메뉴 건너뛰기




Volumn 10, Issue 9, 2015, Pages 1345-1359

Constructing kinetic models of metabolism at genome-scales: A review

Author keywords

Approximate kinetic models; Constraint based models; Genome scale kinetic models; In silico modeling; Monte Carlo kinetic models

Indexed keywords

BIOLOGICAL SYSTEMS; GENES; KINETIC PARAMETERS; KINETIC THEORY; METABOLISM; METABOLITES; MONTE CARLO METHODS; PHYSIOLOGY; SIGNAL TRANSDUCTION; UNCERTAINTY ANALYSIS;

EID: 84940557767     PISSN: 18606768     EISSN: 18607314     Source Type: Journal    
DOI: 10.1002/biot.201400522     Document Type: Review
Times cited : (70)

References (94)
  • 2
    • 84868367714 scopus 로고    scopus 로고
    • Metabolic shifts: A fitness perspective for microbial cell factories.
    • Goel, A., Wortel, M. T., Molenaar, D., Teusink, B., Metabolic shifts: A fitness perspective for microbial cell factories. Biotechnol. Lett. 2012, 34, 2147-2160.
    • (2012) Biotechnol. Lett. , vol.34 , pp. 2147-2160
    • Goel, A.1    Wortel, M.T.2    Molenaar, D.3    Teusink, B.4
  • 3
    • 84881485174 scopus 로고    scopus 로고
    • Genome-scale models for microbial factories.
    • Price, N. D., Genome-scale models for microbial factories. Ind. Biotechnol. 2013, 9, 177-178.
    • (2013) Ind. Biotechnol. , vol.9 , pp. 177-178
    • Price, N.D.1
  • 4
    • 74049122828 scopus 로고    scopus 로고
    • Cancer systems biology: A network modeling perspective.
    • Kreeger, P., Lauffenburger, D., Cancer systems biology: A network modeling perspective. Carcinogenesis 2010, 31, 2-8.
    • (2010) Carcinogenesis , vol.31 , pp. 2-8
    • Kreeger, P.1    Lauffenburger, D.2
  • 5
    • 84869456236 scopus 로고    scopus 로고
    • Modeling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast.
    • Schaber, J., Baltanas, R., Bush, A., Klipp, E., Colman-Lerner, A., Modeling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast. Mol. Syst. Biol. 2012, 8, 622.
    • (2012) Mol. Syst. Biol. , vol.8 , pp. 622
    • Schaber, J.1    Baltanas, R.2    Bush, A.3    Klipp, E.4    Colman-Lerner, A.5
  • 6
    • 84892788440 scopus 로고    scopus 로고
    • Constraint-based models predict metabolic and associated cellular functions.
    • Bordbar, A., Monk, J., King, Z., Palsson, B., Constraint-based models predict metabolic and associated cellular functions. Nat. Rev. Genetics 2014, 15, 107-120.
    • (2014) Nat. Rev. Genetics , vol.15 , pp. 107-120
    • Bordbar, A.1    Monk, J.2    King, Z.3    Palsson, B.4
  • 7
    • 34347332311 scopus 로고    scopus 로고
    • A genome-scale reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information.
    • Feist, A. M., Henry, C. S., Reed, J. L., Krummenacker, M. et al., A genome-scale reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 2007, 3, 121.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 121
    • Feist, A.M.1    Henry, C.S.2    Reed, J.L.3    Krummenacker, M.4
  • 8
    • 77949773550 scopus 로고    scopus 로고
    • Towards genome-scale signalling network reconstructions.
    • Hyduke, D., Palsson, B. O., Towards genome-scale signalling network reconstructions. Nat. Rev. Genetics 2010, 11, 297-307.
    • (2010) Nat. Rev. Genetics , vol.11 , pp. 297-307
    • Hyduke, D.1    Palsson, B.O.2
  • 9
    • 53749085229 scopus 로고    scopus 로고
    • A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology.
    • Herrgård, M. J., Swainston, N., Dobson, P., Dunn, W. B. et al., A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat. Biotechnol. 2008, 26, 1155-60.
    • (2008) Nat. Biotechnol. , vol.26 , pp. 1155-1160
    • Herrgård, M.J.1    Swainston, N.2    Dobson, P.3    Dunn, W.B.4
  • 10
    • 80051537012 scopus 로고    scopus 로고
    • Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism.
    • Chang, R. L., Ghamsari, L., Manichaikul, A., Hom, E. F. Y. et al., Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism. Mol. Syst. Biol. 2011, 7, 518.
    • (2011) Mol. Syst. Biol. , vol.7 , pp. 518
    • Chang, R.L.1    Ghamsari, L.2    Manichaikul, A.3    Hom, E.F.Y.4
  • 11
    • 77956696072 scopus 로고    scopus 로고
    • High-throughput generation, optimization and analysis of genome-scale metabolic models
    • Henry, S. C., DeJongh, M., Best, B. A., Frybarger, M. P., Linsay, B. L., Stevens, R., High-throughput generation, optimization and analysis of genome-scale metabolic models, Nat. Biotechnol. 2010, 28, 977-982.
