메뉴 건너뛰기




Volumn , Issue , 2006, Pages 1-439

Remote sensing digital image analysis: An introduction

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84892350125     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/3-540-29711-1     Document Type: Book
Times cited : (2091)

References (446)
  • 2
    • 0001263125 scopus 로고
    • Interaction mechanisms within the atmosphere
    • R.N. Colwell (Ed). 2e. American Society of Photogrammetry, Falls Church, Va
    • M.T. Chahine, 1983: Interaction Mechanisms within the Atmosphere. In Manual of Remote Sensing, R.N. Colwell (Ed). 2e. American Society of Photogrammetry, Falls Church, Va.
    • (1983) Manual of Remote Sensing
    • Chahine, M.T.1
  • 3
    • 0019188515 scopus 로고
    • Hierarchical data structures for picture storage, retrieval and classification
    • S.K. Chang and K.S. Fu (Eds.), Springer-Verlag, Berlin
    • Y.T. Chien, 1980: Hierarchical Data Structures for Picture Storage, Retrieval and Classification. In Pictorial Informations Systems, S.K. Chang and K.S. Fu (Eds.), Springer-Verlag, Berlin.
    • (1980) Pictorial Informations Systems
    • Chien, Y.T.1
  • 6
    • 84892327176 scopus 로고
    • Jet Propulsion Laboratory, January 17-20. JPL Publication
    • C. Elachi (Chairman), 1983: Spaceborne Imaging Radar Symposium. Jet Propulsion Laboratory, January 17-20. JPL Publication 83-11.
    • (1983) Spaceborne Imaging Radar Symposium , pp. 83-11
    • Elachi, C.1
  • 7
    • 0020193162 scopus 로고
    • Spaceborne synthetic aperture imaging radars. Applications, techniques and technology
    • C. Elachi, T. Bicknell, R.L. Jordan and C.Wu, 1982: Spaceborne Synthetic Aperture Imaging Radars. Applications, Techniques and Technology. Proc. IEEE, 70, 1174-1209.
    • (1982) Proc. IEEE , vol.70 , pp. 1174-1209
    • Elachi, C.1    Bicknell, T.2    Jordan, R.L.3    Wu, C.4
  • 10
    • 0018206147 scopus 로고
    • Biological and physical considerations in applying computer-aided analysis techniques to remote sensor data
    • P.H. Swain and S.M. Davis, Eds., N.Y., McGraw-Hill
    • R.M. Hoffer, 1978: Biological and Physical Considerations in Applying Computer-Aided Analysis Techniques to Remote Sensor Data. In P.H. Swain and S.M. Davis, Eds., Remote Sensing: The Quantitative Approach, N.Y., McGraw-Hill.
    • (1978) Remote Sensing: The Quantitative Approach
    • Hoffer, R.M.1
  • 11
    • 0025570617 scopus 로고
    • CHARACTERISTICS of remote sensors for mapping and earth science applications
    • D.L. Light, 1990: Characteristics of Remote Sensors for Mapping and Earth Science Applications. Photogrammetric Engineering and Remote Sensing, 56, 1613-1623.
    • (1990) Photogrammetric Engineering and Remote Sensing , vol.56 , pp. 1613-1623
    • Light, D.L.1
  • 14
    • 0017971154 scopus 로고
    • Tutorial review of synthetic-aperture radar (SAR) with applications to imaging of the ocean surface
    • K. Tomiyasu, 1978: Tutorial Review of Synthetic-Aperture Radar (SAR) with Applications to Imaging of the Ocean Surface. Proc. IEEE, 66, 563-583.
    • (1978) Proc. IEEE , vol.66 , pp. 563-583
    • Tomiyasu, K.1
  • 18
    • 0001491838 scopus 로고
    • Topogaphic mapping from interferometric synthetic aperture radar observations
    • H.A. Zebker and R.M. Goldstein, 1986: Topogaphic Mapping from Interferometric Synthetic Aperture Radar Observations. J. Geophysical Research, 91, 4993-4999.
    • (1986) J. Geophysical Research , vol.91 , pp. 4993-4999
    • Zebker, H.A.1    Goldstein, R.M.2
  • 19
    • 84940864054 scopus 로고
    • Information Note 103073, Laboratory for Applications of Remote Sensing, Purdue University, West Lafayette, Indiana
    • P.E. Anuta, 1973: Geometric Correction of ERTS-1 Digital MSS Data. Information Note 103073, Laboratory for Applications of Remote Sensing, Purdue University, West Lafayette, Indiana.
