-
1
-
-
56749157389
-
Transcription-coupled DNA repair: two decades of progress and surprises
-
Hanawalt P.C., Spivak G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat. Rev. Mol. Cell Biol. 2008, 9:958-970.
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 958-970
-
-
Hanawalt, P.C.1
Spivak, G.2
-
4
-
-
84877300985
-
Real-time single-molecule imaging reveals a direct interaction between UvrC and UvrB on DNA tightropes
-
Hughes C.D., Wang H., Ghodke H., Simons M., Towheed A., Peng Y., Van Houten B., Kad N.M. Real-time single-molecule imaging reveals a direct interaction between UvrC and UvrB on DNA tightropes. Nucleic Acids Res. 2013, 41:4901-4912.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 4901-4912
-
-
Hughes, C.D.1
Wang, H.2
Ghodke, H.3
Simons, M.4
Towheed, A.5
Peng, Y.6
Van Houten, B.7
Kad, N.M.8
-
5
-
-
0019447662
-
Identification of E. coli uvrC protein
-
Yoakum G.H., Grossman L. Identification of E. coli uvrC protein. Nature 1981, 292:171-173.
-
(1981)
Nature
, vol.292
, pp. 171-173
-
-
Yoakum, G.H.1
Grossman, L.2
-
6
-
-
0030814143
-
DNA damage-dependent recruitment of nucleotide excision repair and transcription proteins to Escherichia coli inner membranes
-
Lin C.G., Kovalsky O., Grossman L. DNA damage-dependent recruitment of nucleotide excision repair and transcription proteins to Escherichia coli inner membranes. Nucleic Acids Res. 1997, 25:3151-3158.
-
(1997)
Nucleic Acids Res.
, vol.25
, pp. 3151-3158
-
-
Lin, C.G.1
Kovalsky, O.2
Grossman, L.3
-
7
-
-
0035837586
-
The SOS-dependent upregulation of uvrD is not required for efficient nucleotide excision repair of ultraviolet light induced DNA photoproducts in Escherichia coli
-
Crowley D.J., Hanawalt P.C. The SOS-dependent upregulation of uvrD is not required for efficient nucleotide excision repair of ultraviolet light induced DNA photoproducts in Escherichia coli. Mutat. Res. 2001, 485:319-329.
-
(2001)
Mutat. Res.
, vol.485
, pp. 319-329
-
-
Crowley, D.J.1
Hanawalt, P.C.2
-
8
-
-
0032553125
-
Localization of a sigma70 binding site on the N terminus of the Escherichia coli RNA polymerase beta' subunit
-
Arthur T.M., Burgess R.R. Localization of a sigma70 binding site on the N terminus of the Escherichia coli RNA polymerase beta' subunit. J. Biol. Chem. 1998, 273:31381-31387.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 31381-31387
-
-
Arthur, T.M.1
Burgess, R.R.2
-
9
-
-
2542498681
-
The sigma 70 subunit of RNA polymerase mediates a promoter-proximal pause at the lac promoter
-
Nickels B.E., Mukhopadhyay J., Garrity S.J., Ebright R.H., Hochschild A. The sigma 70 subunit of RNA polymerase mediates a promoter-proximal pause at the lac promoter. Nat. Struct. Mol. Biol. 2004, 11:544-550.
-
(2004)
Nat. Struct. Mol. Biol.
, vol.11
, pp. 544-550
-
-
Nickels, B.E.1
Mukhopadhyay, J.2
Garrity, S.J.3
Ebright, R.H.4
Hochschild, A.5
-
10
-
-
77954840190
-
The interaction between RNA polymerase and the elongation factor NusA
-
Yang X., Lewis P.J. The interaction between RNA polymerase and the elongation factor NusA. RNA Biol. 2010, 7:272-275.
-
(2010)
RNA Biol.
, vol.7
, pp. 272-275
-
-
Yang, X.1
Lewis, P.J.2
-
11
-
-
69949141607
-
The structure of bacterial RNA polymerase in complex with the essential transcription elongation factor NusA
-
Yang X., Molimau S., Doherty G.P., Johnston E.B., Marles-Wright J., Rothnagel R., Hankamer B., Lewis R.J., Lewis P.J. The structure of bacterial RNA polymerase in complex with the essential transcription elongation factor NusA. EMBO Rep. 2009, 10:997-1002.
-
(2009)
EMBO Rep.