    • (2010) Nat. Biotechnol. , vol.28 , pp. 977-982
    • Henry, S.C.1    DeJongh, M.2    Best, B.A.3    Frybarger, M.P.4    Linsay, B.L.5    Stevens, R.6
  • 12
    • 84900303762 scopus 로고    scopus 로고
    • Optimizing genome-scale network reconstructions.
    • Monk, J., Nogales, J., Palsson, B., Optimizing genome-scale network reconstructions. Nat. Biotechnol. 2014, 32, 447-452.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 447-452
    • Monk, J.1    Nogales, J.2    Palsson, B.3
  • 13
    • 84879002382 scopus 로고    scopus 로고
    • Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli.
    • McCloskey, D., Palsson, B. O., Feist, A., Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol. Syst. Biol. 2013, 9, 661.
    • (2013) Mol. Syst. Biol. , vol.9 , pp. 661
    • McCloskey, D.1    Palsson, B.O.2    Feist, A.3
  • 14
    • 0028146781 scopus 로고
    • Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110.
    • Varma, A., Palsson, B. O., Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microbiol. 1994, 60, 3724-3731.
    • (1994) Appl. Environ. Microbiol. , vol.60 , pp. 3724-3731
    • Varma, A.1    Palsson, B.O.2
  • 16
    • 84923618616 scopus 로고    scopus 로고
    • Systems Biology: Simulation of Dynamic Network States
    • Cambridge University Press
    • Palsson, B., Systems Biology: Simulation of Dynamic Network States, Cambridge University Press 2011.
    • (2011)
    • Palsson, B.1
  • 17
    • 35448974147 scopus 로고    scopus 로고
    • Something from nothing - bridging the gap between constraint-based and kinetic modeling.
    • Smallbone, K., Simeonidis, E., Broomhead, D., Kell, D., Something from nothing - bridging the gap between constraint-based and kinetic modeling. FEBS J. 2007, 274, 5576-5595.
    • (2007) FEBS J. , vol.274 , pp. 5576-5595
    • Smallbone, K.1    Simeonidis, E.2    Broomhead, D.3    Kell, D.4
  • 18
    • 42949164125 scopus 로고    scopus 로고
    • Formulating genome-scale kinetic models in the post-genome era.
    • Jamshidi, N., Palsson, B. Ø., Formulating genome-scale kinetic models in the post-genome era. Mol. Sys. Biol. 2008, 4, 171.
    • (2008) Mol. Sys. Biol. , vol.4 , pp. 171
    • Jamshidi, N.1    Palsson, B.Ø.2
  • 19
    • 58749106454 scopus 로고    scopus 로고
    • Ensemble modeling of metabolic networks.
    • Tran, L. M., Rizk, M. L., Liao, J. C., Ensemble modeling of metabolic networks. Biophys. J. 2008, 95, 5606-5617.
    • (2008) Biophys. J. , vol.95 , pp. 5606-5617
    • Tran, L.M.1    Rizk, M.L.2    Liao, J.C.3
  • 20
    • 33947677189 scopus 로고    scopus 로고
    • Thermodynamically feasible kinetic models of reaction networks.
    • Ederer, M., Gilles, E., Thermodynamically feasible kinetic models of reaction networks. Biophys. J. 2007, 92, 1846-1857.
    • (2007) Biophys. J. , vol.92 , pp. 1846-1857
    • Ederer, M.1    Gilles, E.2
  • 21
    • 84858002174 scopus 로고    scopus 로고
    • Exploring the gap between dynamic and constraint-based models of metabolism.
    • Machado, D., Costa, R. S., Ferreira, E. C., Rocha, I., Tidor, B., Exploring the gap between dynamic and constraint-based models of metabolism. Metab. Eng. 2012, 14, 112-119.
    • (2012) Metab. Eng. , vol.14 , pp. 112-119
    • Machado, D.1    Costa, R.S.2    Ferreira, E.C.3    Rocha, I.4    Tidor, B.5
  • 22
    • 84895756673 scopus 로고    scopus 로고
    • k-OptForce: Integrating kinetics with flux balance analysis for strain design.
    • Chowdhury, A., Zomorrodi, A., Maranas, C., k-OptForce: Integrating kinetics with flux balance analysis for strain design. PLoS Comput.Biol. 2014, 10, e1003487.
    • (2014) PLoS Comput.Biol. , vol.10 , pp. e1003487
    • Chowdhury, A.1    Zomorrodi, A.2    Maranas, C.3
  • 23
    • 77954196484 scopus 로고    scopus 로고
    • Modular rate laws for enzymatic reactions: Thermodynamics, elasticities and implementation.
    • Liebermeister, W., Uhlendorf, J., Klipp, E., Modular rate laws for enzymatic reactions: Thermodynamics, elasticities and implementation. Bioinformatics 2010, 26, 1528-1534.
    • (2010) Bioinformatics , vol.26 , pp. 1528-1534
    • Liebermeister, W.1    Uhlendorf, J.2    Klipp, E.3
  • 24
    • 34249079154 scopus 로고    scopus 로고
    • Network motifs: Theory and experimental approaches.
