196-201.
    • (2013) Mech. Ageing Dev. , vol.134 , pp. 196-201
    • Saijo, M.1
  • 43
    • 77952396942 scopus 로고    scopus 로고
    • Human telomeres are hypersensitive to UV-induced DNA Damage and refractory to repair
    • Rochette P.J., Brash D.E. Human telomeres are hypersensitive to UV-induced DNA Damage and refractory to repair. PLoS Genet. 2010, 6:e1000926.
    • (2010) PLoS Genet. , vol.6
    • Rochette, P.J.1    Brash, D.E.2
  • 44
    • 0030038925 scopus 로고    scopus 로고
    • Gene-specific DNA repair and steady state transcription of the MDR1 gene in human tumor cell lines
    • Evans M.K., Chin K.V., Gottesman M.M., Bohr V.A. Gene-specific DNA repair and steady state transcription of the MDR1 gene in human tumor cell lines. Oncogene 1996, 12:651-658.
    • (1996) Oncogene , vol.12 , pp. 651-658
    • Evans, M.K.1    Chin, K.V.2    Gottesman, M.M.3    Bohr, V.A.4
  • 45
    • 0028297860 scopus 로고
    • Gene-specific DNA repair of UV-induced cyclobutane pyrimidine dimers in some cancer-prone and premature-aging human syndromes
    • Evans M.K., Bohr V.A. Gene-specific DNA repair of UV-induced cyclobutane pyrimidine dimers in some cancer-prone and premature-aging human syndromes. Mutat. Res. 1994, 314:221-231.
    • (1994) Mutat. Res. , vol.314 , pp. 221-231
    • Evans, M.K.1    Bohr, V.A.2
  • 46
    • 0027385994 scopus 로고
    • DNA strand bias in the repair of the p53 gene in normal human and xeroderma pigmentosum group C fibroblasts
    • Evans M.K., Taffe B.G., Harris C.C., Bohr V.A. DNA strand bias in the repair of the p53 gene in normal human and xeroderma pigmentosum group C fibroblasts. Cancer Res. 1993, 53:5377-5381.
    • (1993) Cancer Res. , vol.53 , pp. 5377-5381
    • Evans, M.K.1    Taffe, B.G.2    Harris, C.C.3    Bohr, V.A.4
  • 47
    • 0027456515 scopus 로고
    • A non-lymphocyte-depleting monoclonal antibody to the adhesion molecule LFA-1 (CD11a) prevents sensitization to alloantigens and effectively prolongs the survival of heart allografts
    • Nakakura E.K., McCabe S.M., Zheng B., Shorthouse R.A., Scheiner T.M., Blank G., Jardieu P.M., Morris R.E. A non-lymphocyte-depleting monoclonal antibody to the adhesion molecule LFA-1 (CD11a) prevents sensitization to alloantigens and effectively prolongs the survival of heart allografts. Transplant. Proc. 1993, 25:809-812.
    • (1993) Transplant. Proc. , vol.25 , pp. 809-812
    • Nakakura, E.K.1    McCabe, S.M.2    Zheng, B.3    Shorthouse, R.A.4    Scheiner, T.M.5    Blank, G.6    Jardieu, P.M.7    Morris, R.E.8
  • 48
    • 0027480073 scopus 로고
    • Gene-specific DNA repair in xeroderma pigmentosum complementation groups A, C, D, and F. Relation to cellular survival and clinical features
    • Evans M.K., Robbins J.H., Ganges M.B., Tarone R.E., Nairn R.S., Bohr V.A. Gene-specific DNA repair in xeroderma pigmentosum complementation groups A, C, D, and F. Relation to cellular survival and clinical features. J. Biol. Chem. 1993, 268:4839-4847.
    • (1993) J. Biol. Chem. , vol.268 , pp. 4839-4847
    • Evans, M.K.1    Robbins, J.H.2    Ganges, M.B.3    Tarone, R.E.4    Nairn, R.S.5    Bohr, V.A.6
  • 49
    • 84941085698 scopus 로고    scopus 로고
    • Telomeres are partly shielded from UV-induced damage and proficient for photoproduct-removal by nucleotide excision repair
    • Parikh D., Fouquerel E., Murphy C.T., Wang H., Opresko P.L. Telomeres are partly shielded from UV-induced damage and proficient for photoproduct-removal by nucleotide excision repair. Nat. Commun. 2015, 6:8214.