, vol.10
, pp. 997-1002
-
-
Yang, X.1
Molimau, S.2
Doherty, G.P.3
Johnston, E.B.4
Marles-Wright, J.5
Rothnagel, R.6
Hankamer, B.7
Lewis, R.J.8
Lewis, P.J.9
-
12
-
-
58149312711
-
Regulator trafficking on bacterial transcription units in vivo
-
Mooney R.A., Davis S.E., Peters J.M., Rowland J.L., Ansari A.Z., Landick R. Regulator trafficking on bacterial transcription units in vivo. Mol. Cell 2009, 33:97-108.
-
(2009)
Mol. Cell
, vol.33
, pp. 97-108
-
-
Mooney, R.A.1
Davis, S.E.2
Peters, J.M.3
Rowland, J.L.4
Ansari, A.Z.5
Landick, R.6
-
13
-
-
0037077154
-
E. coli Transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation
-
Park J.S., Marr M.T., Roberts J.W. E. coli Transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell 2002, 109:757-767.
-
(2002)
Cell
, vol.109
, pp. 757-767
-
-
Park, J.S.1
Marr, M.T.2
Roberts, J.W.3
-
14
-
-
1842610540
-
Mfd, the bacterial transcription repair coupling factor: translocation, repair and termination
-
Roberts J., Park J.S. Mfd, the bacterial transcription repair coupling factor: translocation, repair and termination. Curr. Opin. Microbiol. 2004, 7:120-125.
-
(2004)
Curr. Opin. Microbiol.
, vol.7
, pp. 120-125
-
-
Roberts, J.1
Park, J.S.2
-
15
-
-
0027905034
-
Molecular mechanism of transcription-repair coupling
-
Selby C.P., Sancar A. Molecular mechanism of transcription-repair coupling. Science 1993, 260:53-58.
-
(1993)
Science
, vol.260
, pp. 53-58
-
-
Selby, C.P.1
Sancar, A.2
-
16
-
-
0028949551
-
Structure and function of transcription-repair coupling factor. II. Catalytic properties
-
Selby C.P., Sancar A. Structure and function of transcription-repair coupling factor. II. Catalytic properties. J. Biol. Chem. 1995, 270:4890-4895.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 4890-4895
-
-
Selby, C.P.1
Sancar, A.2
-
17
-
-
78649968104
-
Regulation and rate enhancement during transcription-coupled DNA repair
-
Manelyte L., Kim Y.I., Smith A.J., Smith R.M., Savery N.J. Regulation and rate enhancement during transcription-coupled DNA repair. Mol. Cell 2010, 40:714-724.
-
(2010)
Mol. Cell
, vol.40
, pp. 714-724
-
-
Manelyte, L.1
Kim, Y.I.2
Smith, A.J.3
Smith, R.M.4
Savery, N.J.5
-
18
-
-
84867677392
-
Initiation of transcription-coupled repair characterized at single-molecule resolution
-
Howan K., Smith A.J., Westblade L.F., Joly N., Grange W., Zorman S., Darst S.A., Savery N.J., Strick T.R. Initiation of transcription-coupled repair characterized at single-molecule resolution. Nature 2012, 490:431-434.
-
(2012)
Nature
, vol.490
, pp. 431-434
-
-
Howan, K.1
Smith, A.J.2
Westblade, L.F.3
Joly, N.4
Grange, W.5
Zorman, S.6
Darst, S.A.7
Savery, N.J.8
Strick, T.R.9
-
19
-
-
84863009652
-
Dynamics of lesion processing by bacterial nucleotide excision repair proteins
-
Kad N.M., Van Houten B. Dynamics of lesion processing by bacterial nucleotide excision repair proteins. Prog. Mol. Biol. Transl. Sci. 2012, 110:1-24.
-
(2012)
Prog. Mol. Biol. Transl. Sci.
, vol.110
, pp. 1-24
-
-
Kad, N.M.1
Van Houten, B.2
-
20
-
-
84896512652
-
Stalled transcription complexes promote DNA repair at a distance
-
Haines N.M., Young-In T.K., Smith A.J., Savery N. Stalled transcription complexes promote DNA repair at a distance. Proc. Nat. Acad. Sci. U.S.A. 2014, 111:4037-4042.
-
(2014)
Proc. Nat. Acad. Sci. U.S.A.
, vol.111
, pp. 4037-4042
-
-
Haines, N.M.1
Young-In, T.K.2
Smith, A.J.3
Savery, N.4
-
21
-
-
0036228521
-
Engineering a reduced Escherichia coli genome
-
Kolisnychenko V., Plunkett G., Herring C.D., Feher T., Posfai J., Blattner F.R., Posfai G. Engineering a reduced Escherichia coli genome. Genome Res. 2002, 12:640-647.
-
(2002)
Genome Res.
