메뉴 건너뛰기




Volumn 14, Issue 2, 2012, Pages 112-119

Exploring the gap between dynamic and constraint-based models of metabolism

Author keywords

Constraint based models; Dynamic models; Metabolic networks; Systems biology

Indexed keywords

CARBON METABOLISM; COMPARE AND ANALYZE; CONSTRAINT-BASED; DYNAMIC FORMULATION; FEASIBLE REGIONS; FLUX MODEL; KINETIC RATE LAW; METABOLIC NETWORK; MICROBIAL METABOLISM; MODELING FRAMEWORKS; SIMULATION AND OPTIMIZATION; SOLUTION SPACE; STEADY STATE; SYSTEMS BIOLOGY;

EID: 84858002174     PISSN: 10967176     EISSN: 10967184     Source Type: Journal    
DOI: 10.1016/j.ymben.2012.01.003     Document Type: Article
Times cited : (28)

References (32)
  • 1
    • 0036286631 scopus 로고    scopus 로고
    • Energy balance for analysis of complex metabolic networks
    • Beard D., Liang S., Qian H. Energy balance for analysis of complex metabolic networks. Biophys. J. 2002, 83(1):79-86.
    • (2002) Biophys. J. , vol.83 , Issue.1 , pp. 79-86
    • Beard, D.1    Liang, S.2    Qian, H.3
  • 2
    • 0242487787 scopus 로고    scopus 로고
    • OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
    • Burgard A., Pharkya P., Maranas C. OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 2003, 84(6):647-657.
    • (2003) Biotechnol. Bioeng. , vol.84 , Issue.6 , pp. 647-657
    • Burgard, A.1    Pharkya, P.2    Maranas, C.3
  • 4
    • 0037424661 scopus 로고    scopus 로고
    • Constraints-based models: regulation of gene expression reduces the steady-state solution space
    • Covert M., Palsson B. Constraints-based models: regulation of gene expression reduces the steady-state solution space. J. Theor. Biol. 2003, 221(3):309-325.
    • (2003) J. Theor. Biol. , vol.221 , Issue.3 , pp. 309-325
    • Covert, M.1    Palsson, B.2
  • 5
    • 2942579562 scopus 로고    scopus 로고
    • Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions
    • Edwards J., Palsson B. Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics 2000, 1(1):1.
    • (2000) BMC Bioinformatics , vol.1 , Issue.1 , pp. 1
    • Edwards, J.1    Palsson, B.2
  • 6
    • 33748049119 scopus 로고    scopus 로고
    • Matrix formalism to describe functional states of transcriptional regulatory systems
    • Gianchandani E., Papin J., Price N., Joyce A., Palsson B. Matrix formalism to describe functional states of transcriptional regulatory systems. PLoS Comput. Biol. 2006, 2(8):e101.
    • (2006) PLoS Comput. Biol. , vol.2 , Issue.8
    • Gianchandani, E.1    Papin, J.2    Price, N.3    Joyce, A.4    Palsson, B.5
  • 7
    • 36248990302 scopus 로고    scopus 로고
    • Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks
    • Hoppe A., Hoffmann S., Holzhütter H. Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks. BMC Syst. Biol. 2007, 1:23.
    • (2007) BMC Syst. Biol. , vol.1 , pp. 23
    • Hoppe, A.1    Hoffmann, S.2    Holzhütter, H.3
  • 8
    • 0037079023 scopus 로고    scopus 로고
    • Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth
    • Ibarra R., Edwards J., Palsson B. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 2002, 420(6912):186-189.
    • (2002) Nature , vol.420 , Issue.6912 , pp. 186-189
    • Ibarra, R.1    Edwards, J.2    Palsson, B.3
  • 9
    • 77049084742 scopus 로고    scopus 로고
    • Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models