    • (2015) Nat. Commun. , vol.6 , pp. 8214
    • Parikh, D.1    Fouquerel, E.2    Murphy, C.T.3    Wang, H.4    Opresko, P.L.5
  • 50
    • 0032703301 scopus 로고    scopus 로고
    • Replication of damaged DNA: molecular defect in xeroderma pigmentosum variant cells
    • Cordonnier A.M., Fuchs R.P. Replication of damaged DNA: molecular defect in xeroderma pigmentosum variant cells. Mutat. Res. 1999, 435:111-119.
    • (1999) Mutat. Res. , vol.435 , pp. 111-119
    • Cordonnier, A.M.1    Fuchs, R.P.2
  • 51
    • 84941031746 scopus 로고    scopus 로고
    • Polymerase eta suppresses telomere defects induced by DNA damaging agents
    • Pope-Varsalona H., Liu F.J., Guzik L., Opresko P.L. Polymerase eta suppresses telomere defects induced by DNA damaging agents. Nucleic Acids Res. 2014, 42:13096-13109.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 13096-13109
    • Pope-Varsalona, H.1    Liu, F.J.2    Guzik, L.3    Opresko, P.L.4
  • 52
    • 0347416975 scopus 로고    scopus 로고
    • ERCC1/XPF removes the 3' overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes
    • Zhu X.D., Niedernhofer L., Kuster B., Mann M., Hoeijmakers J.H., de Lange T. ERCC1/XPF removes the 3' overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Mol. Cell 2003, 12:1489-1498.
    • (2003) Mol. Cell , vol.12 , pp. 1489-1498
    • Zhu, X.D.1    Niedernhofer, L.2    Kuster, B.3    Mann, M.4    Hoeijmakers, J.H.5    de Lange, T.6
  • 53
    • 27144515686 scopus 로고    scopus 로고
    • XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer
    • Munoz P., Blanco R., Flores J.M., Blasco M.A. XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer. Nat. Genet. 2005, 37:1063-1071.
    • (2005) Nat. Genet. , vol.37 , pp. 1063-1071
    • Munoz, P.1    Blanco, R.2    Flores, J.M.3    Blasco, M.A.4
  • 54
    • 79953783489 scopus 로고    scopus 로고
    • Hydrogen peroxide induced genomic instability in nucleotide excision repair-deficient lymphoblastoid cells
    • Gopalakrishnan K., Low G.K., Ting A.P., Srikanth P., Slijepcevic P., Hande M.P. Hydrogen peroxide induced genomic instability in nucleotide excision repair-deficient lymphoblastoid cells. Genome Integr. 2010, 1:16.
    • (2010) Genome Integr. , vol.1 , pp. 16
    • Gopalakrishnan, K.1    Low, G.K.2    Ting, A.P.3    Srikanth, P.4    Slijepcevic, P.5    Hande, M.P.6
  • 55
    • 77951950271 scopus 로고    scopus 로고
    • Telomere attrition and genomic instability in xeroderma pigmentosum type-b deficient fibroblasts under oxidative stress
    • Ting A.P., Low G.K., Gopalakrishnan K., Hande M.P. Telomere attrition and genomic instability in xeroderma pigmentosum type-b deficient fibroblasts under oxidative stress. J. Cell. Mol. Med. 2010, 14:403-416.
    • (2010) J. Cell. Mol. Med. , vol.14 , pp. 403-416
    • Ting, A.P.1    Low, G.K.2    Gopalakrishnan, K.3    Hande, M.P.4
  • 56
    • 84875447015 scopus 로고    scopus 로고
    • Telomere length and telomerase activity impact the UV sensitivity syndrome xeroderma pigmentosum C
    • Stout G.J., Blasco M.A. Telomere length and telomerase activity impact the UV sensitivity syndrome xeroderma pigmentosum C. Cancer Res. 2013, 73:1844-1854.