    • Alon, U., Network motifs: Theory and experimental approaches. Nat. Rev. Genet. 2007, 8, 450-461.
    • (2007) Nat. Rev. Genet. , vol.8 , pp. 450-461
    • Alon, U.1
  • 25
    • 0004211673 scopus 로고    scopus 로고
    • Genes and Signals
    • Cold Spring Harbor Laboratory Press
    • Ptashne, M. A., Genes and Signals, Cold Spring Harbor Laboratory Press 2001.
    • (2001)
    • Ptashne, M.A.1
  • 26
    • 84894460034 scopus 로고    scopus 로고
    • When ubiquitination meets phosphorylation: A systems biology perspective of EGFR/MAPK signalling.
    • Nguyen, L., Kolch, W., Kholodenko, B., When ubiquitination meets phosphorylation: A systems biology perspective of EGFR/MAPK signalling. Cell Commun. Signal 2013, 11, 52.
    • (2013) Cell Commun. Signal , vol.11 , pp. 52
    • Nguyen, L.1    Kolch, W.2    Kholodenko, B.3
  • 27
    • 84905395314 scopus 로고    scopus 로고
    • Phenotypic bistability in Escherichia coli's central carbon metabolism.
    • Kotte, O., Volkmer, B., Radzikowski, J. L., Heinemann, M., Phenotypic bistability in Escherichia coli's central carbon metabolism. Mol. Syst. Biol. 2014, 10, 736.
    • (2014) Mol. Syst. Biol. , vol.10 , pp. 736
    • Kotte, O.1    Volkmer, B.2    Radzikowski, J.L.3    Heinemann, M.4
  • 28
    • 34047228840 scopus 로고    scopus 로고
    • Bifurcation analysis of metabolism of E. coli at optimal enzyme levels
    • IEEE
    • Vital-Lopez, F., Maranas, C., Armaou, A., Bifurcation analysis of metabolism of E. coli at optimal enzyme levels, in: Proc. Am. Control Conf., IEEE 2006, pp. 3439-3444.
    • (2006) in: Proc. Am. Control Conf. , pp. 3439-3444
    • Vital-Lopez, F.1    Maranas, C.2    Armaou, A.3
  • 29
    • 0034019315 scopus 로고    scopus 로고
    • Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades.
    • Kholodenko, B. N., Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur. J. Biochem. 2000, 267, 1583-1588.
    • (2000) Eur. J. Biochem. , vol.267 , pp. 1583-1588
    • Kholodenko, B.N.1
  • 31
    • 84864416480 scopus 로고    scopus 로고
    • Sustained glycolytic oscillations in individual isolated yeast cells.
    • Gustavsson, A.-K., van Niekerk, D. D., Adiels, C. B., du Preez, F. B. et al., Sustained glycolytic oscillations in individual isolated yeast cells. FEBS J. 2012, 279, 2837-2847.
    • (2012) FEBS J. , vol.279 , pp. 2837-2847
    • Gustavsson, A.-K.1    van Niekerk, D.D.2    Adiels, C.B.3    du Preez, F.B.4
  • 32
    • 34548825690 scopus 로고    scopus 로고
    • Towards a theory of biological robustness.
    • Kitano, H., Towards a theory of biological robustness. Mol. Syst. Biol. 2007, 3, 137.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 137
    • Kitano, H.1
  • 35
    • 84883430616 scopus 로고    scopus 로고
    • Evolutionary tradeoffs between economy and effectiveness in biological homeostasis systems.
    • Szekely, P., Sheftel, H., Mayo, A., Alon, U., Evolutionary tradeoffs between economy and effectiveness in biological homeostasis systems. PLoS Comput. Biol. 2013, 9, e1003163.
    • (2013) PLoS Comput. Biol. , vol.9 , pp. e1003163
    • Szekely, P.1    Sheftel, H.2    Mayo, A.3    Alon, U.4
  • 36
    • 77949385752 scopus 로고    scopus 로고
    • Bacterial adaptation through distributed sensing of metabolic fluxes.
    • Kotte, O., Zaugg, J. B., Heinemann, M., Bacterial adaptation through distributed sensing of metabolic fluxes. Mol. Syst. Biol. 2010, 6, 355.
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 355
    • Kotte, O.1    Zaugg, J.B.2    Heinemann, M.3
  • 37
    • 33847797256 scopus 로고    scopus 로고
    • Thermodynamics-based metabolic flux analysis.
    • Henry, C. S., Broadbelt, L. J., Hatzimanikatis, V., Thermodynamics-based metabolic flux analysis. Biophys. J. 2007, 92, 1792-1805.
    • (2007) Biophys. J. , vol.92 , pp. 1792-1805
    • Henry, C.S.1    Broadbelt, L.J.2    Hatzimanikatis, V.3
  • 38
    • 84900827538 scopus 로고    scopus 로고
    • Kinetic models in industrial biotechnology: Improving cell factory performance.
