메뉴 건너뛰기




Volumn 15, Issue 4, 2014, Pages 592-611

Genome-scale bacterial transcriptional regulatory networks: Reconstruction and integrated analysis with metabolic models

Author keywords

De novo reverse engineering; Genome scale metabolic (GSM) model; Integrated metabolic and regulatory models; Transcriptional regulatory network (TRN)

Indexed keywords

BACTERIAL GENOME; BACTERIUM; BIOLOGICAL MODEL; CLASSIFICATION; GENE REGULATORY NETWORK; GENETIC DATABASE; GENETIC TRANSCRIPTION; GENETICS; METABOLISM; PHYLOGENY;

EID: 85047688512     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbs071     Document Type: Article
Times cited : (25)

References (191)
  • 2
    • 31144435316 scopus 로고    scopus 로고
    • Towards multidimensional genome annotation
    • Reed JL, Famili I, Thiele I, et al. Towards multidimensional genome annotation. Nat Rev Genet 2006;7:130-41.
    • (2006) Nat Rev Genet , vol.7 , pp. 130-141
    • Reed, J.L.1    Famili, I.2    Thiele, I.3
  • 3
  • 4
    • 77956696072 scopus 로고    scopus 로고
    • High-throughput generation, optimization and analysis of genome-scale metabolic models
    • Henry CS, DeJongh M, Best AA, et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 2010;28:977-82.
    • (2010) Nat Biotechnol , vol.28 , pp. 977-982
    • Henry, C.S.1    DeJongh, M.2    Best, A.A.3
  • 6
    • 77956649528 scopus 로고    scopus 로고
    • Metabolic reconstruction, constraint-based analysis and game theory to probe genome-scale metabolic networks
    • Ruppin E, Papin JA, de Figueiredo LF, et al. Metabolic reconstruction, constraint-based analysis and game theory to probe genome-scale metabolic networks. Curr Opin Biotechnol 2010;21:502-10.
    • (2010) Curr Opin Biotechnol , vol.21 , pp. 502-510
    • Ruppin, E.1    Papin, J.A.2    De Figueiredo, L.F.3
  • 7
    • 58549108388 scopus 로고    scopus 로고
    • Reconstruction of biochemical networks in microorganisms
    • Feist AM, Herrgard MJ, Thiele I, et al. Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 2009;7:129-43.
    • (2009) Nat Rev Microbiol , vol.7 , pp. 129-143
    • Feist, A.M.1    Herrgard, M.J.2    Thiele, I.3
  • 8
    • 0033538531 scopus 로고    scopus 로고
    • Fundamentally different logic of gene regulation in eukaryotes and prokaryotes
    • Struhl K. Fundamentally different logic of gene regulation in eukaryotes and prokaryotes. Cell 1999;98:1-4.
    • (1999) Cell , vol.98 , pp. 1-4
    • Struhl, K.1
  • 9
    • 0346687595 scopus 로고    scopus 로고
    • The riboswitch control of bacterial metabolism
    • Nudler E, Mironov AS. The riboswitch control of bacterial metabolism. Trends Biochem Sci 2004;29:11-7.
    • (2004) Trends Biochem Sci , vol.29 , pp. 11-17
    • Nudler, E.1    Mironov, A.S.2
  • 10
    • 18744396047 scopus 로고    scopus 로고
    • Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria
    • Mironov AS, Gusarov I, Rafikov R, et al. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 2002;111:747-56.
    • (2002) Cell , vol.111 , pp. 747-756
    • Mironov, A.S.1    Gusarov, I.2    Rafikov, R.3
  • 11
    • 85041131924 scopus 로고
    • Antisense RNA control in bacteria, phages, and plasmids
    • Wagner EG, Simons RW. Antisense RNA control in bacteria, phages, and plasmids. Annu Rev Microbiol 1994;48:713-42.
    • (1994) Annu Rev Microbiol , vol.48 , pp. 713-742
    • Wagner, E.G.1    Simons, R.W.2
  • 12
    • 33846283385 scopus 로고    scopus 로고
    • The evolution of gene regulation by transcription factors and microRNAs
    • Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 2007;8:93-103.
    • (2007) Nat Rev Genet , vol.8 , pp. 93-103
    • Chen, K.1    Rajewsky, N.2
  • 13
    • 0035824029 scopus 로고    scopus 로고
    • Regulation of gene expression in flux balance models of metabolism
    • Covert MW, Schilling CH, Palsson B. Regulation of gene expression in flux balance models of metabolism. J Theor Biol 2001;213:73-88.
    • (2001) J Theor Biol , vol.213 , pp. 73-88
    • Covert, M.W.1    Schilling, C.H.2    Palsson, B.3
  • 14
    • 2342648924 scopus 로고    scopus 로고
    • Integrating high-throughput and computational data elucidates bacterial networks
    • Covert MW, Knight EM, Reed JL, et al. Integrating high-throughput and computational data elucidates bacterial networks. Nature 2004;429:92-6.
    • (2004) Nature , vol.429 , pp. 92-96
    • Covert, M.W.1    Knight, E.M.2    Reed, J.L.3
  • 15
    • 59649095559 scopus 로고    scopus 로고
    • Coordinated regulation of virulence during systemic infection of Salmonella enterica serovar Typhimurium
    • Yoon H, McDermott JE, Porwollik S, et al. Coordinated regulation of virulence during systemic infection of Salmonella enterica serovar Typhimurium. PLoS Pathog 2009;5:e1000306.
    • (2009) PLoS Pathog , vol.5
    • Yoon, H.1    McDermott, J.E.2    Porwollik, S.3
  • 16
    • 33745178476 scopus 로고    scopus 로고
    • Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae
    • Herrgard MJ, Lee BS, Portnoy V, et al. Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res 2006;16:627-35.
    • (2006) Genome Res , vol.16 , pp. 627-635
    • Herrgard, M.J.1    Lee, B.S.2    Portnoy, V.3
  • 17
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman N. Inferring cellular networks using probabilistic graphical models. Science 2004;303:799-805.
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 18
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • Gardner TS, di Bernardo D, Lorenz D, et al. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 2003;301:102-5.
    • (2003) Science , vol.301 , pp. 102-105
    • Gardner, T.S.1    Di Bernardo, D.2    Lorenz, D.3
  • 19
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data
    • Segal E, Shapira M, Regev A, et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 2003;34:166-76.
    • (2003) Nat Genet , vol.34 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3
  • 20
    • 0037687416 scopus 로고    scopus 로고
    • Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling
    • Tegner J, Yeung MK, Hasty J, et al. Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proc Natl Acad Sci USA 2003;100:5944-9.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 5944-5949
    • Tegner, J.1    Yeung, M.K.2    Hasty, J.3
  • 21
    • 0037197936 scopus 로고    scopus 로고
    • Reverse engineering gene networks using singular value decomposition and robust regression
    • Yeung MK, Tegner J, Collins JJ. Reverse engineering gene networks using singular value decomposition and robust regression. Proc Natl Acad Sci USA 2002;99:6163-8.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 6163-6168
    • Yeung, M.K.1    Tegner, J.2    Collins, J.J.3
  • 22
    • 0642340506 scopus 로고    scopus 로고
    • Genome wide identification of regulatory motifs in Bacillus subtilis
    • ed.
    • Mwangi MM, Siggia ed. Genome wide identification of regulatory motifs in Bacillus subtilis. BMC Bioinformatics 2003;4:18.
    • (2003) BMC Bioinformatics , vol.4 , pp. 18
    • Mwangi, M.M.1    Siggia2
  • 23
    • 22544432327 scopus 로고    scopus 로고
    • Reconstruction of regulatory and metabolic pathways in metal-reducing delta-proteobacteria
    • Rodionov DA, Dubchak I, Arkin A, et al. Reconstruction of regulatory and metabolic pathways in metal-reducing delta-proteobacteria. Genome Biol 2004;5:R90.
    • (2004) Genome Biol , vol.5
    • Rodionov, D.A.1    Dubchak, I.2    Arkin, A.3
  • 24
    • 85044710067 scopus 로고    scopus 로고
    • Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks
    • Rodionov DA, Dubchak IL, Arkin AP, et al. Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks. PLoS Comput Biol 2005;1:e55.
    • (2005) PLoS Comput Biol , vol.1
    • Rodionov, D.A.1    Dubchak, I.L.2    Arkin, A.P.3
  • 25
    • 67149102196 scopus 로고    scopus 로고
    • Methods to reconstruct and compare transcriptional regulatory networks
    • Babu MM, Lang B, Aravind L. Methods to reconstruct and compare transcriptional regulatory networks. Methods Mol Biol 2009;541:163-80.
    • (2009) Methods Mol Biol , vol.541 , pp. 163-180
    • Babu, M.M.1    Lang, B.2    Aravind, L.3
  • 26
    • 0036001069 scopus 로고    scopus 로고
    • Metabolic modelling of microbes: the flux-balance approach
    • Edwards JS, Covert M, Palsson B. Metabolic modelling of microbes: the flux-balance approach. Environ Microbiol 2002;4:133-40.