    • (1973) Geometric Correction of ERTS-1 Digital MSS Data
    • Anuta, P.E.1
  • 20
    • 0001901013 scopus 로고
    • Image geometry and rectification
    • R.N. Colwell (Ed.), Chapter 21, Falls Church,Va. American Society of Photogrammetry
    • R. Bernstein, 1983: Image Geometry and Rectification. In R.N. Colwell (Ed.) Manual of Remote Sensing, 2e, Chapter 21, Falls Church,Va. American Society of Photogrammetry.
    • (1983) Manual of Remote Sensing, 2e
    • Bernstein, R.1
  • 23
    • 0021644187 scopus 로고
    • Derivation of atmospheric correction procedures for landsat MSS with particular reference to urban data
    • B.C. Forster, 1984: Derivation of Atmospheric Correction Procedures for Landsat MSS with Particular Reference to Urban Data. Int. J. Remote Sensing, 5, 799-817.
    • (1984) Int. J. Remote Sensing , vol.5 , pp. 799-817
    • Forster, B.C.1
  • 26
    • 0019392740 scopus 로고
    • Optimal distribution of control points to minimize landsat image registration errors
    • F. Orti, 1981: Optimal Distribution of Control Points to Minimize Landsat Image Registration Errors. Photogrammetric Engineering and Remote Sensing, 47, 101-110.
    • (1981) Photogrammetric Engineering and Remote Sensing , vol.47 , pp. 101-110
    • Orti, F.1
  • 27
    • 0003130957 scopus 로고
    • Geometric correction, registration and resampling of landsat imagery
    • S. Shlien, 1979: Geometric Correction, Registration and Resampling of Landsat Imagery. Canadian J. Remote Sensing, 5, 74-89.
    • (1979) Canadian J. Remote Sensing , vol.5 , pp. 74-89
    • Shlien, S.1
  • 28
    • 0018210405 scopus 로고
    • Radiation and instrumentation in remote sensing
    • P.H. Swain & S.M. Davis (Eds.), N.Y., Mc-Graw-Hill
    • L.F. Silva, 1978: Radiation and Instrumentation in Remote Sensing. In P.H. Swain & S.M. Davis (Eds.) Remote Sensing: The Quantitative Approach, N.Y., Mc-Graw-Hill.
    • (1978) Remote Sensing: The Quantitative Approach
    • Silva, L.F.1
  • 29
    • 0016443927 scopus 로고
    • Digital reconstruction and resampling for geometric manipulation
    • Purdue University, June 3-5
    • K. Simon, 1975: Digital Reconstruction and Resampling for Geometric Manipulation. Proc. Symp. on Machine Processing of Remotely Sensed Data, Purdue University, June 3-5.
    • (1975) Proc. Symp. on Machine Processing of Remotely Sensed Data
    • Simon, K.1
  • 33
    • 0018206147 scopus 로고
    • Biological and physical considerations in applying computer-aided analysis techniques to remote sensing data
    • P.H. Swain & S.M. Davis, Eds. X McGraw-Hill, N.Y
    • R.M. Hoffer, 1978: Biological and Physical Considerations in Applying Computer-Aided Analysis Techniques to Remote Sensing Data, in P.H. Swain & S.M. Davis, Eds.: Remote Sensing: The Quantitative Approach, McGraw-Hill, N.Y.
    • (1978) Remote Sensing: The Quantitative Approach
    • Hoffer, R.M.1
  • 34
    • 84892192095 scopus 로고
    • Computer aided analysis techniques for mapping earth surface features
    • Purdue University, West Lafayette, Indiana
    • R.M. Hoffer, 1979: Computer Aided Analysis Techniques for Mapping Earth Surface Features, Technical Report 020179, Laboratory for Applications of Remote Sensing, Purdue University, West Lafayette, Indiana.
    • (1979) Technical Report 020179, Laboratory for Applications of Remote Sensing
    • Hoffer, R.M.1
  • 35
    • 0019569384 scopus 로고
    • Analysis technology for land remote sensing
    • D.A. Landgrebe, 1981: Analysis Technology for Land Remote Sensing, Proc. IEEE, 69, 628- 642.