, vol.12
, pp. 640-647
-
-
Kolisnychenko, V.1
Plunkett, G.2
Herring, C.D.3
Feher, T.4
Posfai, J.5
Blattner, F.R.6
Posfai, G.7
-
22
-
-
33646722147
-
Emergent properties of reduced-genome Escherichia coli
-
Posfai G., Plunkett G., Feher T., Frisch D., Keil G.M., Umenhoffer K., Kolisnychenko V., Stahl B., Sharma S.S., de Arruda M., Burland V., Harcum S.W., Blattner F.R. Emergent properties of reduced-genome Escherichia coli. Science 2006, 312:1044-1046.
-
(2006)
Science
, vol.312
, pp. 1044-1046
-
-
Posfai, G.1
Plunkett, G.2
Feher, T.3
Frisch, D.4
Keil, G.M.5
Umenhoffer, K.6
Kolisnychenko, V.7
Stahl, B.8
Sharma, S.S.9
de Arruda, M.10
Burland, V.11
Harcum, S.W.12
Blattner, F.R.13
-
23
-
-
44249091644
-
Termination factor Rho and its cofactors NusA and NusG silence foreign DNA in E. coli
-
Cardinale C.J., Washburn R.S., Tadigotla V.R., Brown L.M., Gottesman M.E., Nudler E. Termination factor Rho and its cofactors NusA and NusG silence foreign DNA in E. coli. Science 2008, 320:935-938.
-
(2008)
Science
, vol.320
, pp. 935-938
-
-
Cardinale, C.J.1
Washburn, R.S.2
Tadigotla, V.R.3
Brown, L.M.4
Gottesman, M.E.5
Nudler, E.6
-
24
-
-
77957275003
-
Roles for the transcription elongation factor NusA in both DNA repair and damage tolerance pathways in Escherichia coli
-
Cohen S.E., Lewis C.A., Mooney R.A., Kohanski M.A., Collins J.J., Landick R., Walker G.C. Roles for the transcription elongation factor NusA in both DNA repair and damage tolerance pathways in Escherichia coli. Proc. Nat. Acad. Sci. U.S.A. 2010, 107:15517-15522.
-
(2010)
Proc. Nat. Acad. Sci. U.S.A.
, vol.107
, pp. 15517-15522
-
-
Cohen, S.E.1
Lewis, C.A.2
Mooney, R.A.3
Kohanski, M.A.4
Collins, J.J.5
Landick, R.6
Walker, G.C.7
-
25
-
-
79958701958
-
NusA interaction with the alpha subunit of E. coli RNA polymerase is via the UP element site and releases autoinhibition
-
Schweimer K., Prasch S., Sujatha P.S., Bubunenko M., Gottesman M.E., Rosch P. NusA interaction with the alpha subunit of E. coli RNA polymerase is via the UP element site and releases autoinhibition. Structure 2011, 19:945-954.
-
(2011)
Structure
, vol.19
, pp. 945-954
-
-
Schweimer, K.1
Prasch, S.2
Sujatha, P.S.3
Bubunenko, M.4
Gottesman, M.E.5
Rosch, P.6
-
26
-
-
84871946865
-
Rho-dependent transcription termination is essential to prevent excessive genome-wide R-loops in Escherichia coli
-
Leela J.K., Syeda A.H., Anupama K., Gowrishankar J. Rho-dependent transcription termination is essential to prevent excessive genome-wide R-loops in Escherichia coli. Proc. Nat. Acad. Sci. U.S.A. 2013, 110:258-263.
-
(2013)
Proc. Nat. Acad. Sci. U.S.A.
, vol.110
, pp. 258-263
-
-
Leela, J.K.1
Syeda, A.H.2
Anupama, K.3
Gowrishankar, J.4
-
27
-
-
13844317928
-
RNA polymerase mutants defective in the initiation of transcription-coupled DNA repair
-
Smith A.J., Savery N.J. RNA polymerase mutants defective in the initiation of transcription-coupled DNA repair. Nucleic Acids Res. 2005, 33:755-764.
-
(2005)
Nucleic Acids Res.
, vol.33
, pp. 755-764
-
-
Smith, A.J.1
Savery, N.J.2
-
28
-
-
32044436258
-
Structural basis for bacterial transcription-coupled DNA repair
-
Deaconescu A.M., Chambers A.L., Smith A.J., Nickels B.E., Hochschild A., Savery N.J., Darst S.A. Structural basis for bacterial transcription-coupled DNA repair. Cell 2006, 124:507-520.