    • (2002) Environ Microbiol , vol.4 , pp. 133-140
    • Edwards, J.S.1    Covert, M.2    Palsson, B.3
  • 27
    • 34247183123 scopus 로고    scopus 로고
    • A genome-scale computational study of the interplay between transcriptional regulation and metabolism
    • Shlomi T, Eisenberg Y, Sharan R, et al. A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol Syst Biol 2007;3:101.
    • (2007) Mol Syst Biol , vol.3 , pp. 101
    • Shlomi, T.1    Eisenberg, Y.2    Sharan, R.3
  • 28
    • 0037424661 scopus 로고    scopus 로고
    • Constraints-based models: regulation of gene expression reduces the steady-state solution space
    • Covert MW, Palsson BO. Constraints-based models: regulation of gene expression reduces the steady-state solution space. J Theor Biol 2003;221:309-25.
    • (2003) J Theor Biol , vol.221 , pp. 309-325
    • Covert, M.W.1    Palsson, B.O.2
  • 29
    • 77954197778 scopus 로고    scopus 로고
    • Integrating quantitative proteomics and metabolomics with a genomescale metabolic network model
    • Yizhak K, Benyamini T, Liebermeister W, et al. Integrating quantitative proteomics and metabolomics with a genomescale metabolic network model. Bioinformatics 2010;26: i255-60.
    • (2010) Bioinformatics , vol.26
    • Yizhak, K.1    Benyamini, T.2    Liebermeister, W.3
  • 31
    • 0034616912 scopus 로고    scopus 로고
    • Biomedical discovery with DNA arrays
    • Young RA. Biomedical discovery with DNA arrays. Cell 2000;102:9-15.
    • (2000) Cell , vol.102 , pp. 9-15
    • Young, R.A.1
  • 32
    • 33748295678 scopus 로고    scopus 로고
    • Microarrays: quality control
    • Eisenstein M. Microarrays: quality control. Nature 2006;442:1067-70.
    • (2006) Nature , vol.442 , pp. 1067-1070
    • Eisenstein, M.1
  • 33
    • 33749172709 scopus 로고    scopus 로고
    • Challenge of choosing right level of microarray detail
    • Edgar R. Challenge of choosing right level of microarray detail. Nature 2006;443:394.
    • (2006) Nature , vol.443 , pp. 394
    • Edgar, R.1
  • 34
    • 18344396568 scopus 로고    scopus 로고
    • Minimum information about a microarray experiment (MIAME)-toward standards for microarray data
    • Brazma A, Hingamp P, Quackenbush J, et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 2001;29:365.
    • (2001) Nat Genet , vol.29 , pp. 365
    • Brazma, A.1    Hingamp, P.2    Quackenbush, J.3
  • 35
    • 0037179669 scopus 로고    scopus 로고
    • Microarray standards at last
    • Editorial
    • Editorial. Microarray standards at last. Nature 2002;419:323.
    • (2002) Nature , vol.419 , pp. 323
  • 36
    • 0036081355 scopus 로고    scopus 로고
    • Gene Expression Omnibus: NCBI gene expression and hybridization array data repository
    • Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002;30:207-10.
    • (2002) Nucleic Acids Res , vol.30 , pp. 207-210
    • Edgar, R.1    Domrachev, M.2    Lash, A.E.3
  • 37
    • 0037246058 scopus 로고    scopus 로고
    • Array Express-a public repository for microarray gene expression data at the EBI
    • Brazma A, Parkinson H, Sarkans U, et al. Array Express-a public repository for microarray gene expression data at the EBI. Nucleic Acids Res 2003;31:68-71.
    • (2003) Nucleic Acids Res , vol.31 , pp. 68-71
    • Brazma, A.1    Parkinson, H.2    Sarkans, U.3
  • 39
    • 0031442518 scopus 로고    scopus 로고
    • Characterization of the yeast transcriptome
    • Velculescu VE, Zhang L, Zhou W, et al. Characterization of the yeast transcriptome. Cell 1997;88:243-51.
    • (1997) Cell , vol.88 , pp. 243-251
    • Velculescu, V.E.1    Zhang, L.2    Zhou, W.3
  • 40
    • 0034704248 scopus 로고    scopus 로고
    • Genome-wide location and function of DNA binding proteins
    • Ren B, Robert F, Wyrick JJ, et al. Genome-wide location and function of DNA binding proteins. Science 2000;290:2306-9.
    • (2000) Science , vol.290 , pp. 2306-2309
    • Ren, B.1    Robert, F.2    Wyrick, J.J.3
  • 41
    • 0035945567 scopus 로고    scopus 로고
    • Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF
    • Iyer VR, Horak CE, Scafe CS, et al. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 2001;409:533-8.
    • (2001) Nature , vol.409 , pp. 533-538
    • Iyer, V.R.1    Horak, C.E.2    Scafe, C.S.3
  • 42
    • 3543008920 scopus 로고    scopus 로고
    • High-resolution genome-wide mapping of histone modifications
    • Roh TY, Ngau WC, Cui K, et al. High-resolution genome-wide mapping of histone modifications. Nat Biotechnol 2004;22:1013-6.
    • (2004) Nat Biotechnol , vol.22 , pp. 1013-1016
    • Roh, T.Y.1    Ngau, W.C.2    Cui, K.3
  • 43
    • 33646510364 scopus 로고    scopus 로고
    • Genome-wide analysis of protein DNA interactions
    • Kim TH, Ren B. Genome-wide analysis of protein DNA interactions. Annu Rev Genomics Hum Genet 2006;7:81-102.
    • (2006) Annu Rev Genomics Hum Genet , vol.7 , pp. 81-102
    • Kim, T.H.1    Ren, B.2
  • 44
    • 34250159524 scopus 로고    scopus 로고
    • Genome-wide mapping of in vivo protein-DNA interactions
    • Johnson DS, Mortazavi A, Myers RM, et al. Genome-wide mapping of in vivo protein-DNA interactions. Science 2007;316:1497-502.
    • (2007) Science , vol.316 , pp. 1497-1502
    • Johnson, D.S.1    Mortazavi, A.2    Myers, R.M.3
  • 45
    • 45549088326 scopus 로고    scopus 로고
    • The transcriptional landscape of the yeast genome defined by RNA sequencing
    • Nagalakshmi U, Wang Z, Waern K, et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 2008;320:1344-9.
    • (2008) Science , vol.320 , pp. 1344-1349
    • Nagalakshmi, U.1    Wang, Z.2    Waern, K.3
  • 46
    • 46249106990 scopus 로고    scopus 로고
    • Mapping and quantifying mammalian transcriptomes by RNA-Seq
    • Mortazavi A, Williams BA, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008;5:621-8.
    • (2008) Nat Methods , vol.5 , pp. 621-628
    • Mortazavi, A.1    Williams, B.A.2    McCue, K.3
  • 47
    • 57749195712 scopus 로고    scopus 로고
    • RNA-Seq: a revolutionary tool for transcriptomics
    • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009;10:57-63.
    • (2009) Nat Rev Genet , vol.10 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 48
    • 24344447800 scopus 로고    scopus 로고
    • Immobilization of Escherichiacoli RNA polymerase and location of binding sites by use of chromatin immunoprecipitation and microarrays
    • Herring CD, Raffaelle M, Allen TE, et al. Immobilization of Escherichiacoli RNA polymerase and location of binding sites by use of chromatin immunoprecipitation and microarrays. J Bacteriol 2005;187:6166-74.
    • (2005) J Bacteriol , vol.187 , pp. 6166-6174
    • Herring, C.D.1    Raffaelle, M.2    Allen, T.E.3
  • 49
    • 33748350078 scopus 로고    scopus 로고
    • Extensive functional overlap between sigma factors in Escherichia coli
    • Wade JT, Roa DC, Grainger DC, et al. Extensive functional overlap between sigma factors in Escherichia coli. Nat Struct Mol Biol 2006;13:806-14.
    • (2006) Nat Struct Mol Biol , vol.13 , pp. 806-814
    • Wade, J.T.1    Roa, D.C.2    Grainger, D.C.3
  • 50
    • 33750000118 scopus 로고    scopus 로고
    • Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome
    • Grainger DC, Hurd D, Goldberg MD, et al. Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome. Nucleic Acids Res 2006;34:4642-52.
    • (2006) Nucleic Acids Res , vol.34 , pp. 4642-4652
    • Grainger, D.C.1    Hurd, D.2    Goldberg, M.D.3
  • 51
    • 68249102779 scopus 로고    scopus 로고
    • A strand-specific RNA-Seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi
    • Perkins TT, Kingsley RA, Fookes MC, et al. A strand-specific RNA-Seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi. PLoS Genet 2009;5: e1000569.
    • (2009) PLoS Genet , vol.5
    • Perkins, T.T.1    Kingsley, R.A.2    Fookes, M.C.3
  • 52
    • 77957802374 scopus 로고    scopus 로고
    • Studying bacterial transcriptomes using RNA-seq
    • Croucher NJ, Thomson NR. Studying bacterial transcriptomes using RNA-seq. Curr Opin Microbiol 2010;13:619-24.