    • Jamshidi N., Palsson B. Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models. Biophys. J. 2010, 98:175-185.
    • (2010) Biophys. J. , vol.98 , pp. 175-185
    • Jamshidi, N.1    Palsson, B.2
  • 10
    • 0036500993 scopus 로고    scopus 로고
    • Systems biology: a brief overview
    • Kitano H. Systems biology: a brief overview. Science 2002, 295(5560):1662-1664.
    • (2002) Science , vol.295 , Issue.5560 , pp. 1662-1664
    • Kitano, H.1
  • 12
    • 44949247269 scopus 로고    scopus 로고
    • Dynamic analysis of integrated signaling, metabolic, and regulatory networks
    • Lee J., Gianchandani E., Eddy J., Papin J. Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput. Biol. 2008, 4(5):e1000086.
    • (2008) PLoS Comput. Biol. , vol.4 , Issue.5
    • Lee, J.1    Gianchandani, E.2    Eddy, J.3    Papin, J.4
  • 13
    • 80555149221 scopus 로고    scopus 로고
    • Dynamic metabolic flux analysis (DMFA): a framework for determining fluxes at metabolic non-steady state
    • Leighty R., Antoniewicz M. Dynamic metabolic flux analysis (DMFA): a framework for determining fluxes at metabolic non-steady state. Metab. Eng. 2011, 13(6):745-755.
    • (2011) Metab. Eng. , vol.13 , Issue.6 , pp. 745-755
    • Leighty, R.1    Antoniewicz, M.2
  • 14
    • 84857999413 scopus 로고    scopus 로고
    • GLPK - The GNU Linear Programming Toolkit
    • Makhorin, A., 2006. GLPK - The GNU Linear Programming Toolkit, http://www.gnu.org/software/glpk/.
    • (2006)
    • Makhorin, A.1
  • 15
    • 79953649492 scopus 로고    scopus 로고
    • Reconciliation of genome-scale metabolic reconstructions for comparative systems analysis
    • Oberhardt M., PuchaŁka J., dos Santos V., Papin J. Reconciliation of genome-scale metabolic reconstructions for comparative systems analysis. PLoS Comput. Biol. 2011, 7(3):e1001116.
    • (2011) PLoS Comput. Biol. , vol.7 , Issue.3
    • Oberhardt, M.1    Puchałka, J.2    dos Santos, V.3    Papin, J.4
  • 16
    • 70449521460 scopus 로고    scopus 로고
    • A dynamic, genome-scale flux model of Lactococcus lactis to increase specific recombinant protein expression
    • Oddone G., Mills D., Block D. A dynamic, genome-scale flux model of Lactococcus lactis to increase specific recombinant protein expression. Metab. Eng. 2009, 11(6):367-381.
    • (2009) Metab. Eng. , vol.11 , Issue.6 , pp. 367-381
    • Oddone, G.1    Mills, D.2    Block, D.3
  • 17
    • 30044437327 scopus 로고    scopus 로고
    • Evolutionary programming as a platform for in silico metabolic engineering
    • Patil K., Rocha I., Forster J., Nielsen J. Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 2005, 6(1):308.
    • (2005) BMC Bioinformatics , vol.6 , Issue.1 , pp. 308
    • Patil, K.1    Rocha, I.2    Forster, J.3    Nielsen, J.4
  • 18
    • 0343907200 scopus 로고    scopus 로고
    • In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model
    • Rizzi M., Baltes M., Theobald U., Reuss M. In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model. Biotechnol. Bioeng. 1997, 55(4):592-608.
    • (1997) Biotechnol. Bioeng. , vol.55 , Issue.4 , pp. 592-608
    • Rizzi, M.1    Baltes, M.2    Theobald, U.3    Reuss, M.4
  • 21
    • 0036081012 scopus 로고    scopus 로고
    • BRENDA, enzyme data and metabolic information
    • Schomburg I., Chang A., Schomburg D. BRENDA, enzyme data and metabolic information. Nucleic Acids Res. 2002, 30(1):47-49.