-
(2006)
Cell
, vol.124
, pp. 507-520
-
-
Deaconescu, A.M.1
Chambers, A.L.2
Smith, A.J.3
Nickels, B.E.4
Hochschild, A.5
Savery, N.J.6
Darst, S.A.7
-
29
-
-
78650415624
-
Structural basis for the bacterial transcription-repair coupling factor/RNA polymerase interaction
-
Westblade L.F., Campbell E.A., Pukhrambam C., Padovan J.C., Nickels B.E., Lamour V., Darst S.A. Structural basis for the bacterial transcription-repair coupling factor/RNA polymerase interaction. Nucleic Acids Res. 2010, 38:8357-8369.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 8357-8369
-
-
Westblade, L.F.1
Campbell, E.A.2
Pukhrambam, C.3
Padovan, J.C.4
Nickels, B.E.5
Lamour, V.6
Darst, S.A.7
-
30
-
-
13444283630
-
Interaction network containing conserved and essential protein complexes in Escherichia coli
-
Butland G., Peregrin-Alvarez J.M., Li J., Yang W., Yang X., Canadien V., Starostine A., Richards D., Beattie B., Krogan N., Davey M., Parkinson J., Greenblatt J., Emili A. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 2005, 433:531-537.
-
(2005)
Nature
, vol.433
, pp. 531-537
-
-
Butland, G.1
Peregrin-Alvarez, J.M.2
Li, J.3
Yang, W.4
Yang, X.5
Canadien, V.6
Starostine, A.7
Richards, D.8
Beattie, B.9
Krogan, N.10
Davey, M.11
Parkinson, J.12
Greenblatt, J.13
Emili, A.14
-
31
-
-
79952271901
-
New discoveries linking transcription to DNA repair and damage tolerance pathways
-
Cohen S.E., Walker G.C. New discoveries linking transcription to DNA repair and damage tolerance pathways. Transcription 2011, 2:37-40.
-
(2011)
Transcription
, vol.2
, pp. 37-40
-
-
Cohen, S.E.1
Walker, G.C.2
-
32
-
-
84892610198
-
UvrD facilitates DNA repair by pulling RNA polymerase backwards
-
Epshtein V., Kamarthapu V., McGary K., Svetlov V., Ueberheide B., Proshkin S., Mironov A., Nudler E. UvrD facilitates DNA repair by pulling RNA polymerase backwards. Nature 2014, 505:372-377.
-
(2014)
Nature
, vol.505
, pp. 372-377
-
-
Epshtein, V.1
Kamarthapu, V.2
McGary, K.3
Svetlov, V.4
Ueberheide, B.5
Proshkin, S.6
Mironov, A.7
Nudler, E.8
-
33
-
-
0026354699
-
Escherichia coli mfd mutant deficient in "mutation frequency decline" lacks strand-specific repair: in vitro complementation with purified coupling factor
-
Selby C.P., Witkin E.M., Sancar A. Escherichia coli mfd mutant deficient in "mutation frequency decline" lacks strand-specific repair: in vitro complementation with purified coupling factor. Proc. Nat. Acad. Sci. U.S.A. 1991, 88:11574-11578.
-
(1991)
Proc. Nat. Acad. Sci. U.S.A.
, vol.88
, pp. 11574-11578
-
-
Selby, C.P.1
Witkin, E.M.2
Sancar, A.3
-
34
-
-
0030034077
-
Products of DNA mismatch repair genes mutS and mutL are required for transcription-coupled nucleotide-excision repair of the lactose operon in Escherichia coli
-
Mellon I., Champe G.N. Products of DNA mismatch repair genes mutS and mutL are required for transcription-coupled nucleotide-excision repair of the lactose operon in Escherichia coli. Proc. Nat. Acad. Sci. U.S.A. 1996, 93:1292-1297.
-
(1996)
Proc. Nat. Acad. Sci. U.S.A.
, vol.93
, pp. 1292-1297
-
-
Mellon, I.1
Champe, G.N.2
-
35
-
-
84881342072
-
R-loops and nicks initiate DNA breakage and genome instability in non-growing Escherichia coli
-
Wimberly H., Shee C., Thornton P.C., Sivaramakrishnan P., Rosenberg S.M., Hastings P.J. R-loops and nicks initiate DNA breakage and genome instability in non-growing Escherichia coli. Nat. Commun. 2013, 4:2115.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2115
-
-
Wimberly, H.1
Shee, C.2
Thornton, P.C.3
Sivaramakrishnan, P.4
Rosenberg, S.M.5
Hastings, P.J.6
-
36
-
-
84872422245
-
Transcription coupled repair at the interface between transcription elongation and mRNP biogenesis
-
Gaillard H., Aguilera A. Transcription coupled repair at the interface between transcription elongation and mRNP biogenesis. Biochim. Biophys. Acta 2013, 1829:141-150.