    • (2010) Curr Opin Microbiol , vol.13 , pp. 619-624
    • Croucher, N.J.1    Thomson, N.R.2
  • 53
    • 80053612533 scopus 로고    scopus 로고
    • Evidence-based annotation of transcripts and proteins in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough
    • Price MN, Deutschbauer AM, Kuehl JV, et al. Evidence-based annotation of transcripts and proteins in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. J Bacteriol 2011;193:5716-27.
    • (2011) J Bacteriol , vol.193 , pp. 5716-5727
    • Price, M.N.1    Deutschbauer, A.M.2    Kuehl, J.V.3
  • 54
    • 38549134505 scopus 로고    scopus 로고
    • Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata
    • Faith JJ, Driscoll ME, Fusaro VA, et al. Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata. Nucleic Acids Res 2008;36:D866-70.
    • (2008) Nucleic Acids Res , vol.36
    • Faith, J.J.1    Driscoll, M.E.2    Fusaro, V.A.3
  • 56
    • 79960294417 scopus 로고    scopus 로고
    • COLOMBOS: access port for cross-platform bacterial expression compendia
    • Engelen K, Fu Q, Meysman P, et al. COLOMBOS: access port for cross-platform bacterial expression compendia. PLoS One 2011;6:e20938.
    • (2011) PLoS One , vol.6
    • Engelen, K.1    Fu, Q.2    Meysman, P.3
  • 57
    • 58149182724 scopus 로고    scopus 로고
    • NCBI GEO: archive for high-throughput functional genomic data
    • Barrett T, Troup DB, Wilhite SE, et al. NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res 2009;37:D885-90.
    • (2009) Nucleic Acids Res , vol.37
    • Barrett, T.1    Troup, D.B.2    Wilhite, S.E.3
  • 58
    • 78651339534 scopus 로고    scopus 로고
    • NCBI GEO: archive for functional genomics data sets-10 years on
    • Barrett T, Troup DB, Wilhite SE, et al. NCBI GEO: archive for functional genomics data sets-10 years on. Nucleic Acids Res 2011;39:D1005-10.
    • (2011) Nucleic Acids Res , vol.39
    • Barrett, T.1    Troup, D.B.2    Wilhite, S.E.3
  • 59
    • 33846064113 scopus 로고    scopus 로고
    • NCBI GEO: mining tens of millions of expression profiles-database and tools update
    • Barrett T, Troup DB, Wilhite SE, et al. NCBI GEO: mining tens of millions of expression profiles-database and tools update. Nucleic Acids Res 2007;35:D760-5.
    • (2007) Nucleic Acids Res , vol.35
    • Barrett, T.1    Troup, D.B.2    Wilhite, S.E.3
  • 60
    • 33846400424 scopus 로고    scopus 로고
    • Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles
    • Faith JJ, Hayete B, Thaden JT, et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 2007;5:e8.
    • (2007) PLoS Biol , vol.5
    • Faith, J.J.1    Hayete, B.2    Thaden, J.T.3
  • 61
    • 25644458211 scopus 로고    scopus 로고
    • The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes
    • Overbeek R, Begley T, Butler RM, et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 2005;33:5691-702.
    • (2005) Nucleic Acids Res , vol.33 , pp. 5691-5702
    • Overbeek, R.1    Begley, T.2    Butler, R.M.3
  • 62
    • 33845873289 scopus 로고    scopus 로고
    • Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation
    • Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 2007;23:127-8.
    • (2007) Bioinformatics , vol.23 , pp. 127-128
    • Letunic, I.1    Bork, P.2
  • 63
    • 79960004119 scopus 로고    scopus 로고
    • Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy
    • Letunic I, Bork P. Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 2011;39:W475-8.
    • (2011) Nucleic Acids Res , vol.39
    • Letunic, I.1    Bork, P.2
  • 64
    • 78651299341 scopus 로고    scopus 로고
    • Regulon DB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units)
    • Gama-Castro S, Salgado H, Peralta-Gil M, et al. Regulon DB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units). Nucleic Acids Res 2011;39: D98-105.
    • (2011) Nucleic Acids Res , vol.39
    • Gama-castro, S.1    Salgado, H.2    Peralta-gil, M.3
  • 66
    • 38549162091 scopus 로고    scopus 로고
    • DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information
    • Sierro N, Makita Y, de Hoon M, et al. DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information. Nucleic Acids Res 2008;36:D93-6.
    • (2008) Nucleic Acids Res , vol.36
    • Sierro, N.1    Makita, Y.2    De Hoon, M.3
  • 67
    • 0032573426 scopus 로고    scopus 로고
    • A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome
    • Robison K, McGuire AM, Church GM. A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. J Mol Biol 1998;284:241-54.
    • (1998) J Mol Biol , vol.284 , pp. 241-254
    • Robison, K.1    McGuire, A.M.2    Church, G.M.3
  • 68
    • 19544390556 scopus 로고    scopus 로고
    • MtbRegList, a database dedicated to the analysis of transcriptional regulation in Mycobacterium tuberculosis
    • Jacques PE, Gervais AL, Cantin M, et al. MtbRegList, a database dedicated to the analysis of transcriptional regulation in Mycobacterium tuberculosis. Bioinformatics 2005;21:2563-5.
    • (2005) Bioinformatics , vol.21 , pp. 2563-2565
    • Jacques, P.E.1    Gervais, A.L.2    Cantin, M.3
  • 69
    • 84862195656 scopus 로고    scopus 로고
    • CoryneRegNet 6.0- Updated database content, new analysis methods and novel features focusing on community demands
    • Pauling J, Rottger R, Tauch A, et al. CoryneRegNet 6.0- Updated database content, new analysis methods and novel features focusing on community demands. Nucleic Acids Res 2012;40:D610-4.
    • (2012) Nucleic Acids Res , vol.40
    • Pauling, J.1    Rottger, R.2    Tauch, A.3
  • 70
    • 34247853207 scopus 로고    scopus 로고
    • cTFbase: a database for comparative genomics of transcription factors in cyanobacteria
    • Wu J, Zhao F, Wang S, et al. cTFbase: a database for comparative genomics of transcription factors in cyanobacteria. BMC Genomics 2007;8:104.
    • (2007) BMC Genomics , vol.8 , pp. 104
    • Wu, J.1    Zhao, F.2    Wang, S.3
  • 71
    • 33846073825 scopus 로고    scopus 로고
    • Tractor_DB (version 2.0): a database of regulatory interactions in gamma-proteobacterial genomes
    • Perez AG, Angarica VE, Vasconcelos AT, et al. Tractor_DB (version 2.0): a database of regulatory interactions in gamma-proteobacterial genomes. Nucleic Acids Res 2007;35: D132-6.
    • (2007) Nucleic Acids Res , vol.35
    • Perez, A.G.1    Angarica, V.E.2    Vasconcelos, A.T.3
  • 72
    • 69049104258 scopus 로고    scopus 로고
    • From Corynebacterium glutamicum to Mycobacterium tuberculosis-towards transfers of gene regulatory networks and integrated data analyses with MycoRegNet
    • Krawczyk J, Kohl TA, Goesmann A, et al. From Corynebacterium glutamicum to Mycobacterium tuberculosis-towards transfers of gene regulatory networks and integrated data analyses with MycoRegNet. Nucleic Acids Res 2009;37:e97.
    • (2009) Nucleic Acids Res , vol.37
    • Krawczyk, J.1    Kohl, T.A.2    Goesmann, A.3
  • 73
    • 33646242970 scopus 로고    scopus 로고
    • Extra Train: a database of extragenic regions and transcriptional information in prokaryotic organisms
    • Pareja E, Pareja-Tobes P, Manrique M, et al. Extra Train: a database of extragenic regions and transcriptional information in prokaryotic organisms. BMC Microbiol 2006;6:29.
    • (2006) BMC Microbiol , vol.6 , pp. 29
    • Pareja, E.1    Pareja-tobes, P.2    Manrique, M.3
  • 74
    • 38549146907 scopus 로고    scopus 로고
    • DBD- taxonomically broad transcription factor predictions: new content and functionality
    • Wilson D, Charoensawan V, Kummerfeld SK, et al. DBD- taxonomically broad transcription factor predictions: new content and functionality. Nucleic Acids Res 2008;36: D88-92.
    • (2008) Nucleic Acids Res , vol.36
    • Wilson, D.1    Charoensawan, V.2    Kummerfeld, S.K.3
  • 75
    • 33846107772 scopus 로고    scopus 로고
    • RegTransBase-a database of regulatory sequences and interactions in a wide range of prokaryotic genomes
    • Kazakov AE, Cipriano MJ, Novichkov PS, et al. RegTransBase-a database of regulatory sequences and interactions in a wide range of prokaryotic genomes. Nucleic Acids Res 2007;35:D407-12.