    • (1981) Proc. IEEE , vol.69 , pp. 628-642
    • Landgrebe, D.A.1
  • 45
    • 84892297861 scopus 로고
    • A piecewise linear contrast stretch algorithm suitable for batch landsat image processing
    • Canberra
    • A. Hogan, 1981: A Piecewise Linear Contrast Stretch Algorithm Suitable for Batch Landsat Image Processing. Proc. 2nd Australasian Conf. on Remote Sensing, Canberra, 6.4.1- 6.4.4.
    • (1981) Proc. 2nd Australasian Conf. on Remote Sensing , pp. 641-644
    • Hogan, A.1
  • 59
    • 0028555582 scopus 로고
    • Multispectral edge detection. Some experiments on data from landsat TM
    • C. Drewnick, 1994: Multispectral Edge Detection. Some Experiments on Data from Landsat TM. Int. J. Remote Sensing, 15, 3743-3765.
    • (1994) Int. J. Remote Sensing , vol.15 , pp. 3743-3765
    • Drewnick, C.1
  • 62
    • 0019002146 scopus 로고
    • Threshold selection for line detection aigorithms
    • C.M. Gurney, 1980: Threshold Selection for Line Detection AIgorithms. IEEE Trans. Geoscience and Remote Sensing, GE-18, 204-211.
    • (1980) IEEE Trans. Geoscience and Remote Sensing , vol.GE-18 , pp. 204-211
    • Gurney, C.M.1
  • 63
    • 0018466704 scopus 로고
    • Statistical and structural approaches to texture
    • R.M. Haralick, 1979: Statistical and Structural Approaches to Texture. Proc. IEEE, 67, 786- 802.
    • (1979) Proc. IEEE , vol.67 , pp. 786-802
    • Haralick, R.M.1
  • 67
    • 0024855780 scopus 로고
    • Edge detection and processing of remotely sensed digital images
    • S.H. Paine and G.D. Lodwick, 1989: Edge Detection and Processing of Remotely Sensed Digital Images. Photogrammetria (PRS), 43, 323-336.
    • (1989) Photogrammetria (PRS) , vol.43 , pp. 323-336
    • Paine, S.H.1    Lodwick, G.D.2
  • 72
    • 0015064542 scopus 로고
    • Edge and curve detection for visual scene analysis
    • A. Rosenfeld and M. Thurston, 1971: Edge and Curve Detection for Visual Scene Analysis, IEEE Trans. Computers, C-20, 562-569.
    • (1971) IEEE Trans Computers , vol.C-20 , pp. 562-569
    • Rosenfeld, A.1    Thurston, M.2
  • 77
    • 0019229529 scopus 로고
    • Monitoring land-cover change by principal components analysis of multitemporal landsat data
    • E.F. Byrne, P.F. Crapper and K.K. Mayo, 1980: Monitoring Land-Cover Change by Principal Components Analysis of Multitemporal Landsat Data. Remote Sensing of Environment, 10, 175-184.
    • (1980) Remote Sensing of Environment , vol.10 , pp. 175-184
    • Byrne, E.F.1    Crapper, P.F.2    Mayo, K.K.3
  • 78
    • 0030185628 scopus 로고    scopus 로고
    • The decorrelation stretch transformation
    • N.A. Campbell, 1996: The Decorrelation Stretch Transformation. Int. J. Remote Sensing, 17, 1939-1949.
    • (1996) Int. J. Remote Sensing , vol.17 , pp. 1939-1949
    • Campbell, N.A.1
  • 81
    • 0020971629 scopus 로고
    • Landsat digital enhancements for change detection in urban environments
    • P.J. Howarth and E. Boasson, 1983: Landsat Digital Enhancements for Change Detection in Urban Environments. Remote Sensing of Environment, 13, 149-160.
    • (1983) Remote Sensing of Environment , vol.13 , pp. 149-160
    • Howarth, P.J.1    Boasson, E.2
  • 82
    • 0022267181 scopus 로고
    • Principal components analysis of multitemporal image Pairs
    • S.E. Ingebritsen and R.J.P. Lyon, 1985: Principal Components Analysis of Multitemporal Image Pairs. Int. J. Remote Sensing, 6, 687-696.