-
(2013)
Biochim. Biophys. Acta
, vol.1829
, pp. 141-150
-
-
Gaillard, H.1
Aguilera, A.2
-
37
-
-
84881077020
-
Mammalian transcription-coupled excision repair
-
Vermeulen W., Fousteri M. Mammalian transcription-coupled excision repair. Cold Spring Harbor Perspect. Biol. 2013, 5(8):a012625. 10.1101/cshperspect.a012625.
-
(2013)
Cold Spring Harbor Perspect. Biol.
, vol.5
, Issue.8
-
-
Vermeulen, W.1
Fousteri, M.2
-
38
-
-
84880586724
-
DNA repair mechanisms in dividing and non-dividing cells
-
Iyama T., Wilson D.M. DNA repair mechanisms in dividing and non-dividing cells. DNA Repair (Amst.) 2013, 12:620-636.
-
(2013)
DNA Repair (Amst.)
, vol.12
, pp. 620-636
-
-
Iyama, T.1
Wilson, D.M.2
-
39
-
-
14244255484
-
The CSB protein actively wraps DNA
-
Beerens N., Hoeijmakers J.H., Kanaar R., Vermeulen W., Wyman C. The CSB protein actively wraps DNA. J. Biol. Chem. 2005, 280:4722-4729.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 4722-4729
-
-
Beerens, N.1
Hoeijmakers, J.H.2
Kanaar, R.3
Vermeulen, W.4
Wyman, C.5
-
40
-
-
84867431394
-
KIAA1530 protein is recruited by Cockayne syndrome complementation group protein A (CSA) to participate in transcription-coupled repair (TCR)
-
Fei J., Chen J. KIAA1530 protein is recruited by Cockayne syndrome complementation group protein A (CSA) to participate in transcription-coupled repair (TCR). J. Biol. Chem. 2012, 287:35118-35126.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 35118-35126
-
-
Fei, J.1
Chen, J.2
-
41
-
-
84880643675
-
Blinded by the UV light: how the focus on transcription-coupled NER has distracted from understanding the mechanisms of Cockayne syndrome neurologic disease
-
Brooks P.J. Blinded by the UV light: how the focus on transcription-coupled NER has distracted from understanding the mechanisms of Cockayne syndrome neurologic disease. DNA Repair (Amst.) 2013, 12:656-671.
-
(2013)
DNA Repair (Amst.)
, vol.12
, pp. 656-671
-
-
Brooks, P.J.1
-
42
-
-
84860330462
-
UV-sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair
-
Schwertman P., Lagarou A., Dekkers D.H., Raams A., van der Hoek A.C., Laffeber C., Hoeijmakers J.H., Demmers J.A., Fousteri M., Vermeulen W., Marteijn J.A. UV-sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair. Nat. Genet. 2012, 44:598-602.
-
(2012)
Nat. Genet.
, vol.44
, pp. 598-602
-
-
Schwertman, P.1
Lagarou, A.2
Dekkers, D.H.3
Raams, A.4
van der Hoek, A.C.5
Laffeber, C.6
Hoeijmakers, J.H.7
Demmers, J.A.8
Fousteri, M.9
Vermeulen, W.10
Marteijn, J.A.11
-
43
-
-
84860336243
-
Mutations in UVSSA cause UV-sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair
-
Zhang X., Horibata K., Saijo M., Ishigami C., Ukai A., Kanno S., Tahara H., Neilan E.G., Honma M., Nohmi T., Yasui A., Tanaka K. Mutations in UVSSA cause UV-sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair. Nat. Genet. 2012, 44:593-597.
-
(2012)
Nat. Genet.
, vol.44
, pp. 593-597
-
-
Zhang, X.1
Horibata, K.2
Saijo, M.3
Ishigami, C.4
Ukai, A.5
Kanno, S.6
Tahara, H.7
Neilan, E.G.8
Honma, M.9
Nohmi, T.10
Yasui, A.11
Tanaka, K.12
-
44
-
-
84860330507
-
Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair
-
Nakazawa Y., Sasaki K., Mitsutake N., Matsuse M., Shimada M., Nardo T., Takahashi Y., Ohyama K., Ito K., Mishima H., Nomura M., Kinoshita A., Ono S., Takenaka K., Masuyama R., Kudo T., Slor H., Utani A., Tateishi S., Yamashita S., Stefanini M., Lehmann A.R., Yoshiura K., Ogi T. Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair. Nat. Genet. 2012, 44:586-592.
-
(2012)
Nat. Genet.