    • (2007) Nucleic Acids Res , vol.35
    • Kazakov, A.E.1    Cipriano, M.J.2    Novichkov, P.S.3
  • 76
    • 58149193249 scopus 로고    scopus 로고
    • PRODORIC (release 2009): a database and tool platform for the analysis of gene regulation in prokaryotes
    • Grote A, Klein J, Retter I, et al. PRODORIC (release 2009): a database and tool platform for the analysis of gene regulation in prokaryotes. Nucleic Acids Res 2009;37: D61-5.
    • (2009) Nucleic Acids Res , vol.37
    • Grote, A.1    Klein, J.2    Retter, I.3
  • 77
    • 58149177178 scopus 로고    scopus 로고
    • sRNAMap: genomic maps for small non-coding RNAs, their regulators and their targets in microbial genomes
    • Huang HY, Chang HY, Chou CH, et al. sRNAMap: genomic maps for small non-coding RNAs, their regulators and their targets in microbial genomes. Nucleic Acids Res 2009; 37:D150-4.
    • (2009) Nucleic Acids Res , vol.37
    • Huang, H.Y.1    Chang, H.Y.2    Chou, C.H.3
  • 78
    • 78651309398 scopus 로고    scopus 로고
    • ODB: a database for operon organizations, 2011 update
    • Okuda S, Yoshizawa AC. ODB: a database for operon organizations, 2011 update. Nucleic Acids Res 2011;39: D552-5.
    • (2011) Nucleic Acids Res , vol.39
    • Okuda, S.1    Yoshizawa, A.C.2
  • 79
    • 75549086541 scopus 로고    scopus 로고
    • RegPrecise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes
    • Novichkov PS, Laikova ON, Novichkova ES, et al. RegPrecise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes. Nucleic Acids Res 2010;38:D111-8.
    • (2010) Nucleic Acids Res , vol.38
    • Novichkov, P.S.1    Laikova, O.N.2    Novichkova, E.S.3
  • 80
    • 77957110013 scopus 로고    scopus 로고
    • Advantages and limitations of current network inference methods
    • De Smet R, Marchal K. Advantages and limitations of current network inference methods. Nat Rev Microbiol 2010;8:717-29.
    • (2010) Nat Rev Microbiol , vol.8 , pp. 717-729
    • De Smet, R.1    Marchal, K.2
  • 82
    • 52649087274 scopus 로고    scopus 로고
    • Modelling and analysis of gene regulatory networks
    • Karlebach G, Shamir R. Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol 2008;9:770-80.
    • (2008) Nat Rev Mol Cell Biol , vol.9 , pp. 770-780
    • Karlebach, G.1    Shamir, R.2
  • 83
    • 33646113855 scopus 로고    scopus 로고
    • Evolutionary dynamics of prokaryotic transcriptional regulatory networks
    • Madan Babu M, Teichmann SA, Aravind L. Evolutionary dynamics of prokaryotic transcriptional regulatory networks. J Mol Biol 2006;358:614-33.
    • (2006) J Mol Biol , vol.358 , pp. 614-633
    • Madan Babu, M.1    Teichmann, S.A.2    Aravind, L.3
  • 84
    • 0037440734 scopus 로고    scopus 로고
    • Evolution of transcription factors and the gene regulatory network in Escherichia coli
    • Madan Babu M, Teichmann SA. Evolution of transcription factors and the gene regulatory network in Escherichia coli. Nucleic Acids Res 2003;31:1234-44.
    • (2003) Nucleic Acids Res , vol.31 , pp. 1234-1244
    • Madan Babu, M.1    Teichmann, S.A.2
  • 85
    • 2442537233 scopus 로고    scopus 로고
    • Gene regulatory network growth by duplication
    • Teichmann SA, Babu MM. Gene regulatory network growth by duplication. Nat Genet 2004;36:492-6.
    • (2004) Nat Genet , vol.36 , pp. 492-496
    • Teichmann, S.A.1    Babu, M.M.2
  • 86
    • 33744780700 scopus 로고    scopus 로고
    • Evolution of transcriptional regulatory networks in microbial genomes
    • Gelfand MS. Evolution of transcriptional regulatory networks in microbial genomes. Curr Opin Struct Biol 2006;16:420-9.
    • (2006) Curr Opin Struct Biol , vol.16 , pp. 420-429
    • Gelfand, M.S.1
  • 87
    • 33746207758 scopus 로고    scopus 로고
    • Bacterial regulatory networks are extremely flexible in evolution
    • Lozada-Chavez I, Janga SC, Collado-Vides J. Bacterial regulatory networks are extremely flexible in evolution. Nucleic Acids Res 2006;34:3434-45.
    • (2006) Nucleic Acids Res , vol.34 , pp. 3434-3445
    • Lozada-chavez, I.1    Janga, S.C.2    Collado-vides, J.3
  • 88
    • 0033055062 scopus 로고    scopus 로고
    • The use of gene clusters to infer functional coupling
    • Overbeek R, Fonstein M, D'Souza M, et al. The use of gene clusters to infer functional coupling. Proc Natl Acad Sci USA 1999;96:2896-901.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 2896-2901
    • Overbeek, R.1    Fonstein, M.2    D'Souza, M.3
  • 89
    • 0034785443 scopus 로고    scopus 로고
    • Identifying regulatory networks by combinatorial analysis of promoter elements
    • Pilpel Y, Sudarsanam P, Church GM. Identifying regulatory networks by combinatorial analysis of promoter elements. Nat Genet 2001;29:153-9.
    • (2001) Nat Genet , vol.29 , pp. 153-159
    • Pilpel, Y.1    Sudarsanam, P.2    Church, G.M.3
  • 90
    • 10744226222 scopus 로고    scopus 로고
    • Computational discovery of gene modules and regulatory networks
    • Bar-Joseph Z, Gerber GK, Lee TI, et al. Computational discovery of gene modules and regulatory networks. Nat Biotechnol 2003;21:1337-42.
    • (2003) Nat Biotechnol , vol.21 , pp. 1337-1342
    • Bar-joseph, Z.1    Gerber, G.K.2    Lee, T.I.3
  • 91
    • 3543068251 scopus 로고    scopus 로고
    • Regulog analysis: detection of conserved regulatory networks across bacteria: application to Staphylococcus aureus
    • Alkema WB, Lenhard B, Wasserman WW. Regulog analysis: detection of conserved regulatory networks across bacteria: application to Staphylococcus aureus. Genome Res 2004;14:1362-73.
    • (2004) Genome Res , vol.14 , pp. 1362-1373
    • Alkema, W.B.1    Lenhard, B.2    Wasserman, W.W.3
  • 92
    • 34548219522 scopus 로고    scopus 로고
    • Comparative genomic reconstruction of transcriptional regulatory networks in bacteria
    • Rodionov DA. Comparative genomic reconstruction of transcriptional regulatory networks in bacteria. Chem Rev 2007;107:3467-97.
    • (2007) Chem Rev , vol.107 , pp. 3467-3497
    • Rodionov, D.A.1
  • 93
    • 21144439147 scopus 로고    scopus 로고
    • Assessing computational tools for the discovery of transcription factor binding sites
    • Tompa M, Li N, Bailey TL, et al. Assessing computational tools for the discovery of transcription factor binding sites. Nat Biotechnol 2005;23:137-44.
    • (2005) Nat Biotechnol , vol.23 , pp. 137-144
    • Tompa, M.1    Li, N.2    Bailey, T.L.3
  • 94
    • 0031787969 scopus 로고    scopus 로고
    • Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation
    • Roth FP, Hughes JD, Estep PW, et al. Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat Biotechnol 1998;16:939-45.
    • (1998) Nat Biotechnol , vol.16 , pp. 939-945
    • Roth, F.P.1    Hughes, J.D.2    Estep, P.W.3
  • 95
    • 42649103655 scopus 로고    scopus 로고
    • W-AlignACE: an improved Gibbs sampling algorithm based on more accurate position weight matrices learned from sequence and gene expression/ChIP-chip data
    • Chen X, Guo LQ, Fan ZC, et al. W-AlignACE: an improved Gibbs sampling algorithm based on more accurate position weight matrices learned from sequence and gene expression/ChIP-chip data. Bioinformatics 2008;24:1121-8.
    • (2008) Bioinformatics , vol.24 , pp. 1121-1128
    • Chen, X.1    Guo, L.Q.2    Fan, Z.C.3
  • 96
    • 38449104055 scopus 로고    scopus 로고
    • Learning position weight matrices from sequence and expression data
    • Chen X, Guo L, Fan Z, et al. Learning position weight matrices from sequence and expression data. Comput Syst Bioinformatics Conf 2007;6:249-60.
    • (2007) Comput Syst Bioinformatics Conf , vol.6 , pp. 249-260
    • Chen, X.1    Guo, L.2    Fan, Z.3
  • 97
    • 0035051602 scopus 로고    scopus 로고
    • A comparative genomics approach to prediction of new members of regulons
    • Tan K, Moreno-Hagelsieb G, Collado-Vides J, et al. A comparative genomics approach to prediction of new members of regulons. Genome Res 2001;11:566-84.