    • (1985) Int. J. Remote Sensing , vol.6 , pp. 687-696
    • Ingebritsen, S.E.1    Lyon, R.J.P.2
  • 83
    • 0018767678 scopus 로고
    • Principal components analysis and canonical analysis in remote sensing
    • 45th Ann. Meeting
    • S.K. Jensen and F.A.Waltz, 1979: Principal Components Analysis and Canonical Analysis in Remote Sensing. Proc. American Photogrammetric Soc. 45th Ann. Meeting, 337-348.
    • (1979) Proc. American Photogrammetric Soc , pp. 337-348
    • Jensen, S.K.1    Waltz, F.E.2
  • 84
    • 0017242348 scopus 로고
    • The tasseled cap-a graphic description of the spectral- temporal development of agricultural crops as seen by landsat
    • Remotely Sensed Data, Purdue University
    • R.J. Kauth and G.S. Thomas, 1976: The Tasseled Cap -A Graphic Description of the Spectral- Temporal Development of Agricultural Crops as Seen by Landsat. Proc.LARS1976 Symp. on Machine Process. Remotely Sensed Data, Purdue University.
    • (1976) Proc.LARS1976 Symp. on Machine Process
    • Kauth, R.J.1    Thomas, G.S.2
  • 85
    • 0027627788 scopus 로고
    • Estimation of noise in images: An evaluation
    • S.I. Olsen, 1993: Estimation of Noise in Images: an Evaluation. Graphical Models and Image Processing, 55, 319-323.
    • (1993) Graphical Models and Image Processing , vol.55 , pp. 319-323
    • Olsen, S.I.1
  • 86
    • 0021644167 scopus 로고
    • Thematic mapping from multitemporal image data using the principal components transformation
    • J.A. Richards, 1984: Thematic Mapping from Multitemporal Image Data Using the Principal Components Transformation. Remote Sensing of Environment, 16, 35-46.
    • (1984) Remote Sensing of Environment , vol.16 , pp. 35-46
    • Richards, J.A.1
  • 87
    • 0018195533 scopus 로고
    • Principal components of a multispectral image: Application to a geologic problem
    • A. Santisteban and L. Muñoz, 1978: Principal Components of a Multispectral Image: Application to a Geologic Problem. IBM J. Research and Development, 22, 444-454.
    • (1978) IBM J. Research and Development , vol.22 , pp. 444-454
    • Santisteban, A.1    Muñoz, L.2
  • 99
    • 0025453627 scopus 로고
    • Neural network approaches versus statistical methods in classification of multisource remote sensing data
    • J.A. Benediktsson, P.H. Swain and O.K. Esroy, 1990: Neural Network Approaches Versus Statistical Methods in Classification of Multisource Remote Sensing Data. IEEE Trans Geoscience and Remote Sensing, 28, 540-552.
    • (1990) IEEE Trans Geoscience and Remote Sensing , vol.28 , pp. 540-552
    • Benediktsson, J.A.1    Swain, P.H.2    Esroy, O.K.3
  • 100
    • 0027789411 scopus 로고
    • Conjugate-gradient neural networks in classification of multisource and very-high-dimensional remote sensing data
    • J.A. Benediktsson, P.H. Swain and O.K. Esroy, 1993: Conjugate-Gradient Neural Networks in Classification of Multisource and Very-High-Dimensional Remote Sensing Data. Int. J. Remote Sensing, 14, 2883-2903.
    • (1993) Int. J. Remote Sensing , vol.14 , pp. 2883-2903
    • Benediktsson, J.A.1    Swain, P.H.2    Esroy, O.K.3
  • 101
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • J. Besag, 1986: On the Statistical Analysis of Dirty Pictures. J. Royal Statistical Soc. (B), 48, 259-302.
    • (1986) J. Royal Statistical Soc. (B) , vol.48 , pp. 259-302
    • Besag, J.1
  • 102
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C.T.C. Burges, 1998: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2, 121-167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.T.C.1
  • 107
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • S. Geman and D. Geman, 1984: Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Trans Pattern Analysis and Machine Intelligence, PAMI-6, 721-740.
