메뉴 건너뛰기




Volumn 6, Issue 2, 2009, Pages 234-238

A composite semisupervised SVM for classification of hyperspectral images

Author keywords

Composite kernels; Kernel methods; Remote sensing hyperspectral image classification; semisupervised classification; Support vector machines (SVMs)

Indexed keywords

COMPOSITE KERNELS; KERNEL METHODS; REMOTE-SENSING HYPERSPECTRAL IMAGE CLASSIFICATION; SEMISUPERVISED CLASSIFICATION; SUPPORT VECTOR MACHINES (SVMS);

EID: 65049090023     PISSN: 1545598X     EISSN: None     Source Type: Journal    
DOI: 10.1109/LGRS.2008.2009324     Document Type: Article
Times cited : (134)

References (19)
  • 1
    • 84900673096 scopus 로고    scopus 로고
    • Hyperspectral image classification with kernels
    • G. Camps-Valls, J. L. Rojo-lvarez, and M. Martínez-Ramón, Eds. Hershey, PA: Idea Group Inc, ch. 17, pp
    • L. Bruzzone, L. Gómez-Chova, M. Marconcini, and G. Camps-Valls, "Hyperspectral image classification with kernels," in Kernel Methods in Bioengineering, Signal and Image Processing, G. Camps-Valls, J. L. Rojo-lvarez, and M. Martínez-Ramón, Eds. Hershey, PA: Idea Group Inc., 2007, ch. 17, pp. 374-398.
    • (2007) Kernel Methods in Bioengineering, Signal and Image Processing , pp. 374-398
    • Bruzzone, L.1    Gómez-Chova, L.2    Marconcini, M.3    Camps-Valls, G.4
  • 2
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug
    • F.Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 4
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • Jun
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 7
    • 0000068822 scopus 로고    scopus 로고
    • A mathematical programming approach to the Kernel Fisher algorithm
    • T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. Cambridge, MA: MIT Press
    • S. Mika, G. Rätsch, and K.-R. Müller, "A mathematical programming approach to the Kernel Fisher algorithm," in Advances in Neural Information Processing Systems, T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. Cambridge, MA: MIT Press, 2000, pp. 591-597.
    • (2000) Advances in Neural Information Processing Systems , pp. 591-597
    • Mika, S.1    Rätsch, G.2    Müller, K.-R.3
  • 9
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Jan
    • D. M. Tax and R. P. Duin, "Support vector data description," Mach. Learn., vol. 54, no. 1, pp. 45-66, Jan. 2004.
    • (2004) Mach. Learn , vol.54 , Issue.1 , pp. 45-66
    • Tax, D.M.1    Duin, R.P.2
  • 10
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Jan
    • G. F. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , Issue.1 , pp. 55-63
    • Hughes, G.F.1
  • 12
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive SVM for semisupervised classification of remote-sensing images
    • Nov
    • L. Bruzzone, M. Chi, and M. Marconcini, "A novel transductive SVM for semisupervised classification of remote-sensing images," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3363-3373, Nov. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , Issue.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 13
    • 42449121174 scopus 로고    scopus 로고
    • Semisupervised support vector machines for classification of hyperspectral remote sensing images
    • C.-I Chang, Ed. New York: Wiley, ch. 11, pp
    • L. Bruzzone, M. Chi, and M. Marconcini, "Semisupervised support vector machines for classification of hyperspectral remote sensing images," in Hyperspectral Data Exploitation: Theory and Applications, C.-I Chang, Ed. New York: Wiley, 2007, ch. 11, pp. 275-311.
    • (2007) Hyperspectral Data Exploitation: Theory and Applications , pp. 275-311
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 16
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • Mar
    • J. Ham, Y. Chen, M. Crawford, and J. Ghosh, "Investigation of the random forest framework for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 492-501, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.3    Ghosh, J.4
  • 17
    • 65049091146 scopus 로고    scopus 로고
    • Available
    • [Online]. Available: http://www.csr.utexas.edu/hyperspectral/codes.html
  • 18
    • 65049088894 scopus 로고    scopus 로고
    • C. R. Rao and Y. Wu, On model selection, in Model Selection, 38, P. Lahiri, Ed. Beachwood, OH: Inst. Math. Statist., 2001.
    • C. R. Rao and Y. Wu, "On model selection," in Model Selection, vol. 38, P. Lahiri, Ed. Beachwood, OH: Inst. Math. Statist., 2001.
  • 19
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press
    • J. Platt, "Fast training of support vector machines using sequential minimal optimization," in Advances in Kernel Methods: Support Vector Learning, B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press, 1998, pp. 185-208.
    • (1998) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Platt, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.