    • (2001) Genome Res , vol.11 , pp. 566-584
    • Tan, K.1    Moreno-hagelsieb, G.2    Collado-vides, J.3
  • 98
    • 33644660827 scopus 로고    scopus 로고
    • Comparative genomics analysis of nitrate and nitrite respiration in gamma proteobacteria
    • Ravcheev DA, Rakhmaninova AB, Mironov AA, et al. Comparative genomics analysis of nitrate and nitrite respiration in gamma proteobacteria. Mol Biol 2005;39:832-46.
    • (2005) Mol Biol , vol.39 , pp. 832-846
    • Ravcheev, D.A.1    Rakhmaninova, A.B.2    Mironov, A.A.3
  • 99
    • 33749840823 scopus 로고    scopus 로고
    • Regulation of nitrogen metabolism in gram-positive bacteria
    • Doroshchuk NA, Gelfand MS, Rodionov DA. Regulation of nitrogen metabolism in gram-positive bacteria. Mol Biol 2006;40:829-36.
    • (2006) Mol Biol , vol.40 , pp. 829-836
    • Doroshchuk, N.A.1    Gelfand, M.S.2    Rodionov, D.A.3
  • 100
    • 77954254495 scopus 로고    scopus 로고
    • RegPredict: an integrated system for regulon inference in prokaryotes by comparative genomics approach
    • Novichkov PS, Rodionov DA, Stavrovskaya ED, et al. RegPredict: an integrated system for regulon inference in prokaryotes by comparative genomics approach. Nucleic Acids Res 2010;38:W299-307.
    • (2010) Nucleic Acids Res , vol.38
    • Novichkov, P.S.1    Rodionov, D.A.2    Stavrovskaya, E.D.3
  • 101
    • 79958842141 scopus 로고    scopus 로고
    • Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus
    • Rodionov DA, Novichkov PS, Stavrovskaya ED, et al. Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus. BMCGenomics 2011;12(Suppl. 1):S3.
    • (2011) BMCGenomics , vol.12 , Issue.SUPPL. 1
    • Rodionov, D.A.1    Novichkov, P.S.2    Stavrovskaya, E.D.3
  • 102
    • 79960392023 scopus 로고    scopus 로고
    • Comparative genomic analysis of the hexuronate metabolism genes and their regulation in gammaproteobacteria
    • Suvorova IA, Tutukina MN, Ravcheev DA, et al. Comparative genomic analysis of the hexuronate metabolism genes and their regulation in gammaproteobacteria. J Bacteriol 2011;193:3956-63.
    • (2011) J Bacteriol , vol.193 , pp. 3956-3963
    • Suvorova, I.A.1    Tutukina, M.N.2    Ravcheev, D.A.3
  • 103
    • 80053915498 scopus 로고    scopus 로고
    • Control of proteobacterial central carbon metabolism by the HexR transcriptional regulator: a case study in Shewanella oneidensis
    • Leyn SA, Li X, Zheng Q, et al. Control of proteobacterial central carbon metabolism by the HexR transcriptional regulator: a case study in Shewanella oneidensis. J Biol Chem 2011;286:35782-94.
    • (2011) J Biol Chem , vol.286 , pp. 35782-35794
    • Leyn, S.A.1    Li, X.2    Zheng, Q.3
  • 104
    • 78649672016 scopus 로고    scopus 로고
    • FITBAR: a web tool for the robust prediction of prokaryotic regulons
    • Oberto J. FITBAR: a web tool for the robust prediction of prokaryotic regulons. BMC Bioinformatics 2010;11:554.
    • (2010) BMC Bioinformatics , vol.11 , pp. 554
    • Oberto, J.1
  • 105
    • 0035253676 scopus 로고    scopus 로고
    • Phylogenetic footprinting of transcription factor binding sites in proteo-bacterial genomes
    • McCue L, Thompson W, Carmack C, et al. Phylogenetic footprinting of transcription factor binding sites in proteo-bacterial genomes. Nucleic Acids Res 2001;29:774-82.
    • (2001) Nucleic Acids Res , vol.29 , pp. 774-782
    • McCue, L.1    Thompson, W.2    Carmack, C.3
  • 106
    • 25144464549 scopus 로고    scopus 로고
    • Comparative genomics analysis of NtcA regulons in cyanobacteria: regulation of nitrogen assimilation and its coupling to photosynthesis
    • Su Z, Olman V, Mao F, et al. Comparative genomics analysis of NtcA regulons in cyanobacteria: regulation of nitrogen assimilation and its coupling to photosynthesis. Nucleic Acids Res 2005;33:5156-71.
    • (2005) Nucleic Acids Res , vol.33 , pp. 5156-5171
    • Su, Z.1    Olman, V.2    Mao, F.3
  • 108
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: a literature review
    • De Jong H. Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 2002;9:67-103.
    • (2002) J Comput Biol , vol.9 , pp. 67-103
    • De Jong, H.1
  • 109
    • 36249019789 scopus 로고    scopus 로고
    • Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference
    • Stolovitzky G, Monroe D, Califano A. Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference. Ann NYAcad Sci 2007;1115:1-22.
    • (2007) Ann NYAcad Sci , vol.1115 , pp. 1-22
    • Stolovitzky, G.1    Monroe, D.2    Califano, A.3
  • 110
    • 77950910419 scopus 로고    scopus 로고
    • Revealing strengths and weaknesses of methods for gene network inference
    • Marbach D, Prill RJ, Schaffter T, et al. Revealing strengths and weaknesses of methods for gene network inference. Proc Natl Acad Sci USA 2010;107:6286-91.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 6286-6291
    • Marbach, D.1    Prill, R.J.2    Schaffter, T.3
  • 112
    • 68149164746 scopus 로고    scopus 로고
    • Reverse engineering of gene regulatory networks: a comparative study
    • Hache H, Lehrach H, Herwig R. Reverse engineering of gene regulatory networks: a comparative study. EURASIP J Bioinform Syst Biol 2009;617281.
    • (2009) EURASIP J Bioinform Syst Biol , pp. 617281
    • Hache, H.1    Lehrach, H.2    Herwig, R.3
  • 113
    • 66449116353 scopus 로고    scopus 로고
    • Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks
    • Michoel T, De Smet R, Joshi A, et al. Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks. BMC Syst Biol 2009;3:49.
    • (2009) BMC Syst Biol , vol.3 , pp. 49
    • Michoel, T.1    De Smet, R.2    Joshi, A.3
  • 114
    • 84875740737 scopus 로고    scopus 로고
    • Unsupervised Learning for Gene Regulation Network Inference from Expression Data: A Review
    • John Wiley & Sons, Inc.
    • Elati M, Rouveirol C. Unsupervised Learning for Gene Regulation Network Inference from Expression Data: A Review. Algorithms in Computational Molecular Biology. John Wiley & Sons, Inc., 2011;955-78.
    • (2011) Algorithms in Computational Molecular Biology , pp. 955-978
    • Elati, M.1    Rouveirol, C.2
  • 115
    • 80053925220 scopus 로고    scopus 로고
    • Network-based functional modeling of genomics, transcriptomics and metabolism in bacteria
    • Cloots L, Marchal K. Network-based functional modeling of genomics, transcriptomics and metabolism in bacteria. Curr Opin Microbiol 2011;14:599-607.
    • (2011) Curr Opin Microbiol , vol.14 , pp. 599-607
    • Cloots, L.1    Marchal, K.2
  • 116
    • 63049128934 scopus 로고    scopus 로고
    • A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches
    • Cantone I, Marucci L, Iorio F, et al. A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 2009;137:172-81.
    • (2009) Cell , vol.137 , pp. 172-181
    • Cantone, I.1    Marucci, L.2    Iorio, F.3
  • 117
    • 63849175334 scopus 로고    scopus 로고
    • Reverse engineering of gene networks with LASSO and nonlinear basis functions
    • Gustafsson M, Hornquist M, Lundstrom J, et al. Reverse engineering of gene networks with LASSO and nonlinear basis functions. Ann NYAcad Sci 2009;1158:265-75.
    • (2009) Ann NYAcad Sci , vol.1158 , pp. 265-275
    • Gustafsson, M.1    Hornquist, M.2    Lundstrom, J.3
  • 118
    • 21444452397 scopus 로고    scopus 로고
    • Chemogenomic profiling on a genomewide scale using reverse-engineered gene networks
    • di Bernardo D, Thompson MJ, Gardner TS, et al. Chemogenomic profiling on a genomewide scale using reverse-engineered gene networks. Nat Biotechnol 2005;23:377-83.
    • (2005) Nat Biotechnol , vol.23 , pp. 377-383
    • Di Bernardo, D.1    Thompson, M.J.2    Gardner, T.S.3
  • 119
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements
    • Butte AJ, Kohane IS. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput 2000;418-29.
    • (2000) Pac Symp Biocomput , pp. 418-429
    • Butte, A.J.1    Kohane, I.S.2
  • 120
    • 36248999573 scopus 로고    scopus 로고
    • Information-theoretic inference of large transcriptional regulatory networks
    • Meyer PE, Kontos K, Lafitte F, et al. Information-theoretic inference of large transcriptional regulatory networks. EURASIP J Bioinform Syst Biol 2007;79879.