    • (1984) IEEE Trans Pattern Analysis and Machine Intelligence , vol.PAMI-6 , pp. 721-740
    • Geman, S.1    Geman, D.2
  • 108
    • 0024752431 scopus 로고
    • Performance analyses of probabilistic relaxation methods for land-cover classification
    • P. Gong and P.J. Howarth, 1989: Performance Analyses of Probabilistic Relaxation Methods for Land-Cover Classification. Remote Sensing of Environment, 30, 33-42.
    • (1989) Remote Sensing of Environment , vol.30 , pp. 33-42
    • Gong, P.1    Howarth, P.J.2
  • 109
    • 0025247448 scopus 로고
    • The use of structural information for improving land-cover classification accuracies at the Rural-Urban fringe
    • P. Gong and P.J. Howarth, 1990: The Use of Structural Information for Improving Land-Cover Classification Accuracies at the Rural-Urban Fringe. Photogrammetric Engineering and Remote Sensing, 56, 67-73.
    • (1990) Photogrammetric Engineering and Remote Sensing , vol.56 , pp. 67-73
    • Gong, P.1    Howarth, P.J.2
  • 110
    • 0032636659 scopus 로고    scopus 로고
    • Support vector machines for hyperspectral remote sensing classification
    • J.A. Gualtieri and R.F. Cromp, 1999: Support Vector Machines for Hyperspectral Remote Sensing Classification. Proc. SPIE, 3584, 221-232.
    • (1999) Proc. SPIE , vol.3584 , pp. 221-232
    • Gualtieri, J.A.1    Cromp, R.F.2
  • 111
    • 0022267179 scopus 로고
    • Contextual classification post-processing of landsat data using a probabilistic relaxation model
    • R. Harris, 1985: Contextual Classification Post-Processing of Landsat Data Using a Probabilistic Relaxation Model. Int. J. Remote Sensing, 6, 847-866.
    • (1985) Int. J. Remote Sensing , vol.6 , pp. 847-866
    • Harris, R.1
  • 112
    • 0025573206 scopus 로고
    • Artificial neural network classification using a minimal training set: Comparison to conventional supervised classification
    • G.F. Hepner, 1990: Artificial Neural Network Classification Using a Minimal Training Set: Comparison to Conventional Supervised Classification. Photogrammetric Engineering and Remote Sensing, 56, 469-473.
    • (1990) Photogrammetric Engineering and Remote Sensing , vol.56 , pp. 469-473
    • Hepner, G.F.1
  • 113
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • C. Huang, L.S.Davis and J.R.G.Townshend, 2002:AnAssessment of SupportVector Machines for Land Cover Classification. Int. J. Remote Sensing, 23, 725-749.
    • (2002) Int. J. Remote Sensing , vol.23 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.G.3
  • 114
    • 0026897311 scopus 로고
    • Classification with Spatio-Temporal interpixel class dependency contexts
    • B. Jeon and D.A. Landgrebe, 1992: Classification with Spatio-Temporal Interpixel Class Dependency Contexts. IEEE Trans. Geoscience and Remote Sensing, 30, 663-672.
    • (1992) IEEE Trans. Geoscience and Remote Sensing , vol.30 , pp. 663-672
    • Jeon, B.1    Landgrebe, D.A.2
  • 115
    • 0029778002 scopus 로고    scopus 로고
    • Bayesian contextual classification based on modified Mestimates and Markov random fields
    • Y. Jung and P.H. Swain, 1996: Bayesian Contextual Classification based on Modified Mestimates and Markov Random Fields. IEEE Trans. Geoscience and Remote Sensing, 34, 67-75.
    • (1996) IEEE Trans. Geoscience and Remote Sensing , vol.34 , pp. 67-75
    • Jung, Y.1    Swain, P.H.2
  • 116
    • 0016882368 scopus 로고
    • Classification of multispectral image data by extraction and classification of homogeneous objects
    • R.L. Kettig and D.A. Landgrebe, 1976: Classification of Multispectral Image Data by Extraction and Classification of Homogeneous Objects. IEEE Trans. Geoscience Electronics, GE-14, 19-26.
    • (1976) IEEE Trans. Geoscience Electronics , vol.GE-14 , pp. 19-26
    • Kettig, R.L.1    Landgrebe, D.A.2
  • 117
    • 0025455578 scopus 로고
    • Spatial-Temporal autocorrelation model for contextual classification
    • N. Khazenie and M.M. Crawford, 1990: Spatial-Temporal Autocorrelation Model for Contextual Classification. IEEE Trans. Geoscience and Remote Sensing, 28, 529-539.