    • (2013) Cancer Res. , vol.73 , pp. 1844-1854
    • Stout, G.J.1    Blasco, M.A.2
  • 57
    • 84878012786 scopus 로고    scopus 로고
    • Structure, function and regulation of CSB: a multi-talented gymnast
    • Lake R.J., Fan H.Y. Structure, function and regulation of CSB: a multi-talented gymnast. Mech. Ageing Dev. 2013, 134:202-211.
    • (2013) Mech. Ageing Dev. , vol.134 , pp. 202-211
    • Lake, R.J.1    Fan, H.Y.2
  • 60
    • 84868118733 scopus 로고    scopus 로고
    • Cockayne Syndrome group B protein interacts with TRF2 and regulates telomere length and stability
    • Batenburg N.L., Mitchell T.R., Leach D.M., Rainbow A.J., Zhu X.D. Cockayne Syndrome group B protein interacts with TRF2 and regulates telomere length and stability. Nucleic Acids Res. 2012, 40:9661-9674.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 9661-9674
    • Batenburg, N.L.1    Mitchell, T.R.2    Leach, D.M.3    Rainbow, A.J.4    Zhu, X.D.5
  • 61
    • 0031027618 scopus 로고    scopus 로고
    • Control of telomere length by the human telomeric protein TRF1
    • van Steensel B., de Lange T. Control of telomere length by the human telomeric protein TRF1. Nature 1997, 385:740-743.
    • (1997) Nature , vol.385 , pp. 740-743
    • van Steensel, B.1    de Lange, T.2
  • 63
    • 0036241994 scopus 로고    scopus 로고
    • Targeting assay to study the cis functions of human telomeric proteins: evidence for inhibition of telomerase by TRF1 and for activation of telomere degradation by TRF2
    • Ancelin K., Brunori M., Bauwens S., Koering C.E., Brun C., Ricoul M., Pommier J.P., Sabatier L., Gilson E. Targeting assay to study the cis functions of human telomeric proteins: evidence for inhibition of telomerase by TRF1 and for activation of telomere degradation by TRF2. Mol. Cell. Biol. 2002, 22:3474-3487.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 3474-3487
    • Ancelin, K.1    Brunori, M.2    Bauwens, S.3    Koering, C.E.4    Brun, C.5    Ricoul, M.6    Pommier, J.P.7    Sabatier, L.8    Gilson, E.9
  • 64
    • 0026563895 scopus 로고
    • Saccharomyces telomeres assume a non-nucleosomal chromatin structure
    • Wright J.H., Gottschling D.E., Zakian V.A. Saccharomyces telomeres assume a non-nucleosomal chromatin structure. Genes Dev. 1992, 6:197-210.
    • (1992) Genes Dev. , vol.6 , pp. 197-210
    • Wright, J.H.1    Gottschling, D.E.2    Zakian, V.A.3
  • 65
    • 0037636027 scopus 로고    scopus 로고
    • The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae
    • Rusche L.N., Kirchmaier A.L., Rine J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Ann. Rev. Biochem. 2003, 72:481-516.
    • (2003) Ann. Rev. Biochem. , vol.72 , pp. 481-516
    • Rusche, L.N.1    Kirchmaier, A.L.2    Rine, J.3
  • 66
    • 0025201982 scopus 로고
    • Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription
    • Gottschling D.E., Aparicio O.M., Billington B.L., Zakian V.A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 1990, 63:751-762.
    • (1990) Cell , vol.63 , pp. 751-762
    • Gottschling, D.E.1    Aparicio, O.M.2    Billington, B.L.3    Zakian, V.A.4
  • 67
    • 0029820640 scopus 로고    scopus 로고
    • The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae
    • Gotta M., Laroche T., Formenton A., Maillet L., Scherthan H., Gasser S.M. The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J. Cell Biol. 1996, 134:1349-1363.
    • (1996) J. Cell Biol. , vol.134 , pp. 1349-1363
    • Gotta, M.1    Laroche, T.2    Formenton, A.3    Maillet, L.4    Scherthan, H.5    Gasser, S.M.6
  • 68
    • 79551696674 scopus 로고    scopus 로고
    • Clustering heterochromatin: sir3 promotes telomere clustering independently of silencing in yeast
    • Ruault M., De Meyer A., Loiodice I., Taddei A. Clustering heterochromatin: sir3 promotes telomere clustering independently of silencing in yeast. J. Cell Biol. 2011, 192:417-431.