    • (2007) EURASIP J Bioinform Syst Biol , pp. 79879
    • Meyer, P.E.1    Kontos, K.2    Lafitte, F.3
  • 121
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • Yu J, Smith VA, Wang PP, et al. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 2004;20:3594-603.
    • (2004) Bioinformatics , vol.20 , pp. 3594-3603
    • Yu, J.1    Smith, V.A.2    Wang, P.P.3
  • 122
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N, Linial M, Nachman I, et al. Using Bayesian networks to analyze expression data. J Comput Biol 2000;7:601-20.
    • (2000) J Comput Biol , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3
  • 123
    • 0031616241 scopus 로고    scopus 로고
    • Reveal, a general reverse engineering algorithm for inference of genetic network architectures
    • Liang S, Fuhrman S, Somogyi R. Reveal, a general reverse engineering algorithm for inference of genetic network architectures. Pac Symp Biocomput 1998;18-29.
    • (1998) Pac Symp Biocomput , pp. 18-29
    • Liang, S.1    Fuhrman, S.2    Somogyi, R.3
  • 125
    • 84904752544 scopus 로고    scopus 로고
    • Reverse engineering gene networks with ANN: variability in network inference algorithms
    • Arxiv preprint arXiv:1009.4824
    • Grimaldi M, Jurman G, Visintainer R. Reverse engineering gene networks with ANN: variability in network inference algorithms. Arxiv preprint arXiv:1009.4824 2010.
    • (2010)
    • Grimaldi, M.1    Jurman, G.2    Visintainer, R.3
  • 126
    • 15944367731 scopus 로고    scopus 로고
    • Reconstructing biological networks using conditional correlation analysis
    • Rice JJ, Tu Y, Stolovitzky G. Reconstructing biological networks using conditional correlation analysis. Bioinformatics 2005;21:765-73.
    • (2005) Bioinformatics , vol.21 , pp. 765-773
    • Rice, J.J.1    Tu, Y.2    Stolovitzky, G.3
  • 127
    • 0033258311 scopus 로고    scopus 로고
    • Unsupervised knowledge discovery in medical databases using relevance networks
    • Butte AJ, Kohane IS. Unsupervised knowledge discovery in medical databases using relevance networks. J Am Med Inform Assoc 1999;711-5.
    • (1999) J Am Med Inform Assoc , pp. 711-715
    • Butte, A.J.1    Kohane, I.S.2
  • 128
    • 0036699526 scopus 로고    scopus 로고
    • Revealing modular organization in the yeast transcriptional network
    • Ihmels J, Friedlander G, Bergmann S, et al. Revealing modular organization in the yeast transcriptional network. Nat Genet 2002;31:370-7.
    • (2002) Nat Genet , vol.31 , pp. 370-377
    • Ihmels, J.1    Friedlander, G.2    Bergmann, S.3
  • 129
    • 54249124501 scopus 로고    scopus 로고
    • Learning biological networks: from modules to dynamics
    • Bonneau R. Learning biological networks: from modules to dynamics. Nat Chem Biol 2008;4:658-64.
    • (2008) Nat Chem Biol , vol.4 , pp. 658-664
    • Bonneau, R.1
  • 130
    • 33746067911 scopus 로고    scopus 로고
    • Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks
    • Reiss DJ, Baliga NS, Bonneau R. Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks. BMC Bioinformatics 2006;7. (Suppl. 1):S7.
    • (2006) BMC Bioinformatics , vol.7 , Issue.SUPPL. 1
    • Reiss, D.J.1    Baliga, N.S.2    Bonneau, R.3
  • 131
    • 33947305781 scopus 로고    scopus 로고
    • ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
    • Margolin AA, Nemenman I, Basso K, et al. ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 2006;7.
    • (2006) BMC Bioinformatics , pp. 7
    • Margolin, A.A.1    Nemenman, I.2    Basso, K.3
  • 133
    • 60149110901 scopus 로고    scopus 로고
    • Module networks revisited: computational assessment and prioritization of model predictions
    • Joshi A, De Smet R, Marchal K, et al. Module networks revisited: computational assessment and prioritization of model predictions. Bioinformatics 2009;25:490-6.
    • (2009) Bioinformatics , vol.25 , pp. 490-496
    • Joshi, A.1    De Smet, R.2    Marchal, K.3
  • 134
    • 49549104230 scopus 로고    scopus 로고
    • SIRENE: supervised inference of regulatory networks
    • Mordelet F, Vert JP. SIRENE: supervised inference of regulatory networks. Bioinformatics 2008;24:i76-82.
    • (2008) Bioinformatics , vol.24
    • Mordelet, F.1    Vert, J.P.2
  • 135
    • 77958570788 scopus 로고    scopus 로고
    • Inferring regulatory networks from expression data using tree-based methods
    • Huynh-Thu VA, Irrthum A, Wehenkel L, et al. Inferring regulatory networks from expression data using tree-based methods. PLoS One 2010;5(9):e12776.
    • (2010) PLoS One , vol.5 , Issue.9
    • Huynh-thu, V.A.1    Irrthum, A.2    Wehenkel, L.3
  • 136
    • 33747813561 scopus 로고    scopus 로고
    • The inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
    • Bonneau R, Reiss DJ, Shannon P, et al. The inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol 2006;7:R36.
    • (2006) Genome Biol , vol.7
    • Bonneau, R.1    Reiss, D.J.2    Shannon, P.3
  • 137
    • 63449134229 scopus 로고    scopus 로고
    • DISTILLER: a data integration framework to reveal condition dependency of complex regulons in Escherichia coli
    • Lemmens K, De Bie T, Dhollander T, et al. DISTILLER: a data integration framework to reveal condition dependency of complex regulons in Escherichia coli. Genome Biol 2009;10:R27.
    • (2009) Genome Biol , vol.10
    • Lemmens, K.1    De Bie, T.2    Dhollander, T.3
  • 138
    • 41849115550 scopus 로고    scopus 로고
    • A semi-supervised method for predicting transcription factor-gene interactions in Escherichia coli
    • Ernst J, Beg QK, Kay KA, et al. A semi-supervised method for predicting transcription factor-gene interactions in Escherichia coli. PLoS Comput Biol 2008;4:e1000044.
    • (2008) PLoS Comput Biol , vol.4
    • Ernst, J.1    Beg, Q.K.2    Kay, K.A.3
  • 139
    • 77955106017 scopus 로고    scopus 로고
    • A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network
    • You ZH, Yin Z, Han K, et al. A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network. BMC Bioinformatics 2010;11:343.
    • (2010) BMC Bioinformatics , vol.11 , pp. 343
    • You, Z.H.1    Yin, Z.2    Han, K.3
  • 140
    • 77951774810 scopus 로고    scopus 로고
    • Learning gene regulatory networks from only positive and unlabeled data
    • Cerulo L, Elkan C, Ceccarelli M. Learning gene regulatory networks from only positive and unlabeled data. BMC Bioinformatics 2010;11:228.
    • (2010) BMC Bioinformatics , vol.11 , pp. 228
    • Cerulo, L.1    Elkan, C.2    Ceccarelli, M.3
  • 141
    • 59649110273 scopus 로고    scopus 로고
    • Generating realistic in silico gene networks for performance assessment of reverse engineering methods
    • Marbach D, Schaffter T, Mattiussi C, et al. Generating realistic in silico gene networks for performance assessment of reverse engineering methods. J Comput Biol 2009;16:229-39.
    • (2009) J Comput Biol , vol.16 , pp. 229-239
    • Marbach, D.1    Schaffter, T.2    Mattiussi, C.3
  • 142
    • 77949644952 scopus 로고    scopus 로고
    • Towards a rigorous assessment of systems biology models: the DREAM3 challenges
    • Prill RJ, Marbach D, Saez-Rodriguez J, et al. Towards a rigorous assessment of systems biology models: the DREAM3 challenges. PLoS One 2010;5:e9202.
    • (2010) PLoS One , vol.5
    • Prill, R.J.1    Marbach, D.2    Saez-rodriguez, J.3
  • 143
    • 78149421254 scopus 로고    scopus 로고
    • DREAM4: Combining genetic and dynamic information to identify biological networks and dynamical models
    • Greenfield A, Madar A, Ostrer H, et al. DREAM4: Combining genetic and dynamic information to identify biological networks and dynamical models. PLoS One 2010;5:e13397.
    • (2010) PLoS One , vol.5
    • Greenfield, A.1    Madar, A.2    Ostrer, H.3
  • 144
    • 63849257557 scopus 로고    scopus 로고
    • Inference of regulatory gene interactions from expression data using three-way mutual information
    • Watkinson J, Liang KC, Wang XD, et al. Inference of regulatory gene interactions from expression data using three-way mutual information 2009;1158:302-13.