, vol.44
, pp. 586-592
-
-
Nakazawa, Y.1
Sasaki, K.2
Mitsutake, N.3
Matsuse, M.4
Shimada, M.5
Nardo, T.6
Takahashi, Y.7
Ohyama, K.8
Ito, K.9
Mishima, H.10
Nomura, M.11
Kinoshita, A.12
Ono, S.13
Takenaka, K.14
Masuyama, R.15
Kudo, T.16
Slor, H.17
Utani, A.18
Tateishi, S.19
Yamashita, S.20
Stefanini, M.21
Lehmann, A.R.22
Yoshiura, K.23
Ogi, T.24
more..
-
45
-
-
84880798866
-
UVSSA and USP7, a new couple in transcription-coupled DNA repair
-
Schwertman P., Vermeulen W., Marteijn J.A. UVSSA and USP7, a new couple in transcription-coupled DNA repair. Chromosoma 2013, 122:275-284.
-
(2013)
Chromosoma
, vol.122
, pp. 275-284
-
-
Schwertman, P.1
Vermeulen, W.2
Marteijn, J.A.3
-
46
-
-
33847070442
-
The role of chromatin during transcription
-
Li B., Carey M., Workman J.L. The role of chromatin during transcription. Cell 2007, 128:707-719.
-
(2007)
Cell
, vol.128
, pp. 707-719
-
-
Li, B.1
Carey, M.2
Workman, J.L.3
-
47
-
-
84863001577
-
Prime, repair, restore: the active role of chromatin in the DNA damage response
-
Soria G., Polo S.E., Almouzni G. Prime, repair, restore: the active role of chromatin in the DNA damage response. Mol. Cell 2012, 46:722-734.
-
(2012)
Mol. Cell
, vol.46
, pp. 722-734
-
-
Soria, G.1
Polo, S.E.2
Almouzni, G.3
-
48
-
-
33747194740
-
Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo
-
Fousteri M., Vermeulen W., van Zeeland A.A., Mullenders L.H. Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo. Mol. Cell 2006, 23:471-482.
-
(2006)
Mol. Cell
, vol.23
, pp. 471-482
-
-
Fousteri, M.1
Vermeulen, W.2
van Zeeland, A.A.3
Mullenders, L.H.4
-
49
-
-
84882585259
-
Enhanced chromatin dynamics by FACT promotes transcriptional restart after UV-induced DNA damage
-
Dinant C., Ampatziadis-Michailidis G., Lans H., Tresini M., Lagarou A., Grosbart M., Theil A.F., van Cappellen W.A., Kimura H., Bartek J., Fousteri M., Houtsmuller A.B., Vermeulen W., Marteijn J.A. Enhanced chromatin dynamics by FACT promotes transcriptional restart after UV-induced DNA damage. Mol. Cell 2013, 51:469-479.
-
(2013)
Mol. Cell
, vol.51
, pp. 469-479
-
-
Dinant, C.1
Ampatziadis-Michailidis, G.2
Lans, H.3
Tresini, M.4
Lagarou, A.5
Grosbart, M.6
Theil, A.F.7
van Cappellen, W.A.8
Kimura, H.9
Bartek, J.10
Fousteri, M.11
Houtsmuller, A.B.12
Vermeulen, W.13
Marteijn, J.A.14
-
50
-
-
73949101221
-
Distinct ubiquitin ligases act sequentially for RNA polymerase II polyubiquitylation
-
Harreman M., Taschner M., Sigurdsson S., Anindya R., Reid J., Somesh B., Kong S.E., Banks C.A., Conaway R.C., Conaway J.W., Svejstrup J.Q. Distinct ubiquitin ligases act sequentially for RNA polymerase II polyubiquitylation. Proc. Nat. Acad. Sci. U.S.A. 2009, 106:20705-20710.
-
(2009)
Proc. Nat. Acad. Sci. U.S.A.
, vol.106
, pp. 20705-20710
-
-
Harreman, M.1
Taschner, M.2
Sigurdsson, S.3
Anindya, R.4
Reid, J.5
Somesh, B.6
Kong, S.E.7
Banks, C.A.8
Conaway, R.C.9
Conaway, J.W.10
Svejstrup, J.Q.11
-
52
-
-
26944448202
-
Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH; insights for transcription-coupled repair and Cockayne syndrome
-
Sarker A., Tsutakawa S., Kostek S., Ng C., Shin D., Peris M., Campeau E., Tainer J., Nogales E., Cooper P. Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH; insights for transcription-coupled repair and Cockayne syndrome. Mol. Cell 2005, 20:187-198.