    • (2011) J. Cell Biol. , vol.192 , pp. 417-431
    • Ruault, M.1    De Meyer, A.2    Loiodice, I.3    Taddei, A.4
  • 69
    • 0033522444 scopus 로고    scopus 로고
    • Limitations of silencing at native yeast telomeres
    • Pryde F.E., Louis E.J. Limitations of silencing at native yeast telomeres. EMBO J. 1999, 18:2538-2550.
    • (1999) EMBO J. , vol.18 , pp. 2538-2550
    • Pryde, F.E.1    Louis, E.J.2
  • 70
    • 75049083495 scopus 로고    scopus 로고
    • Deletion of Ogg1 DNA glycosylase results in telomere base damage and length alteration in yeast
    • Lu J., Liu Y. Deletion of Ogg1 DNA glycosylase results in telomere base damage and length alteration in yeast. EMBO J. 2010, 29:398-409.
    • (2010) EMBO J. , vol.29 , pp. 398-409
    • Lu, J.1    Liu, Y.2
  • 71
    • 0032913570 scopus 로고    scopus 로고
    • Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae
    • Swanson R.L., Morey N.J., Doetsch P.W., Jinks-Robertson S. Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae. Mol. Cell. Biol. 1999, 19:2929-2935.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 2929-2935
    • Swanson, R.L.1    Morey, N.J.2    Doetsch, P.W.3    Jinks-Robertson, S.4
  • 72
    • 33745173497 scopus 로고    scopus 로고
    • A genome-wide distribution of 8-oxoguanine correlates with the preferred regions for recombination and single nucleotide polymorphism in the human genome
    • Ohno M., Miura T., Furuichi M., Tominaga Y., Tsuchimoto D., Sakumi K., Nakabeppu Y. A genome-wide distribution of 8-oxoguanine correlates with the preferred regions for recombination and single nucleotide polymorphism in the human genome. Genome Res. 2006, 16:567-575.
    • (2006) Genome Res. , vol.16 , pp. 567-575
    • Ohno, M.1    Miura, T.2    Furuichi, M.3    Tominaga, Y.4    Tsuchimoto, D.5    Sakumi, K.6    Nakabeppu, Y.7
  • 73
    • 0141509951 scopus 로고    scopus 로고
    • Repair of UV lesions in silenced chromatin provides in vivo evidence for a compact chromatin structure
    • Livingstone-Zatchej M., Marcionelli R., Moller K., de Pril R., Thoma F. Repair of UV lesions in silenced chromatin provides in vivo evidence for a compact chromatin structure. J. Biol. Chem. 2003, 278:37471-37479.
    • (2003) J. Biol. Chem. , vol.278 , pp. 37471-37479
    • Livingstone-Zatchej, M.1    Marcionelli, R.2    Moller, K.3    de Pril, R.4    Thoma, F.5
  • 74
    • 77955829930 scopus 로고    scopus 로고
    • Silenced yeast chromatin is maintained by Sir2 in preference to permitting histone acetylations for efficient NER
    • Irizar A., Yu Y., Reed S.H., Louis E.J., Waters R. Silenced yeast chromatin is maintained by Sir2 in preference to permitting histone acetylations for efficient NER. Nucleic Acids Res. 2010, 38:4675-4686.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 4675-4686
    • Irizar, A.1    Yu, Y.2    Reed, S.H.3    Louis, E.J.4    Waters, R.5
  • 75
    • 0020356008 scopus 로고
    • Sodium butyrate stimulates DNA repair in UV-irradiated normal and xeroderma pigmentosum human fibroblasts
    • Smerdon M.J., Lan S.Y., Calza R.E., Reeves R. Sodium butyrate stimulates DNA repair in UV-irradiated normal and xeroderma pigmentosum human fibroblasts. J. Biol. Chem. 1982, 257:13441-13447.