    • Almquist, J., Cvijovic, M., Hatzimanikatis, V., Nielsen, J., Jirstrand, M., Kinetic models in industrial biotechnology: Improving cell factory performance. Metab. Eng. 2014, 24, 38-60.
    • (2014) Metab. Eng. , vol.24 , pp. 38-60
    • Almquist, J.1    Cvijovic, M.2    Hatzimanikatis, V.3    Nielsen, J.4    Jirstrand, M.5
  • 40
    • 33845475855 scopus 로고    scopus 로고
    • A computational procedure for optimal engineering interventions using kinetic models of metabolism.
    • Vital-Lopez, F., Armaou, A., Nikolaev, E., Maranas, C., A computational procedure for optimal engineering interventions using kinetic models of metabolism. Biotechnol. Prog. 2006, 22, 1507-1517.
    • (2006) Biotechnol. Prog. , vol.22 , pp. 1507-1517
    • Vital-Lopez, F.1    Armaou, A.2    Nikolaev, E.3    Maranas, C.4
  • 41
    • 84867209510 scopus 로고    scopus 로고
    • Systems and synthetic metabolic engineering for amino acid production - the heartbeat of industrial strain development.
    • Becker, J., Wittmann, C., Systems and synthetic metabolic engineering for amino acid production - the heartbeat of industrial strain development. Curr. Opin. Biotechnol. 2012, 23, 718-726.
    • (2012) Curr. Opin. Biotechnol. , vol.23 , pp. 718-726
    • Becker, J.1    Wittmann, C.2
  • 42
    • 84891584226 scopus 로고    scopus 로고
    • Amino Acid Metabolism
    • John Wiley & Sons
    • Bender, D., Amino Acid Metabolism, John Wiley & Sons 2012.
    • (2012)
    • Bender, D.1
  • 43
    • 84899143621 scopus 로고    scopus 로고
    • Metabolic flux responses to genetic modifications for shikimic acid production by Bacillus subtilis strains.
    • Liu, D.-F., Ai, G.-M., Liu, C., Jiang, C.-Y. et al., Metabolic flux responses to genetic modifications for shikimic acid production by Bacillus subtilis strains. Microb. Cell Fact. 2014, 13, 40.
    • (2014) Microb. Cell Fact. , vol.13 , pp. 40
    • Liu, D.-F.1    Ai, G.-M.2    Liu, C.3    Jiang, C.-Y.4
  • 44
    • 84865142847 scopus 로고    scopus 로고
    • Microbial engineering for production of advanced biofuels.
    • Peralta-Yahya, P., Zhang, F., del Cardayre, S., Keasling, J., Microbial engineering for production of advanced biofuels. Nature 2012, 488, 320.
    • (2012) Nature , vol.488 , pp. 320
    • Peralta-Yahya, P.1    Zhang, F.2    del Cardayre, S.3    Keasling, J.4
  • 45
    • 84887618970 scopus 로고    scopus 로고
    • Advances in metabolic pathway and strain engineering paving the way for production of chemical building blocks.
    • Chen, Y., Nielsen, J., Advances in metabolic pathway and strain engineering paving the way for production of chemical building blocks. Curr. Opin. Biotechnol. 2013, 24, 965-972.
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 965-972
    • Chen, Y.1    Nielsen, J.2
  • 46
    • 84864839474 scopus 로고    scopus 로고
    • Systems biology of yeast: Enabling technology for development of cell factories for production of advanced biofuels.
    • De Jong, B., Siewers, V., Nielsen, J., Systems biology of yeast: Enabling technology for development of cell factories for production of advanced biofuels. Curr. Opin. Biotechnol. 2012, 23, 624-30.
    • (2012) Curr. Opin. Biotechnol. , vol.23 , pp. 624-630
    • De Jong, B.1    Siewers, V.2    Nielsen, J.3
  • 47
    • 84892781633 scopus 로고    scopus 로고
    • New types of experimental data shape the use of enzyme kinetics for dynamic network modeling.
    • Tummler, K., Lubitz, T., Schelker, M., Klipp, E., New types of experimental data shape the use of enzyme kinetics for dynamic network modeling. FEBS J. 2014, 281, 549-571.
    • (2014) FEBS J. , vol.281 , pp. 549-571
    • Tummler, K.1    Lubitz, T.2    Schelker, M.3    Klipp, E.4
  • 48
    • 0024842144 scopus 로고
    • Metabolic dynamics in the human red cell: Part I - A comprehensive kinetic model.
    • Joshi, A., Palsson, B. O., Metabolic dynamics in the human red cell: Part I - A comprehensive kinetic model. J. Theor. Biol. 1989, 141, 515-528.
    • (1989) J. Theor. Biol. , vol.141 , pp. 515-528
    • Joshi, A.1    Palsson, B.O.2
  • 49
    • 0025095641 scopus 로고
    • Metabolic dynamics in the human red cell. Part III - Metabolic reaction rates.
    • Joshi, A., Palsson, B. O., Metabolic dynamics in the human red cell. Part III - Metabolic reaction rates. J. Theor. Biol. 1990, 142, 41-68.