-
(2005)
Mol. Cell
, vol.20
, pp. 187-198
-
-
Sarker, A.1
Tsutakawa, S.2
Kostek, S.3
Ng, C.4
Shin, D.5
Peris, M.6
Campeau, E.7
Tainer, J.8
Nogales, E.9
Cooper, P.10
-
53
-
-
0030822591
-
Cockayne syndrome group B protein enhances elongation by RNA polymerase II
-
Selby C.P., Sancar A. Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc. Nat. Acad. Sci. U.S.A. 1997, 94:11205-11209.
-
(1997)
Proc. Nat. Acad. Sci. U.S.A.
, vol.94
, pp. 11205-11209
-
-
Selby, C.P.1
Sancar, A.2
-
54
-
-
33751559420
-
RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors
-
Charlet-Berguerand N., Feuerhahn S., Kong S.E., Ziserman H., Conaway J.W., Conaway R., Egly J.M. RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors. EMBO J. 2006, 25:5481-5491.
-
(2006)
EMBO J.
, vol.25
, pp. 5481-5491
-
-
Charlet-Berguerand, N.1
Feuerhahn, S.2
Kong, S.E.3
Ziserman, H.4
Conaway, J.W.5
Conaway, R.6
Egly, J.M.7
-
55
-
-
57749121608
-
8-Oxoguanine-mediated transcriptional mutagenesis causes Ras activation in mammalian cells
-
Saxowsky T.T., Meadows K.L., Klungland A., Doetsch P.W. 8-Oxoguanine-mediated transcriptional mutagenesis causes Ras activation in mammalian cells. Proc. Nat. Acad. Sci. U.S.A. 2008, 105:18877-18882.
-
(2008)
Proc. Nat. Acad. Sci. U.S.A.
, vol.105
, pp. 18877-18882
-
-
Saxowsky, T.T.1
Meadows, K.L.2
Klungland, A.3
Doetsch, P.W.4
-
56
-
-
34547640820
-
A new connection of mRNP biogenesis and export with transcription-coupled repair
-
Gaillard H., Wellinger R.E., Aguilera A. A new connection of mRNP biogenesis and export with transcription-coupled repair. Nucleic Acids Res. 2007, 35:3893-3906.
-
(2007)
Nucleic Acids Res.
, vol.35
, pp. 3893-3906
-
-
Gaillard, H.1
Wellinger, R.E.2
Aguilera, A.3
-
57
-
-
80053386690
-
BRCA1 contributes to transcription-coupled repair of DNA damage through polyubiquitination and degradation of Cockayne syndrome B protein
-
Wei L., Lan L., Yasui A., Tanaka K., Saijo M., Matsuzawa A., Kashiwagi R., Maseki E., Hu Y., Parvin J.D., Ishioka C., Chiba N. BRCA1 contributes to transcription-coupled repair of DNA damage through polyubiquitination and degradation of Cockayne syndrome B protein. Cancer Sci. 2011, 102:1840-1847.
-
(2011)
Cancer Sci.
, vol.102
, pp. 1840-1847
-
-
Wei, L.1
Lan, L.2
Yasui, A.3
Tanaka, K.4
Saijo, M.5
Matsuzawa, A.6
Kashiwagi, R.7
Maseki, E.8
Hu, Y.9
Parvin, J.D.10
Ishioka, C.11
Chiba, N.12
-
58
-
-
29244483920
-
Host cell reactivation of plasmids containing oxidative DNA lesions is defective in Cockayne syndrome but normal in UV-sensitive syndrome fibroblasts
-
Spivak G., Hanawalt P.C. Host cell reactivation of plasmids containing oxidative DNA lesions is defective in Cockayne syndrome but normal in UV-sensitive syndrome fibroblasts. DNA Repair (Amst.) 2006, 5:13-22.
-
(2006)
DNA Repair (Amst.)
, vol.5
, pp. 13-22
-
-
Spivak, G.1
Hanawalt, P.C.2
-
59
-
-
84855269422
-
Targeted detection of in vivo endogenous DNA base damage reveals preferential base excision repair in the transcribed strand
-
Reis A.M., Mills W.K., Ramachandran I., Friedberg E.C., Thompson D., Queimado L. Targeted detection of in vivo endogenous DNA base damage reveals preferential base excision repair in the transcribed strand. Nucleic Acids Res. 2012, 40:206-219.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 206-219
-
-
Reis, A.M.1
Mills, W.K.2
Ramachandran, I.3
Friedberg, E.C.4
Thompson, D.5
Queimado, L.6
-
60
-
-
79953176665
-
Preferential repair of oxidized base damage in the transcribed genes of mammalian cells
-
Banerjee D., Mandal S.M., Das A., Hegde M.L., Das S., Bhakat K.K., Boldogh I., Sarkar P.S., Mitra S., Hazra T.K. Preferential repair of oxidized base damage in the transcribed genes of mammalian cells. J. Biol. Chem. 2010, 286:6006-6016.