    • (1982) J. Biol. Chem. , vol.257 , pp. 13441-13447
    • Smerdon, M.J.1    Lan, S.Y.2    Calza, R.E.3    Reeves, R.4
  • 76
    • 0023011595 scopus 로고
    • Changes in nuclear protein acetylation in u.v.-damaged human cells
    • Ramanathan B., Smerdon M.J. Changes in nuclear protein acetylation in u.v.-damaged human cells. Carcinogenesis 1986, 7:1087-1094.
    • (1986) Carcinogenesis , vol.7 , pp. 1087-1094
    • Ramanathan, B.1    Smerdon, M.J.2
  • 77
    • 0024383760 scopus 로고
    • Enhanced DNA repair synthesis in hyperacetylated nucleosomes
    • Ramanathan B., Smerdon M.J. Enhanced DNA repair synthesis in hyperacetylated nucleosomes. J. Biol. Chem. 1989, 264:11026-11034.
    • (1989) J. Biol. Chem. , vol.264 , pp. 11026-11034
    • Ramanathan, B.1    Smerdon, M.J.2
  • 78
    • 84906280949 scopus 로고    scopus 로고
    • The dual nature of mismatch repair as antimutator and mutator: for better or for worse
    • Bak S.T., Sakellariou D., Pena-Diaz J. The dual nature of mismatch repair as antimutator and mutator: for better or for worse. Front Genet. 2014, 5:287.
    • (2014) Front Genet. , vol.5 , pp. 287
    • Bak, S.T.1    Sakellariou, D.2    Pena-Diaz, J.3
  • 79
    • 0034500024 scopus 로고    scopus 로고
    • DNA mismatch repair and genetic instability
    • Harfe B.D., Jinks-Robertson S. DNA mismatch repair and genetic instability. Annu. Rev. Genet. 2000, 34:359-399.
    • (2000) Annu. Rev. Genet. , vol.34 , pp. 359-399
    • Harfe, B.D.1    Jinks-Robertson, S.2
  • 80
    • 33646187811 scopus 로고    scopus 로고
    • The multifaceted mismatch-repair system
    • Jiricny J. The multifaceted mismatch-repair system. Nat. Rev. Mol. Cell Biol. 2006, 7:335-346.
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 335-346
    • Jiricny, J.1
  • 81
    • 0033380005 scopus 로고    scopus 로고
    • Isolation and characterization of AtMLH1, a MutL homologue from Arabidopsis thaliana
    • Jean M., Pelletier J., Hilpert M., Belzile F., Kunze R. Isolation and characterization of AtMLH1, a MutL homologue from Arabidopsis thaliana. Mol. Gen. Genet. 1999, 262:633-642.
    • (1999) Mol. Gen. Genet. , vol.262 , pp. 633-642
    • Jean, M.1    Pelletier, J.2    Hilpert, M.3    Belzile, F.4    Kunze, R.5
  • 82
    • 24144463165 scopus 로고    scopus 로고
    • Lynch syndrome genes
    • Peltomaki P. Lynch syndrome genes. Fam. Cancer 2005, 4:227-232.
    • (2005) Fam. Cancer , vol.4 , pp. 227-232
    • Peltomaki, P.1
  • 83
    • 0035054387 scopus 로고    scopus 로고
    • Deficient DNA mismatch repair: a common etiologic factor for colon cancer
    • Peltomaki P. Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum. Mol. Genet. 2001, 10:735-740.
    • (2001) Hum. Mol. Genet. , vol.10 , pp. 735-740
    • Peltomaki, P.1
  • 86
    • 79960755430 scopus 로고    scopus 로고
    • Deficiency in DNA mismatch repair increases the rate of telomere shortening in normal human cells
    • Mendez-Bermudez A., Royle N.J. Deficiency in DNA mismatch repair increases the rate of telomere shortening in normal human cells. Hum. Mutat. 2011, 32:939-946.
    • (2011) Hum. Mutat. , vol.32 , pp. 939-946
    • Mendez-Bermudez, A.1    Royle, N.J.2
  • 87
    • 33646123092 scopus 로고    scopus 로고
    • Msh2 deficiency leads to chromosomal abnormalities, centrosome amplification, and telomere capping defect
    • Campbell M.R., Wang Y., Andrew S.E., Liu Y. Msh2 deficiency leads to chromosomal abnormalities, centrosome amplification, and telomere capping defect. Oncogene 2006, 25:2531-2536.