    • (1990) J. Theor. Biol. , vol.142 , pp. 41-68
    • Joshi, A.1    Palsson, B.O.2
  • 50
    • 0033857139 scopus 로고    scopus 로고
    • Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry.
    • Teusink, B., Passarge, J., Reijenga, C. A., Esgalhado, E. et al., Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur. J. Biochem. 2000, 267, 5313-5329.
    • (2000) Eur. J. Biochem. , vol.267 , pp. 5313-5329
    • Teusink, B.1    Passarge, J.2    Reijenga, C.A.3    Esgalhado, E.4
  • 51
    • 0033662290 scopus 로고    scopus 로고
    • Tendency modeling: A new approach to obtain simplified kinetic models of metabolism applied to Saccharomyces cerevisiae.
    • Visser, D., van der Heijden, R., Mauch, K., Reuss, M., Heijnen, S., Tendency modeling: A new approach to obtain simplified kinetic models of metabolism applied to Saccharomyces cerevisiae. Metab. Eng. 2000, 2, 252-275.
    • (2000) Metab. Eng. , vol.2 , pp. 252-275
    • Visser, D.1    van der Heijden, R.2    Mauch, K.3    Reuss, M.4    Heijnen, S.5
  • 53
    • 84865967872 scopus 로고    scopus 로고
    • Kinetic modeling of central carbon metabolism in Escherichia coli.
    • Peskov, K., Mogilevskaya, E., Demin, O., Kinetic modeling of central carbon metabolism in Escherichia coli. FEBS J. 2012, 279, 3374-3385.
    • (2012) FEBS J. , vol.279 , pp. 3374-3385
    • Peskov, K.1    Mogilevskaya, E.2    Demin, O.3
  • 54
    • 0021403731 scopus 로고
    • Computer model for glucose-limited growth of a single cell of Escherichia coli B/r-A.
    • Domach, M.M., Leung, S. K., Cahn, R. E., Cocks, G. G., Shuler, M. L., Computer model for glucose-limited growth of a single cell of Escherichia coli B/r-A. Biotechnol. Bioeng. 1984, 26, 203-216.
    • (1984) Biotechnol. Bioeng. , vol.26 , pp. 203-216
    • Domach, M.M.1    Leung, S.K.2    Cahn, R.E.3    Cocks, G.G.4    Shuler, M.L.5
  • 55
    • 0003760238 scopus 로고
    • Enzyme Kinetics Behavior and Analysis of Rapid Equilibrium and Steady State Enzyme Systems
    • Segel. I. H., Enzyme Kinetics Behavior and Analysis of Rapid Equilibrium and Steady State Enzyme Systems, Wiley Interscience 1975.
    • (1975) Wiley Interscience
    • Segel, I.H.1
  • 56
    • 10044224601 scopus 로고    scopus 로고
    • Metabolic control analysis under uncertainty: Frameowrk development and case studies.
    • Wang, L., Birol, I., Hatzimanikatis, V., Metabolic control analysis under uncertainty: Frameowrk development and case studies. Biophys. J. 2004, 87, 3750-3763.
    • (2004) Biophys. J. , vol.87 , pp. 3750-3763
    • Wang, L.1    Birol, I.2    Hatzimanikatis, V.3
  • 57
    • 84859334344 scopus 로고    scopus 로고
    • Exploring the dynamics of large-scale biohcemical networks: A computational perspective.
    • Steuer, R., Exploring the dynamics of large-scale biohcemical networks: A computational perspective. Open Bioinf. J. 2011, 5, 4-15.
    • (2011) Open Bioinf. J. , vol.5 , pp. 4-15
    • Steuer, R.1
  • 58
    • 25144492110 scopus 로고    scopus 로고
    • Approximate kinetic formats used in metabolic network modeling.
    • Heijnen, J., Approximate kinetic formats used in metabolic network modeling. Biotechnol. Bioeng. 2005, 91, 534-545.
    • (2005) Biotechnol. Bioeng. , vol.91 , pp. 534-545
    • Heijnen, J.1
  • 60
    • 77952953154 scopus 로고    scopus 로고
    • Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations
    • Costa, R., Machado, D., Rocha, I., Ferreira, E., Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations, Biosystems 2010, 100, 150-157.
    • (2010) Biosystems , vol.100 , pp. 150-157
    • Costa, R.1    Machado, D.2    Rocha, I.3    Ferreira, E.4
  • 61
    • 0014658880 scopus 로고
    • Biochemical systems analysis II: The steday state solutions for an n-pool system using a power-law approximation.
    • Savageau, M. A., Biochemical systems analysis II: The steday state solutions for an n-pool system using a power-law approximation. J. Theor. Biol. 1969, 25, 370.
    • (1969) J. Theor. Biol. , vol.25 , pp. 370
    • Savageau, M.A.1
  • 62
    • 0014649230 scopus 로고
    • Biochemical systems analysis.
    • Savageau, M. A., Biochemical systems analysis. J. Theor. Biol. 1969, 25, 365-369.