    • (2002) Nucleic Acids Res. , vol.30 , Issue.1 , pp. 47-49
    • Schomburg, I.1    Chang, A.2    Schomburg, D.3
  • 22
    • 0037069467 scopus 로고    scopus 로고
    • Analysis of optimality in natural and perturbed metabolic networks
    • Segrè D., Vitkup D., Church G. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA 2002, 99(23):15112-15117.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , Issue.23 , pp. 15112-15117
    • Segrè, D.1    Vitkup, D.2    Church, G.3
  • 23
    • 19644386033 scopus 로고    scopus 로고
    • Regulatory on/off minimization of metabolic flux changes after genetic perturbations
    • Shlomi T., Berkman O., Ruppin E. Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc. Natl. Acad. Sci. USA 2005, 102(21):7695-7700.
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , Issue.21 , pp. 7695-7700
    • Shlomi, T.1    Berkman, O.2    Ruppin, E.3
  • 25
    • 0021517318 scopus 로고
    • Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions
    • Smith R. Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions. Oper. Res. 1984, 32(6):1296-1308.
    • (1984) Oper. Res. , vol.32 , Issue.6 , pp. 1296-1308
    • Smith, R.1
  • 26
    • 0032549875 scopus 로고    scopus 로고
    • Metabolic engineering
    • Stephanopoulos G. Metabolic engineering. Biotechnol. Bioeng. 1998, 58(2-3):119-120.
    • (1998) Biotechnol. Bioeng. , vol.58 , Issue.2-3 , pp. 119-120
    • Stephanopoulos, G.1
  • 27
    • 78650571311 scopus 로고    scopus 로고
    • Reducing the allowable kinetic space by constructing ensemble of dynamic models with the same steady-state flux
    • Tan Y., Lafontaine Rivera J., Contador C., Asenjo J., Liao J. Reducing the allowable kinetic space by constructing ensemble of dynamic models with the same steady-state flux. Metab. Eng. 2010, 13(1):60-75.
    • (2010) Metab. Eng. , vol.13 , Issue.1 , pp. 60-75
    • Tan, Y.1    Lafontaine Rivera, J.2    Contador, C.3    Asenjo, J.4    Liao, J.5
  • 28
    • 58749106454 scopus 로고    scopus 로고
    • Ensemble modeling of metabolic networks
    • Tran L., Rizk M., Liao J. Ensemble modeling of metabolic networks. Biophys. J. 2008, 95(12):5606-5617.
    • (2008) Biophys. J. , vol.95 , Issue.12 , pp. 5606-5617
    • Tran, L.1    Rizk, M.2    Liao, J.3
  • 29
    • 0028146781 scopus 로고
    • Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110
    • Varma A., Palsson B. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microbiol. 1994, 60(10):3724-3731.
    • (1994) Appl. Environ. Microbiol. , vol.60 , Issue.10 , pp. 3724-3731
    • Varma, A.1    Palsson, B.2
  • 30
    • 2642513030 scopus 로고    scopus 로고
    • Monte Carlo sampling can be used to determine the size and shape of the steady-state flux space
    • Wiback S., Famili I., Greenberg H., Palsson B. Monte Carlo sampling can be used to determine the size and shape of the steady-state flux space. J. Theor. Biol. 2004, 228(4):437-447.
    • (2004) J. Theor. Biol. , vol.228 , Issue.4 , pp. 437-447
    • Wiback, S.1    Famili, I.2    Greenberg, H.3    Palsson, B.4
  • 31
    • 0034741983 scopus 로고    scopus 로고
    • 13C metabolic flux analysis
    • Wiechert W. 13C metabolic flux analysis. Metab. Eng. 2001, 3(3):195-206.
    • (2001) Metab. Eng. , vol.3 , Issue.3 , pp. 195-206
    • Wiechert, W.1
  • 32


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.