    • (2006) Oncogene , vol.25 , pp. 2531-2536
    • Campbell, M.R.1    Wang, Y.2    Andrew, S.E.3    Liu, Y.4
  • 88
    • 0035822079 scopus 로고    scopus 로고
    • Defects in mismatch repair promote telomerase-independent proliferation
    • Rizki A., Lundblad V. Defects in mismatch repair promote telomerase-independent proliferation. Nature 2001, 411:713-716.
    • (2001) Nature , vol.411 , pp. 713-716
    • Rizki, A.1    Lundblad, V.2
  • 89
    • 2442659384 scopus 로고    scopus 로고
    • Telomeric recombination in mismatch repair deficient human colon cancer cells after telomerase inhibition
    • Bechter O.E., Zou Y., Walker W., Wright W.E., Shay J.W. Telomeric recombination in mismatch repair deficient human colon cancer cells after telomerase inhibition. Cancer Res. 2004, 64:3444-3451.
    • (2004) Cancer Res. , vol.64 , pp. 3444-3451
    • Bechter, O.E.1    Zou, Y.2    Walker, W.3    Wright, W.E.4    Shay, J.W.5
  • 90
    • 34447533257 scopus 로고    scopus 로고
    • Deficient mismatch repair improves organismal fitness and survival of mice with dysfunctional telomeres
    • Siegl-Cachedenier I., Munoz P., Flores J.M., Klatt P., Blasco M.A. Deficient mismatch repair improves organismal fitness and survival of mice with dysfunctional telomeres. Genes Dev. 2007, 21:2234-2247.
    • (2007) Genes Dev. , vol.21 , pp. 2234-2247
    • Siegl-Cachedenier, I.1    Munoz, P.2    Flores, J.M.3    Klatt, P.4    Blasco, M.A.5
  • 91
    • 0042420304 scopus 로고    scopus 로고
    • DNA damage foci at dysfunctional telomeres
    • Takai H., Smogorzewska A., de Lange T. DNA damage foci at dysfunctional telomeres. Curr. Biol. 2003, 13:1549-1556.
    • (2003) Curr. Biol. , vol.13 , pp. 1549-1556
    • Takai, H.1    Smogorzewska, A.2    de Lange, T.3
  • 92
    • 59049097927 scopus 로고    scopus 로고
    • MSH2 deficiency abolishes the anticancer and pro-aging activity of short telomeres
    • Martinez P., Siegl-Cachedenier I., Flores J.M., Blasco M.A. MSH2 deficiency abolishes the anticancer and pro-aging activity of short telomeres. Aging Cell 2009, 8:2-17.
    • (2009) Aging Cell , vol.8 , pp. 2-17
    • Martinez, P.1    Siegl-Cachedenier, I.2    Flores, J.M.3    Blasco, M.A.4
  • 93
    • 0033607055 scopus 로고    scopus 로고
    • HMutSalpha- and hMutLalpha-dependent phosphorylation of p53 in response to DNA methylator damage
    • Duckett D.R., Bronstein S.M., Taya Y., Modrich P. hMutSalpha- and hMutLalpha-dependent phosphorylation of p53 in response to DNA methylator damage. Proc. Natl. Acad. Sci. U. S. A. 1999, 96:12384-12388.
    • (1999) Proc. Natl. Acad. Sci. U. S. A. , vol.96 , pp. 12384-12388
    • Duckett, D.R.1    Bronstein, S.M.2    Taya, Y.3    Modrich, P.4
  • 94
    • 0037414342 scopus 로고    scopus 로고
    • Mammalian DNA mismatch repair protects cells from UVB-induced DNA damage by facilitating apoptosis and p53 activation
    • Peters A.C., Young L.C., Maeda T., Tron V.A., Andrew S.E. Mammalian DNA mismatch repair protects cells from UVB-induced DNA damage by facilitating apoptosis and p53 activation. DNA Repair 2003, 2:427-435.