    • (1969) J. Theor. Biol. , vol.25 , pp. 365-369
    • Savageau, M.A.1
  • 63
    • 0026802334 scopus 로고
    • Metabolic control analysis: A survey of its theoretical and experimental development.
    • Fell, D., Metabolic control analysis: A survey of its theoretical and experimental development. Biochem. J. 1992, 286, 313-330.
    • (1992) Biochem. J. , vol.286 , pp. 313-330
    • Fell, D.1
  • 64
    • 84893707475 scopus 로고    scopus 로고
    • Systematic construction of kinetic models from genome-scale metabolic networks.
    • Stanford, N. J., Lubitz, T., Smallbone, K., Klipp, E. et al., Systematic construction of kinetic models from genome-scale metabolic networks. PLoS One 2013, 8, e79195.
    • (2013) PLoS One , vol.8 , pp. e79195
    • Stanford, N.J.1    Lubitz, T.2    Smallbone, K.3    Klipp, E.4
  • 65
    • 33846617808 scopus 로고    scopus 로고
    • Bringing metabolic networks to life: Convenience rate law and thermodynamic constraints.
    • Liebermeister, W., Klipp, E., Bringing metabolic networks to life: Convenience rate law and thermodynamic constraints. Theor. Biol. Med. Modell. 2006, 3, 41.
    • (2006) Theor. Biol. Med. Modell. , vol.3 , pp. 41
    • Liebermeister, W.1    Klipp, E.2
  • 66
    • 84865642147 scopus 로고    scopus 로고
    • Likelihood based observability analysis and confidence intervals for predictions of dynamic models.
    • Kreutz, C., Raue, A., Timmer, J., Likelihood based observability analysis and confidence intervals for predictions of dynamic models. BMC Syst. Biol. 2012, 6, 120.
    • (2012) BMC Syst. Biol. , vol.6 , pp. 120
    • Kreutz, C.1    Raue, A.2    Timmer, J.3
  • 67
    • 33846061120 scopus 로고    scopus 로고
    • 13C-based flux analysis.
    • 13C-based flux analysis. Mol. Sys. Biol. 2006, 2, 62.
    • (2006) Mol. Sys. Biol. , vol.2 , pp. 62
    • Sauer, U.1
  • 68
    • 84897083269 scopus 로고    scopus 로고
    • Metabolic flux analysis of Escherichia coli knockouts: Lessons from the Keio collection and future outlook.
    • Long, C., Antoniewicz, M., Metabolic flux analysis of Escherichia coli knockouts: Lessons from the Keio collection and future outlook. Curr. Opin. Biotechnol. 2014, 28, 127-133.
    • (2014) Curr. Opin. Biotechnol. , vol.28 , pp. 127-133
    • Long, C.1    Antoniewicz, M.2
  • 69
    • 84901321053 scopus 로고    scopus 로고
    • Contribution of network connectivity in determining the relationship between gene expression and metabolite concentration changes.
    • Zelezniak, A., Sheridan, S., Patil, K. R., Contribution of network connectivity in determining the relationship between gene expression and metabolite concentration changes. PLoS Comput. Biol. 2014, 10, e1003572.
    • (2014) PLoS Comput. Biol. , vol.10 , pp. e1003572
    • Zelezniak, A.1    Sheridan, S.2    Patil, K.R.3
  • 70
    • 84864795465 scopus 로고    scopus 로고
    • Recent advances in reconstruction and application of genome-scale metabolic models.
    • Kim, T. Y., Sohn, S. B., Kim, Y. B., Kim, W. J., Lee, S. Y., Recent advances in reconstruction and application of genome-scale metabolic models. Curr. Opin. Biotechnol. 2012, 23, 617-623.
    • (2012) Curr. Opin. Biotechnol. , vol.23 , pp. 617-623
    • Kim, T.Y.1    Sohn, S.B.2    Kim, Y.B.3    Kim, W.J.4    Lee, S.Y.5
  • 71
    • 84858439602 scopus 로고    scopus 로고
    • Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods.
    • Lewis, N., Nagarajan, H., Palsson, B., Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 2012, 10, 291.
    • (2012) Nat. Rev. Microbiol. , vol.10 , pp. 291
    • Lewis, N.1    Nagarajan, H.2    Palsson, B.3
  • 72
    • 84901306814 scopus 로고    scopus 로고
    • Systematic evaluation of methods for integration of transcriptiomic data into contraint-based models of metabolism.
    • Machado, D., Herrgard, M., Systematic evaluation of methods for integration of transcriptiomic data into contraint-based models of metabolism. PLoS Comput. Biol. 2014, 10, e1003580.
    • (2014) PLoS Comput. Biol. , vol.10 , pp. e1003580
    • Machado, D.1    Herrgard, M.2
  • 73
    • 78650218972 scopus 로고    scopus 로고
    • Modeling of uncertainities in biochemical reactions
    • Miskovic, L., Hatzimanikatis, V., Modeling of uncertainities in biochemical reactions, Biotechnol. Bioneng. 2011, 108, 413-423.