    • (2009) , vol.1158 , pp. 302-313
    • Watkinson, J.1    Liang, K.C.2    Wang, X.D.3
  • 145
    • 78149461178 scopus 로고    scopus 로고
    • DREAM3: network inference using dynamic context likelihood of relatedness and the inferelator
    • Madar A, Greenfield A, Vanden-Eijnden E, et al. DREAM3: network inference using dynamic context likelihood of relatedness and the inferelator. PLoS One 2010; 5(3):e9803.
    • (2010) PLoS One , vol.5 , Issue.3
    • Madar, A.1    Greenfield, A.2    Vanden-eijnden, E.3
  • 146
    • 33747813561 scopus 로고    scopus 로고
    • The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
    • Bonneau R, Reiss DJ, Shannon P, et al. The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol 2006;7(5):R36.
    • (2006) Genome Biol , vol.7 , Issue.5
    • Bonneau, R.1    Reiss, D.J.2    Shannon, P.3
  • 147
    • 77749264188 scopus 로고    scopus 로고
    • Improved reconstruction of in silico gene regulatory networks by integrating knockout and perturbation data
    • Yip KY, Alexander RP, Yan KK, et al. Improved reconstruction of in silico gene regulatory networks by integrating knockout and perturbation data. PLoS One 2010;5(1):e8121.
    • (2010) PLoS One , vol.5 , Issue.1
    • Yip, K.Y.1    Alexander, R.P.2    Yan, K.K.3
  • 148
    • 27944461068 scopus 로고    scopus 로고
    • Analysis of differentially-regulated genes within a regulatory network by GPS genome navigation
    • Zwir I, Huang H, Groisman EA. Analysis of differentially-regulated genes within a regulatory network by GPS genome navigation. Bioinformatics 2005;21:4073-83.
    • (2005) Bioinformatics , vol.21 , pp. 4073-4083
    • Zwir, I.1    Huang, H.2    Groisman, E.A.3
  • 149
    • 16844376909 scopus 로고    scopus 로고
    • Reverse engineering of regulatory networks in human B cells
    • Basso K, Margolin AA, Stolovitzky G, et al. Reverse engineering of regulatory networks in human B cells. Nat Genet 2005;37:382-90.
    • (2005) Nat Genet , vol.37 , pp. 382-390
    • Basso, K.1    Margolin, A.A.2    Stolovitzky, G.3
  • 150
    • 77957911046 scopus 로고    scopus 로고
    • Genome-wide inference of regulatory networks in Streptomycescoelicolor
    • Castro-Melchor M, Charaniya S, Karypis G, et al. Genome-wide inference of regulatory networks in Streptomycescoelicolor. BMC Genomics 2010;11:578.
    • (2010) BMC Genomics , vol.11 , pp. 578
    • Castro-melchor, M.1    Charaniya, S.2    Karypis, G.3
  • 151
    • 84863569195 scopus 로고    scopus 로고
    • Implications of functional similarity for gene regulatory interactions
    • Glass K, Ott E, Losert W, et al. Implications of functional similarity for gene regulatory interactions. J R Soc Interface 2012;9(72):1625-36.
    • (2012) J R Soc Interface , vol.9 , Issue.72 , pp. 1625-1636
    • Glass, K.1    Ott, E.2    Losert, W.3
  • 152
    • 79959590612 scopus 로고    scopus 로고
    • Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella
    • Yoon H, Ansong C, McDermott JE, et al. Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella. BMC Syst Biol 2011;5:100.
    • (2011) BMC Syst Biol , vol.5 , pp. 100
    • Yoon, H.1    Ansong, C.2    McDermott, J.E.3
  • 153
    • 33847015674 scopus 로고    scopus 로고
    • Computational analysis of the synergy among multiple interacting genes
    • Anastassiou D. Computational analysis of the synergy among multiple interacting genes. Mol Syst Biol 2007;3:83.
    • (2007) Mol Syst Biol , vol.3 , pp. 83
    • Anastassiou, D.1
  • 154
    • 72949087964 scopus 로고    scopus 로고
    • Supervised learning with decision tree-based methods in computational and systems biology
    • Geurts P, Irrthum A, Wehenkel L. Supervised learning with decision tree-based methods in computational and systems biology. Mol Biosyst 2009;5:1593-605.
    • (2009) Mol Biosyst , vol.5 , pp. 1593-1605
    • Geurts, P.1    Irrthum, A.2    Wehenkel, L.3
  • 155
    • 34548419328 scopus 로고    scopus 로고
    • Interplay between network structures, regulatory modes and sensing mechanisms of transcription factors in the transcriptional regulatory network of E-coil
    • Balaji S, Babu MM, Aravind L. Interplay between network structures, regulatory modes and sensing mechanisms of transcription factors in the transcriptional regulatory network of E-coil. J Mol Biol 2007;372:1108-22.
    • (2007) J Mol Biol , vol.372 , pp. 1108-1122
    • Balaji, S.1    Babu, M.M.2    Aravind, L.3
  • 156
    • 79961200389 scopus 로고    scopus 로고
    • GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods
    • Schaffter T, Marbach D, Floreano D. GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics 2011;27:2263-70.
    • (2011) Bioinformatics , vol.27 , pp. 2263-2270
    • Schaffter, T.1    Marbach, D.2    Floreano, D.3
  • 157
    • 78650773077 scopus 로고    scopus 로고
    • A comprehensive assessment of methods for de-novo reverse-engineering of genome-scale regulatory networks
    • Narendra V, Lytkin NI, Aliferis CF, et al. A comprehensive assessment of methods for de-novo reverse-engineering of genome-scale regulatory networks. Genomics 2011;97:7-18.
    • (2011) Genomics , vol.97 , pp. 7-18
    • Narendra, V.1    Lytkin, N.I.2    Aliferis, C.F.3
  • 158
    • 0034692618 scopus 로고    scopus 로고
    • Large-scale prediction of phenotype: concept
    • Varner JD. Large-scale prediction of phenotype: concept. Biotechnol Bioeng 2000;69:664-78.
    • (2000) Biotechnol Bioeng , vol.69 , pp. 664-678
    • Varner, J.D.1
  • 159
    • 0033764285 scopus 로고    scopus 로고
    • The challenges of in silico biology
    • Palsson B. The challenges of in silico biology. Nat Biotechnol 2000;18:1147-50.
    • (2000) Nat Biotechnol , vol.18 , pp. 1147-1150
    • Palsson, B.1
  • 160
    • 0028108519 scopus 로고
    • Metabolic flux balancing-basic concepts, scientific and practical use
    • Varma A, Palsson BO. Metabolic flux balancing-basic concepts, scientific and practical use. Biotechnology 1994;12:994-8.
    • (1994) Biotechnology , vol.12 , pp. 994-998
    • Varma, A.1    Palsson, B.O.2
  • 161
    • 0035371624 scopus 로고    scopus 로고
    • Whole-cell simulation: a grand challenge of the 21st century
    • Tomita M. Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol 2001;19:205-10.
    • (2001) Trends Biotechnol , vol.19 , pp. 205-210
    • Tomita, M.1
  • 162
    • 9544253891 scopus 로고    scopus 로고
    • Genome-scale models of microbial cells: evaluating the consequences of constraints
    • Price ND, Reed JL, Palsson BO. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2004;2:886-97.
    • (2004) Nat Rev Microbiol , vol.2 , pp. 886-897
    • Price, N.D.1    Reed, J.L.2    Palsson, B.O.3
  • 163
    • 13444278821 scopus 로고    scopus 로고
    • Reconstruction of cellular signalling networks and analysis of their properties
    • Papin JA, Hunter T, Palsson BO, et al. Reconstruction of cellular signalling networks and analysis of their properties. Nat Rev Mol Cell Biol 2005;6:99-111.
    • (2005) Nat Rev Mol Cell Biol , vol.6 , pp. 99-111
    • Papin, J.A.1    Hunter, T.2    Palsson, B.O.3
  • 164
    • 51749113592 scopus 로고    scopus 로고
    • Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli
    • Covert MW, Xiao N, Chen TJ, et al. Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 2008;24:2044-50.
    • (2008) Bioinformatics , vol.24 , pp. 2044-2050
    • Covert, M.W.1    Xiao, N.2    Chen, T.J.3
  • 165
    • 44949247269 scopus 로고    scopus 로고
    • Dynamic analysis of integrated signaling, metabolic, and regulatory networks
    • Lee JM, Gianchandani EP, Eddy JA, et al. Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput Biol 2008;4(5):e1000086.
    • (2008) PLoS Comput Biol , vol.4 , Issue.5
    • Lee, J.M.1    Gianchandani, E.P.2    Eddy, J.A.3
  • 166
    • 77749306666 scopus 로고    scopus 로고
    • On the potential for integrating gene expression and metabolic flux data
    • Ovacik MA, Androulakis IP. On the potential for integrating gene expression and metabolic flux data. Curr Bioinformatics 2008;3:142-8.
    • (2008) Curr Bioinformatics , vol.3 , pp. 142-148
    • Ovacik, M.A.1    Androulakis, I.P.2
  • 167
    • 79957637424 scopus 로고    scopus 로고
    • A survey on methods for modeling and analyzing integrated biological networks
    • Tenazinha N, Vinga S. A survey on methods for modeling and analyzing integrated biological networks. IEEE/ACM Trans Comput Biol Bioinformatics 2011;8:943-58.