    • (2003) DNA Repair , vol.2 , pp. 427-435
    • Peters, A.C.1    Young, L.C.2    Maeda, T.3    Tron, V.A.4    Andrew, S.E.5
  • 95
    • 3042791562 scopus 로고    scopus 로고
    • ATM-mediated stabilization of hMutL DNA mismatch repair proteins augments p53 activation during DNA damage
    • Luo Y., Lin F.T., Lin W.C. ATM-mediated stabilization of hMutL DNA mismatch repair proteins augments p53 activation during DNA damage. Mol. Cell. Biol. 2004, 24:6430-6444.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 6430-6444
    • Luo, Y.1    Lin, F.T.2    Lin, W.C.3
  • 96
    • 84902087071 scopus 로고    scopus 로고
    • New insights and challenges in mismatch repair: getting over the chromatin hurdle
    • Li G.M. New insights and challenges in mismatch repair: getting over the chromatin hurdle. DNA Repair 2014, 19:48-54.
    • (2014) DNA Repair , vol.19 , pp. 48-54
    • Li, G.M.1
  • 97
    • 41849101441 scopus 로고    scopus 로고
    • Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics
    • Imai K., Yamamoto H. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis 2008, 29:673-680.
    • (2008) Carcinogenesis , vol.29 , pp. 673-680
    • Imai, K.1    Yamamoto, H.2
  • 98
    • 3042782819 scopus 로고    scopus 로고
    • Microsatellites: simple sequences with complex evolution
    • Ellegren H. Microsatellites: simple sequences with complex evolution. Nat. Rev. Genet. 2004, 5:435-445.
    • (2004) Nat. Rev. Genet. , vol.5 , pp. 435-445
    • Ellegren, H.1
  • 100
    • 84885580087 scopus 로고    scopus 로고
    • Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation
    • Doksani Y., Wu J.Y., de Lange T., Zhuang X. Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell 2013, 155:345-356.
    • (2013) Cell , vol.155 , pp. 345-356
    • Doksani, Y.1    Wu, J.Y.2    de Lange, T.3    Zhuang, X.4
  • 101
    • 0027212790 scopus 로고
    • Nucleosomal organization of telomere-specific chromatin in rat
    • Makarov V.L., Lejnine S., Bedoyan J., Langmore J.P. Nucleosomal organization of telomere-specific chromatin in rat. Cell 1993, 73:775-787.
    • (1993) Cell , vol.73 , pp. 775-787
    • Makarov, V.L.1    Lejnine, S.2    Bedoyan, J.3    Langmore, J.P.4
  • 103
    • 21844434955 scopus 로고    scopus 로고
    • Nucleotide excision repair in chromatin and the right of entry
    • Gong F., Kwon Y., Smerdon M.J. Nucleotide excision repair in chromatin and the right of entry. DNA Repair 2005, 4:884-896.
    • (2005) DNA Repair , vol.4 , pp. 884-896
    • Gong, F.1    Kwon, Y.2    Smerdon, M.J.3
  • 104
    • 79959484677 scopus 로고    scopus 로고
    • Signals and combinatorial functions of histone modifications
    • Suganuma T., Workman J.L. Signals and combinatorial functions of histone modifications. Annu. Rev. Biochem. 2011, 80:473-499.
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 473-499
    • Suganuma, T.1    Workman, J.L.2
  • 105
    • 79960341467 scopus 로고    scopus 로고
    • Nucleotide excision repair in chromatin: damage removal at the drop of a HAT
    • Reed S.H. Nucleotide excision repair in chromatin: damage removal at the drop of a HAT. DNA Repair 2011, 10:734-742.
    • (2011) DNA Repair , vol.10 , pp. 734-742
    • Reed, S.H.1
  • 106
    • 43549092406 scopus 로고    scopus 로고
    • Role of the mammalian SWI/SNF chromatin remodeling complex in the cellular response to UV damage
    • Gong F., Fahy D., Liu H., Wang W., Smerdon M.J. Role of the mammalian SWI/SNF chromatin remodeling complex in the cellular response to UV damage. Cell Cycle 2008, 7:1067-1074.
