-
1
-
-
84900673096
-
Hyperspectral image classification with kernels
-
G. Camps-Valls, J. L. Rojo-lvarez, and M. Martínez-Ramón, Eds. Hershey, PA: Idea Group Inc, ch. 17, pp
-
L. Bruzzone, L. Gómez-Chova, M. Marconcini, and G. Camps-Valls, "Hyperspectral image classification with kernels," in Kernel Methods in Bioengineering, Signal and Image Processing, G. Camps-Valls, J. L. Rojo-lvarez, and M. Martínez-Ramón, Eds. Hershey, PA: Idea Group Inc., 2007, ch. 17, pp. 374-398.
-
(2007)
Kernel Methods in Bioengineering, Signal and Image Processing
, pp. 374-398
-
-
Bruzzone, L.1
Gómez-Chova, L.2
Marconcini, M.3
Camps-Valls, G.4
-
2
-
-
4344614511
-
Classification of hyperspectral remote sensing images with support vector machines
-
Aug
-
F.Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
-
(2004)
IEEE Trans. Geosci. Remote Sens
, vol.42
, Issue.8
, pp. 1778-1790
-
-
Melgani, F.1
Bruzzone, L.2
-
3
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
Mar
-
K. L. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf, "An introduction to kernel-based learning algorithms," IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 181-202, Mar. 2001.
-
(2001)
IEEE Trans. Neural Netw
, vol.12
, Issue.2
, pp. 181-202
-
-
Müller, K.L.1
Mika, S.2
Rätsch, G.3
Tsuda, K.4
Schölkopf, B.5
-
4
-
-
20444432773
-
Kernel-based methods for hyperspectral image classification
-
Jun
-
G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2005.
-
(2005)
IEEE Trans. Geosci. Remote Sens
, vol.43
, Issue.6
, pp. 1351-1362
-
-
Camps-Valls, G.1
Bruzzone, L.2
-
7
-
-
0000068822
-
A mathematical programming approach to the Kernel Fisher algorithm
-
T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. Cambridge, MA: MIT Press
-
S. Mika, G. Rätsch, and K.-R. Müller, "A mathematical programming approach to the Kernel Fisher algorithm," in Advances in Neural Information Processing Systems, T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. Cambridge, MA: MIT Press, 2000, pp. 591-597.
-
(2000)
Advances in Neural Information Processing Systems
, pp. 591-597
-
-
Mika, S.1
Rätsch, G.2
Müller, K.-R.3
-
8
-
-
0001089823
-
Support vector clustering
-
A. Ben-Hur, D. Horn, H. Siegelmann, and V. Vapnik, "Support vector clustering," J. Mach. Learn. Res., vol. 2, pp. 125-137, 2001.
-
(2001)
J. Mach. Learn. Res
, vol.2
, pp. 125-137
-
-
Ben-Hur, A.1
Horn, D.2
Siegelmann, H.3
Vapnik, V.4
-
9
-
-
0942266514
-
Support vector data description
-
Jan
-
D. M. Tax and R. P. Duin, "Support vector data description," Mach. Learn., vol. 54, no. 1, pp. 45-66, Jan. 2004.
-
(2004)
Mach. Learn
, vol.54
, Issue.1
, pp. 45-66
-
-
Tax, D.M.1
Duin, R.P.2
-
10
-
-
77957741951
-
On the mean accuracy of statistical pattern recognizers
-
Jan
-
G. F. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55-63, Jan. 1968.
-
(1968)
IEEE Trans. Inf. Theory
, vol.IT-14
, Issue.1
, pp. 55-63
-
-
Hughes, G.F.1
-
12
-
-
33750819329
-
A novel transductive SVM for semisupervised classification of remote-sensing images
-
Nov
-
L. Bruzzone, M. Chi, and M. Marconcini, "A novel transductive SVM for semisupervised classification of remote-sensing images," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3363-3373, Nov. 2006.
-
(2006)
IEEE Trans. Geosci. Remote Sens
, vol.44
, Issue.11
, pp. 3363-3373
-
-
Bruzzone, L.1
Chi, M.2
Marconcini, M.3
-
13
-
-
42449121174
-
Semisupervised support vector machines for classification of hyperspectral remote sensing images
-
C.-I Chang, Ed. New York: Wiley, ch. 11, pp
-
L. Bruzzone, M. Chi, and M. Marconcini, "Semisupervised support vector machines for classification of hyperspectral remote sensing images," in Hyperspectral Data Exploitation: Theory and Applications, C.-I Chang, Ed. New York: Wiley, 2007, ch. 11, pp. 275-311.
-
(2007)
Hyperspectral Data Exploitation: Theory and Applications
, pp. 275-311
-
-
Bruzzone, L.1
Chi, M.2
Marconcini, M.3
-
14
-
-
0345120047
-
Composite kernels for hypertext categorization
-
T. Joachims, N. Cristianini, and J. Shawe-Taylor, "Composite kernels for hypertext categorization," in Proc. Int. Conf. Mach. Learn., 2001, pp. 250-257.
-
(2001)
Proc. Int. Conf. Mach. Learn
, pp. 250-257
-
-
Joachims, T.1
Cristianini, N.2
Shawe-Taylor, J.3
-
15
-
-
31144448472
-
Composite kernels for hyperspectral image classification
-
Jan
-
G. Camps-Valls, L. Gómez-Chova, J. Muñoz-Marí, J. Vila-Francés, and J. Calpe-Maravilla, "Composite kernels for hyperspectral image classification," IEEE Geosci. Remote Sens. Lett., vol.3, no. 1, pp. 93-97, Jan. 2006.
-
(2006)
IEEE Geosci. Remote Sens. Lett
, vol.3
, Issue.1
, pp. 93-97
-
-
Camps-Valls, G.1
Gómez-Chova, L.2
Muñoz-Marí, J.3
Vila-Francés, J.4
Calpe-Maravilla, J.5
-
16
-
-
14644421528
-
Investigation of the random forest framework for classification of hyperspectral data
-
Mar
-
J. Ham, Y. Chen, M. Crawford, and J. Ghosh, "Investigation of the random forest framework for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 492-501, Mar. 2005.
-
(2005)
IEEE Trans. Geosci. Remote Sens
, vol.43
, Issue.3
, pp. 492-501
-
-
Ham, J.1
Chen, Y.2
Crawford, M.3
Ghosh, J.4
-
17
-
-
65049091146
-
-
Available
-
[Online]. Available: http://www.csr.utexas.edu/hyperspectral/codes.html
-
-
-
-
18
-
-
65049088894
-
-
C. R. Rao and Y. Wu, On model selection, in Model Selection, 38, P. Lahiri, Ed. Beachwood, OH: Inst. Math. Statist., 2001.
-
C. R. Rao and Y. Wu, "On model selection," in Model Selection, vol. 38, P. Lahiri, Ed. Beachwood, OH: Inst. Math. Statist., 2001.
-
-
-
-
19
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press
-
J. Platt, "Fast training of support vector machines using sequential minimal optimization," in Advances in Kernel Methods: Support Vector Learning, B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press, 1998, pp. 185-208.
-
(1998)
Advances in Kernel Methods: Support Vector Learning
, pp. 185-208
-
-
Platt, J.1
|