-
(2010)
J. Biol. Chem.
, vol.286
, pp. 6006-6016
-
-
Banerjee, D.1
Mandal, S.M.2
Das, A.3
Hegde, M.L.4
Das, S.5
Bhakat, K.K.6
Boldogh, I.7
Sarkar, P.S.8
Mitra, S.9
Hazra, T.K.10
-
61
-
-
34548239142
-
ATP-dependent chromatin remodeling is required for base excision repair in conventional but not in variant H2A. Bbd nucleosomes
-
Menoni H., Gasparutto D., Hamiche A., Cadet J., Dimitrov S., Bouvet P., Angelov D. ATP-dependent chromatin remodeling is required for base excision repair in conventional but not in variant H2A. Bbd nucleosomes. Mol. Cell. Biol. 2007, 27:5949-5956.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 5949-5956
-
-
Menoni, H.1
Gasparutto, D.2
Hamiche, A.3
Cadet, J.4
Dimitrov, S.5
Bouvet, P.6
Angelov, D.7
-
62
-
-
84871959255
-
Nucleotide excision repair-initiating proteins bind to oxidative DNA lesions in vivo
-
Menoni H., Hoeijmakers J.H., Vermeulen W. Nucleotide excision repair-initiating proteins bind to oxidative DNA lesions in vivo. J. Cell. Biol. 2012, 199:1037-1046.
-
(2012)
J. Cell. Biol.
, vol.199
, pp. 1037-1046
-
-
Menoni, H.1
Hoeijmakers, J.H.2
Vermeulen, W.3
-
63
-
-
84886813438
-
Comet-FISH with strand-specific probes reveals transcription-coupled repair of 8-oxoGuanine in human cells
-
Guo J., Hanawalt P.C., Spivak G. Comet-FISH with strand-specific probes reveals transcription-coupled repair of 8-oxoGuanine in human cells. Nucleic Acids Res. 2013, 41:7700-7712.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 7700-7712
-
-
Guo, J.1
Hanawalt, P.C.2
Spivak, G.3
-
64
-
-
84861352747
-
Mfd is required for rapid recovery of transcription following UV-induced DNA damage but not oxidative DNA damage in Escherichia coli
-
Schalow B.J., Courcelle C.T., Courcelle J. Mfd is required for rapid recovery of transcription following UV-induced DNA damage but not oxidative DNA damage in Escherichia coli. J. Bacteriol. 2012, 194:2637-2645.
-
(2012)
J. Bacteriol.
, vol.194
, pp. 2637-2645
-
-
Schalow, B.J.1
Courcelle, C.T.2
Courcelle, J.3
-
65
-
-
84884472255
-
Repair of hydantoin lesions and their amine adducts in DNA by base and nucleotide excision repair
-
McKibbin P.L., Fleming A.M., Towheed M.A., Van Houten B., Burrows C.J., David S.S. Repair of hydantoin lesions and their amine adducts in DNA by base and nucleotide excision repair. J. Am. Chem. Soc. 2013, 135:13851-13861.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 13851-13861
-
-
McKibbin, P.L.1
Fleming, A.M.2
Towheed, M.A.3
Van Houten, B.4
Burrows, C.J.5
David, S.S.6
-
66
-
-
4143100263
-
Irofulven cytotoxicity depends on transcription-coupled nucleotide excision repair and is correlated with XPG expression in solid tumor cells
-
Koeppel F., Poindessous V., Lazar V., Raymond E., Sarasin A., Larsen A.K. Irofulven cytotoxicity depends on transcription-coupled nucleotide excision repair and is correlated with XPG expression in solid tumor cells. Clin. Cancer Res. 2004, 10:5604-5613.
-
(2004)
Clin. Cancer Res.
, vol.10
, pp. 5604-5613
-
-
Koeppel, F.1
Poindessous, V.2
Lazar, V.3
Raymond, E.4
Sarasin, A.5
Larsen, A.K.6
-
67
-
-
84859329706
-
Lack of recognition by global-genome nucleotide excision repair accounts for the high mutagenicity and persistence of aristolactam-DNA adducts
-
Sidorenko V.S., Yeo J.E., Bonala R.R., Johnson F., Scharer O.D., Grollman A.P. Lack of recognition by global-genome nucleotide excision repair accounts for the high mutagenicity and persistence of aristolactam-DNA adducts. Nucleic Acids Res. 2012, 40:2494-2505.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 2494-2505
-
-
Sidorenko, V.S.1
Yeo, J.E.2
Bonala, R.R.3
Johnson, F.4
Scharer, O.D.5
Grollman, A.P.6
|