    • (2008) Cell Cycle , vol.7 , pp. 1067-1074
    • Gong, F.1    Fahy, D.2    Liu, H.3    Wang, W.4    Smerdon, M.J.5
  • 107
    • 33749520485 scopus 로고    scopus 로고
    • Rad4-Rad23 interaction with SWI/SNF links ATP-dependent chromatin remodeling with nucleotide excision repair
    • Gong F., Fahy D., Smerdon M.J. Rad4-Rad23 interaction with SWI/SNF links ATP-dependent chromatin remodeling with nucleotide excision repair. Nat. Struct. Mol. Biol. 2006, 13:902-907.
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 902-907
    • Gong, F.1    Fahy, D.2    Smerdon, M.J.3
  • 109
    • 0347988045 scopus 로고    scopus 로고
    • Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases
    • Garcia-Cao M., O'Sullivan R., Peters A.H., Jenuwein T., Blasco M.A. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat. Genet. 2004, 36:94-99.
    • (2004) Nat. Genet. , vol.36 , pp. 94-99
    • Garcia-Cao, M.1    O'Sullivan, R.2    Peters, A.H.3    Jenuwein, T.4    Blasco, M.A.5
  • 111
    • 69249216410 scopus 로고    scopus 로고
    • A 'higher order' of telomere regulation: telomere heterochromatin and telomeric RNAs
    • Schoeftner S., Blasco M.A. A 'higher order' of telomere regulation: telomere heterochromatin and telomeric RNAs. EMBO J. 2009, 28:2323-2336.
    • (2009) EMBO J. , vol.28 , pp. 2323-2336
    • Schoeftner, S.1    Blasco, M.A.2
  • 112
    • 33745226438 scopus 로고    scopus 로고
    • The human telomeric protein TRF1 specifically recognizes nucleosomal binding sites and alters nucleosome structure
    • Galati A., Rossetti L., Pisano S., Chapman L., Rhodes D., Savino M., Cacchione S. The human telomeric protein TRF1 specifically recognizes nucleosomal binding sites and alters nucleosome structure. J. Mol. Biol. 2006, 360:377-385.
    • (2006) J. Mol. Biol. , vol.360 , pp. 377-385
    • Galati, A.1    Rossetti, L.2    Pisano, S.3    Chapman, L.4    Rhodes, D.5    Savino, M.6    Cacchione, S.7
  • 113
  • 117
    • 80052491304 scopus 로고    scopus 로고
    • DNA-damage response and repair activities at uncapped telomeres depend on RNF8
    • Peuscher M.H., Jacobs J.J. DNA-damage response and repair activities at uncapped telomeres depend on RNF8. Nat. Cell Biol. 2011, 13:1139-1145.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1139-1145
    • Peuscher, M.H.1    Jacobs, J.J.2
  • 120
    • 0141530885 scopus 로고    scopus 로고
    • Local action of the chromatin assembly factor CAF-1 at sites of nucleotide excision repair in vivo
    • Green C.M., Almouzni G. Local action of the chromatin assembly factor CAF-1 at sites of nucleotide excision repair in vivo. EMBO J. 2003, 22:5163-5174.
    • (2003) EMBO J. , vol.22 , pp. 5163-5174
    • Green, C.M.1    Almouzni, G.2
  • 121
    • 33750449326 scopus 로고    scopus 로고
    • New histone incorporation marks sites of UV repair in human cells
    • Polo S.E., Roche D., Almouzni G. New histone incorporation marks sites of UV repair in human cells. Cell 2006, 127:481-493.
    • (2006) Cell , vol.127 , pp. 481-493
    • Polo, S.E.1    Roche, D.2    Almouzni, G.3
  • 122
    • 84910626311 scopus 로고    scopus 로고
    • Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances
    • Robin J.D., Ludlow A.T., Batten K., Magdinier F., Stadler G., Wagner K.R., Shay J.W., Wright W.E. Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances. Genes Dev. 2014, 28:2464-2476.
    • (2014) Genes Dev. , vol.28 , pp. 2464-2476
    • Robin, J.D.1    Ludlow, A.T.2    Batten, K.3    Magdinier, F.4    Stadler, G.5    Wagner, K.R.6    Shay, J.W.7    Wright, W.E.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.