    • (2011) Biotechnol. Bioneng. , vol.108 , pp. 413-423
    • Miskovic, L.1    Hatzimanikatis, V.2
  • 74
    • 84883800631 scopus 로고    scopus 로고
    • Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    • Chakrabarti, A., Miskovic, L., Soh, K. C., Hatzimanikatis, V., Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. Biotechnol. J. 2013, 8, 1043-1057.
    • (2013) Biotechnol. J. , vol.8 , pp. 1043-1057
    • Chakrabarti, A.1    Miskovic, L.2    Soh, K.C.3    Hatzimanikatis, V.4
  • 75
    • 78650571311 scopus 로고    scopus 로고
    • Reducing the allowable kientic space by constructing an ensemble of dynamic models with the same steady state flux.
    • Tan, Y., Rivera, J. L., Contador, C., Asenjo, J., Liao, J., Reducing the allowable kientic space by constructing an ensemble of dynamic models with the same steady state flux. Metab. Eng. 2011, 13, 60-75.
    • (2011) Metab. Eng. , vol.13 , pp. 60-75
    • Tan, Y.1    Rivera, J.L.2    Contador, C.3    Asenjo, J.4    Liao, J.5
  • 76
    • 84883799668 scopus 로고    scopus 로고
    • Optimization-driven identification of genetic perturbations accelerates the convergence of model parameters in ensemble modeling of metabolic networks.
    • Zomorrodi, A., Rivera, J. L., Liao, J., Maranas, C., Optimization-driven identification of genetic perturbations accelerates the convergence of model parameters in ensemble modeling of metabolic networks. Biotechnol. J. 2013, 8, 1090-1104.
    • (2013) Biotechnol. J. , vol.8 , pp. 1090-1104
    • Zomorrodi, A.1    Rivera, J.L.2    Liao, J.3    Maranas, C.4
  • 77
    • 70349779362 scopus 로고    scopus 로고
    • Ensmeble modeling and related mathematical modeling of metabolic networks.
    • Rizk, M., Liao, J., Ensmeble modeling and related mathematical modeling of metabolic networks. J. Taiwan Inst. Chem. Eng. 2009, 40, 595-601.
    • (2009) J. Taiwan Inst. Chem. Eng. , vol.40 , pp. 595-601
    • Rizk, M.1    Liao, J.2
  • 78
    • 77049084742 scopus 로고    scopus 로고
    • Mass action stoichiometric simulation models: Incorporating kinetics and regulation into stoichiometric models.
    • Jamshidi, N., Palsson, B. O., Mass action stoichiometric simulation models: Incorporating kinetics and regulation into stoichiometric models. Biophys. J. 2010, 98, 175-185.
    • (2010) Biophys. J. , vol.98 , pp. 175-185
    • Jamshidi, N.1    Palsson, B.O.2
  • 79
    • 52949144952 scopus 로고    scopus 로고
    • Top-down analysis of temporal hierarchy in biochemical reaction networks.
    • Jamshidi, N., Palsson, B. O., Top-down analysis of temporal hierarchy in biochemical reaction networks. PLoS Comput. Biol. 2008, 4, e1000177.
    • (2008) PLoS Comput. Biol. , vol.4 , pp. e1000177
    • Jamshidi, N.1    Palsson, B.O.2
  • 80
    • 84866443920 scopus 로고    scopus 로고
    • Random sampling of elementary flux modes in large-scale metabolic networks.
    • e1000177515-e100017i521
    • Machado, D., Soons, Z., Patil, K. R., Ferreira, E. C., Rocha, I., Random sampling of elementary flux modes in large-scale metabolic networks. Bioinformatics 2012, 28, e1000177515-i521.
    • (2012) Bioinformatics , vol.28
    • Machado, D.1    Soons, Z.2    Patil, K.R.3    Ferreira, E.C.4    Rocha, I.5
  • 81
    • 79955715337 scopus 로고    scopus 로고
    • A probabilistic approach to identify putative drug targets in biohcemical networks.
    • Murabito, E., Smallbone, K., Swinton, J., Westerhoff, H., Steuer, R., A probabilistic approach to identify putative drug targets in biohcemical networks. J. R. Soc. Interface 2011, 8, 880-895.
    • (2011) J. R. Soc. Interface , vol.8 , pp. 880-895
    • Murabito, E.1    Smallbone, K.2    Swinton, J.3    Westerhoff, H.4    Steuer, R.5
  • 82
    • 34547684426 scopus 로고    scopus 로고
    • Computational approaches to topology, stability and dynamic metabolic networks.
    • Steuer, R., Computational approaches to topology, stability and dynamic metabolic networks. Phytochemistry 2007, 68, 2139-2151.
    • (2007) Phytochemistry , vol.68 , pp. 2139-2151
    • Steuer, R.1
  • 83
    • 77953934646 scopus 로고    scopus 로고
    • BioModel Database: An enhanced curated and annotated resource for published quantitative kinetic models.
    • Li, C., Donizelli, M., Rodriguez, N., Dharuri, H. et al., BioModel Database: An enhanced curated and annotated resource for published quantitative kinetic models. BMC Syst. Biol. 2010, 4, 92.