    • (2011) IEEE/ACM Trans Comput Biol Bioinformatics , vol.8 , pp. 943-958
    • Tenazinha, N.1    Vinga, S.2
  • 168
    • 84867843623 scopus 로고    scopus 로고
    • Modeling formalisms in systems biology
    • Machado D, Costa RS, Rocha M, et al. Modeling formalisms in systems biology. AMB Express 2011;1:45.
    • (2011) AMB Express , vol.1 , pp. 45
    • Machado, D.1    Costa, R.S.2    Rocha, M.3
  • 169
    • 0037385718 scopus 로고    scopus 로고
    • Genome-scale microbial in silico models: the constraints-based approach
    • Price ND, Papin JA, Schilling CH, et al. Genome-scale microbial in silico models: the constraints-based approach. Tends Biotechnol 2003;21:162-9.
    • (2003) Tends Biotechnol , vol.21 , pp. 162-169
    • Price, N.D.1    Papin, J.A.2    Schilling, C.H.3
  • 170
    • 39449095000 scopus 로고    scopus 로고
    • Stoichiometric modelling of cell metabolism
    • Llaneras F, Pico J. Stoichiometric modelling of cell metabolism. J Biosci Bioeng 2008;105:1-11.
    • (2008) J Biosci Bioeng , vol.105 , pp. 1-11
    • Llaneras, F.1    Pico, J.2
  • 171
    • 0036840340 scopus 로고    scopus 로고
    • Extreme pathways and Kirchhofs second law
    • Price ND, Famili I, Beard DA, et al. Extreme pathways and Kirchhofs second law. Biophys J 2002;83:2879-82.
    • (2002) Biophys J , vol.83 , pp. 2879-2882
    • Price, N.D.1    Famili, I.2    Beard, D.A.3
  • 173
    • 0037008673 scopus 로고    scopus 로고
    • Transcriptional regulation in constraints-based metabolic models of Escherichia coli
    • Covert MW, Palsson BO. Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J Biol Chem 2002;277:28058-64.
    • (2002) J Biol Chem , vol.277 , pp. 28058-28064
    • Covert, M.W.1    Palsson, B.O.2
  • 174
    • 0036282743 scopus 로고    scopus 로고
    • Osmotic stress signaling and osmoadaptation in yeasts
    • Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 2002;66(2):300-72.
    • (2002) Microbiol Mol Biol Rev , vol.66 , Issue.2 , pp. 300-372
    • Hohmann, S.1
  • 175
    • 78049255973 scopus 로고    scopus 로고
    • Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis
    • Chandrasekaran S, Price ND. Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2010;107:17845-50.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 17845-17850
    • Chandrasekaran, S.1    Price, N.D.2
  • 176
    • 77956873627 scopus 로고    scopus 로고
    • Tackling the widespread and critical impact of batch effects in high-throughput data
    • Leek JT, Scharpf RB, Bravo HC, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet 2010;11:733-9.
    • (2010) Nat Rev Genet , vol.11 , pp. 733-739
    • Leek, J.T.1    Scharpf, R.B.2    Bravo, H.C.3
  • 178
    • 33644832381 scopus 로고    scopus 로고
    • In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
    • Bro C, Regenberg B, Forster J, et al. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng 2006;8:102-11.
    • (2006) Metab Eng , vol.8 , pp. 102-111
    • Bro, C.1    Regenberg, B.2    Forster, J.3
  • 179
    • 79751525708 scopus 로고    scopus 로고
    • A computational tool for the simulation and optimization of microbial strains accounting integrated metabolic/regulatory information
    • Vilaca P, Rocha I, Rocha M. A computational tool for the simulation and optimization of microbial strains accounting integrated metabolic/regulatory information. Biosystems 2011;103:435-41.
    • (2011) Biosystems , vol.103 , pp. 435-441
    • Vilaca, P.1    Rocha, I.2    Rocha, M.3
  • 180
    • 77951552860 scopus 로고    scopus 로고
    • OptORF: Optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains
    • Kim J, Reed JL. OptORF: Optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains. BMC Syst Biol 2010;4:53.
    • (2010) BMC Syst Biol , vol.4 , pp. 53
    • Kim, J.1    Reed, J.L.2
  • 181
    • 34247484371 scopus 로고    scopus 로고
    • Contribution of gene expression to metabolic fluxes in hypermetabolic livers induced through burn injury and cecal ligation and puncture in rats
    • Banta S, Vemula M, Yokoyama T, et al. Contribution of gene expression to metabolic fluxes in hypermetabolic livers induced through burn injury and cecal ligation and puncture in rats. Biotechnol Bioeng 2007;97:118-37.
    • (2007) Biotechnol Bioeng , vol.97 , pp. 118-137
    • Banta, S.1    Vemula, M.2    Yokoyama, T.3
  • 182
    • 33846442438 scopus 로고    scopus 로고
    • Transcriptional and metabolic responses of Bacillus subtilis to the availability of organic acids: Transcription regulation is important but not sufficient to account for metabolic adaptation
    • Schilling O, Frick O, Herzberg C, et al. Transcriptional and metabolic responses of Bacillus subtilis to the availability of organic acids: Transcription regulation is important but not sufficient to account for metabolic adaptation. Appl Environ Microbiol 2007;73:499-507.
    • (2007) Appl Environ Microbiol , vol.73 , pp. 499-507
    • Schilling, O.1    Frick, O.2    Herzberg, C.3
  • 183
    • 51349092391 scopus 로고    scopus 로고
    • Network-based prediction of human tissue-specific metabolism
    • Shlomi T, Cabili MN, Herrgard MJ, et al. Network-based prediction of human tissue-specific metabolism. Nat Biotechnol 2008;26:1003-10.
    • (2008) Nat Biotechnol , vol.26 , pp. 1003-1010
    • Shlomi, T.1    Cabili, M.N.2    Herrgard, M.J.3
  • 184
    • 19944428078 scopus 로고    scopus 로고
    • Chromatin architecture and gene expression in Escherichia coli
    • Willenbrock H, Ussery DW. Chromatin architecture and gene expression in Escherichia coli. Genome Biol 2004;5:252.
    • (2004) Genome Biol , vol.5 , pp. 252
    • Willenbrock, H.1    Ussery, D.W.2
  • 185
    • 33749246561 scopus 로고    scopus 로고
    • Epigenetic gene regulation in the bacterial world
    • Casadesus J, Low D. Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev 2006;70(3):830-56.
    • (2006) Microbiol Mol Biol Rev , vol.70 , Issue.3 , pp. 830-856
    • Casadesus, J.1    Low, D.2
  • 186
    • 33845971293 scopus 로고    scopus 로고
    • Computational reconstruction of iron- and manganese-responsive transcriptional networks in alpha-proteobacteria
    • Rodionov DA, Gelfand MS, Todd JD, et al. Computational reconstruction of iron- and manganese-responsive transcriptional networks in alpha-proteobacteria. PLoS Comput Biol 2006;2:1568-85.
    • (2006) PLoS Comput Biol , vol.2 , pp. 1568-1585
    • Rodionov, D.A.1    Gelfand, M.S.2    Todd, J.D.3
  • 187
    • 33748679406 scopus 로고    scopus 로고
    • Identification and analysis of DNA-binding transcription factors in Bacillus subtilis and other Firmicutes-a genomic approach
    • Moreno-Campuzano S, Janga SC, Perez-Rueda E. Identification and analysis of DNA-binding transcription factors in Bacillus subtilis and other Firmicutes-a genomic approach. BMC Genomics 2006;7:147.
    • (2006) BMC Genomics , vol.7 , pp. 147
    • Moreno-campuzano, S.1    Janga, S.C.2    Perez-rueda, E.3
  • 188
    • 40149098889 scopus 로고    scopus 로고
    • Horizontal gene transfer and the evolution of transcriptional regulation in Escherichia coli
    • Price MN, Dehal PS, Arkin AP. Horizontal gene transfer and the evolution of transcriptional regulation in Escherichia coli. Genome Biol 2008;9:R4.
    • (2008) Genome Biol , vol.9
    • Price, M.N.1    Dehal, P.S.2    Arkin, A.P.3
  • 190
    • 46249112705 scopus 로고    scopus 로고
    • Boolean network models of cellular regulation: prospects and limitations
    • Bornholdt S. Boolean network models of cellular regulation: prospects and limitations. J R Soc Intetf 2008;5: S85-94.
    • (2008) J R Soc Intetf , vol.5
    • Bornholdt, S.1
  • 191
    • 84864258618 scopus 로고    scopus 로고
    • A whole-cell computational model predicts phenotype from genotype
    • Karr JR, Sanghvi JC, Macklin DN, et al. A whole-cell computational model predicts phenotype from genotype. Cell 2012;150:389-401.
    • (2012) Cell , vol.150 , pp. 389-401
    • Karr, J.R.1    Sanghvi, J.C.2    Macklin, D.N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.