    • (2010) BMC Syst. Biol. , vol.4 , pp. 92
    • Li, C.1    Donizelli, M.2    Rodriguez, N.3    Dharuri, H.4
  • 85
    • 85047688512 scopus 로고    scopus 로고
    • Genome-scale bacterial transcriptional regulatory networks: Reconstruction and integrated analysis with metabolic models.
    • Faria, J., Overbeek, R., Xia, F., Rocha, M. et al., Genome-scale bacterial transcriptional regulatory networks: Reconstruction and integrated analysis with metabolic models. Brief. Bioinform. 2013, 15, 592-611.
    • (2013) Brief. Bioinform. , vol.15 , pp. 592-611
    • Faria, J.1    Overbeek, R.2    Xia, F.3    Rocha, M.4
  • 86
    • 84878694217 scopus 로고    scopus 로고
    • Large-scale metabolome analysis and quantitative integration with genomics and proteomics data in Mycoplasma pneumoniae.
    • Maier, T., Marcos, J., Wodke, J. A. H., Paetzold, B. et al., Large-scale metabolome analysis and quantitative integration with genomics and proteomics data in Mycoplasma pneumoniae. Mol. Biosyst. 2013, 9, 1743-1755.
    • (2013) Mol. Biosyst. , vol.9 , pp. 1743-1755
    • Maier, T.1    Marcos, J.2    Wodke, J.A.H.3    Paetzold, B.4
  • 87
    • 84864258618 scopus 로고    scopus 로고
    • A whole-cell computational model predicts phenotype from genotype.
    • Karr, J. R., Sanghvi, J. C., Macklin, D. N., Gutschow, M. V. et al., A whole-cell computational model predicts phenotype from genotype. Cell 2012, 150, 389-401.
    • (2012) Cell , vol.150 , pp. 389-401
    • Karr, J.R.1    Sanghvi, J.C.2    Macklin, D.N.3    Gutschow, M.V.4
  • 88
    • 32644484370 scopus 로고    scopus 로고
    • A review of multiscale analysis: Examples from systems biology, materials engineering, and other fluid-surface interacting systems.
    • Vlachos, D. G., A review of multiscale analysis: Examples from systems biology, materials engineering, and other fluid-surface interacting systems. Adv. Chem. Eng. 2005, 30, 1-61.
    • (2005) Adv. Chem. Eng. , vol.30 , pp. 1-61
    • Vlachos, D.G.1
  • 89
    • 84859502757 scopus 로고    scopus 로고
    • Multiscale modeling for emergent behavior, complexity, and combinatorial explosion.
    • Vlachos, D. G., Multiscale modeling for emergent behavior, complexity, and combinatorial explosion. AIChE J. 2012, 58, 1314-1325.
    • (2012) AIChE J. , vol.58 , pp. 1314-1325
    • Vlachos, D.G.1
  • 90
    • 84864584520 scopus 로고    scopus 로고
    • Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters.
    • Adadi, R., Volkmer, B., Milo, R., Heinemann, M., Shlomi, T., Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters. PLoS Comput. Biol. 2012, 8, e1002575.
    • (2012) PLoS Comput. Biol. , vol.8 , pp. e1002575
    • Adadi, R.1    Volkmer, B.2    Milo, R.3    Heinemann, M.4    Shlomi, T.5
  • 91
    • 67650760503 scopus 로고    scopus 로고
    • Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood.
    • Raue, A., Kreutz, C., Maiwald, T., Bachmann, J. et al., Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 2009, 25, 1923-1929.
    • (2009) Bioinformatics , vol.25 , pp. 1923-1929
    • Raue, A.1    Kreutz, C.2    Maiwald, T.3    Bachmann, J.4
  • 92
    • 77954190195 scopus 로고    scopus 로고
    • Computational models of metabolism: Stability and regulation in metabolic networks.
    • Steuer, R., Junker, B. H., Computational models of metabolism: Stability and regulation in metabolic networks. Adv. Chem. Phys. 2009, 142, 105.
    • (2009) Adv. Chem. Phys. , vol.142 , pp. 105
    • Steuer, R.1    Junker, B.H.2
  • 93
    • 36248952170 scopus 로고    scopus 로고
    • The stability and robustness of metabolic states: Identifying stabilizing sites in metabolic networks.
    • Grimbs, S., Selbig, J., Bulik, S., Holzhutter, H.-G., Steuer, R., The stability and robustness of metabolic states: Identifying stabilizing sites in metabolic networks. Mol. Syst. Biol. 2007, 3, 146.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 146
    • Grimbs, S.1    Selbig, J.2    Bulik, S.3    Holzhutter, H.-G.4    Steuer, R.5
  • 94
    • 71149116758 scopus 로고    scopus 로고
    • Systems analysis of cellular networks under uncertainty.
    • Kaltenbach, H.-M., Dimopoulos, S., Stelling, J., Systems analysis of cellular networks under uncertainty. FEBS Lett. 2009, 583, 3923-3930.
    • (2009) FEBS Lett. , vol.583 , pp. 3923-3930
    • Kaltenbach, H.-M.1    Dimopoulos, S.2    Stelling, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.