    • (1990) IEEE Trans. Geoscience and Remote Sensing , vol.28 , pp. 529-539
    • Khazenie, N.1    Crawford, M.M.2
  • 118
    • 0022150261 scopus 로고
    • Contextual pattern recognition applied to cloud detection and identification
    • J. Kittler and D. Pairman, 1985: Contextual Pattern Recognition Applied to Cloud Detection and Identification. IEEE Trans Geoscience and Remote Sensing, GE-23, 855-863.
    • (1985) IEEE Trans Geoscience and Remote Sensing , vol.GE-23 , pp. 855-863
    • Kittler, J.1    Pairman, D.2
  • 119
    • 0036875217 scopus 로고    scopus 로고
    • A robust classification procedure based on mixture classifiers and nonparametric weighted feature extraction
    • B.-C. Kuo and D.A. Landgrebe, 2002: A Robust Classification Procedure Based on Mixture Classifiers and Nonparametric Weighted Feature Extraction. IEEE Trans. Geoscience and Remote Sensing, 40, 2486-2494.
    • (2002) IEEE Trans. Geoscience and Remote Sensing , vol.40 , pp. 2486-2494
    • Kuo, B.-C.1    Landgrebe, D.A.2
  • 121
    • 0022236553 scopus 로고
    • A low cost classifier for multitemporal applications
    • T. Lee and J.A. Richards, 1985:A Low Cost Classifier for Multitemporal Applications. Int. J. Remote Sensing, 6, 1405-1417.
    • (1985) Int. J. Remote Sensing , vol.6 , pp. 1405-1417
    • Lee, T.1    Richards, J.A.2
  • 122
    • 0024897709 scopus 로고
    • Pixel relaxation labelling using a diminishing neighbourhood effect
    • Vancouver
    • T. Lee and J.A. Richards, 1989: Pixel Relaxation Labelling Using a Diminishing Neighbourhood Effect. Proc. IGARSS'89. Vancouver, 634-637.
    • (1989) Proc. IGARSS'89 , pp. 634-637
    • Lee, T.1    Richards, J.A.2
  • 123
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • April. The MathWorks, Inc, MA MATLAB, 1984-2004: Neural Network Toolbox
    • R.P. Lippmann, 1987: An Introduction to Computing with Neural Nets. IEEEASSP Magazine, April, 4-22. MATLAB, 1984-2004: Neural Network Toolbox. The MathWorks, Inc, MA.
    • (1987) IEEEASSP Magazine , pp. 4-22
    • Lippmann, R.P.1
  • 124
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • F. Melgani and L. Bruzzone, 2004: Classification of Hyperspectral Remote Sensing Images with Support Vector Machines. IEEE Trans. Geoscience and Remote Sensing, 42, 1778- 1790.
    • (2004) IEEE Trans. Geoscience and Remote Sensing , vol.42 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 125
    • 0012163326 scopus 로고
    • A simulation study of some contextual classification methods for remotely sensed data
    • E. Mohn, N.L. Hjort and G.O. Storvik, 1987:ASimulation Study of Some Contextual Classification Methods for Remotely Sensed Data. IEEE Trans. Geoscience and Remote Sensing, 25, 796-804.
    • (1987) IEEE Trans. Geoscience and Remote Sensing , vol.25 , pp. 796-804
    • Mohn, E.1    Hjort, N.L.2    Storvik, G.O.3
  • 129
    • 0029415649 scopus 로고
    • A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery
    • J.D. Paola and R.A. Schowengerdt, 1995a:A Review and Analysis of Backpropagation Neural Networks for Classification of Remotely-Sensed Multi-Spectral Imagery. Int. J. Remote Sensing, 16, 3033-3058.
    • (1995) Int. J. Remote Sensing , vol.16 , pp. 3033-3058
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 130
    • 0029341018 scopus 로고
    • A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification
    • J.D. Paola and R.A. Schowengerdt, 1995b:ADetailed Comparison of Backpropagation Neural Network and Maximum-Likelihood Classifiers for Urban Land Use Classification. IEEE Trans. Geoscience and Remote Sensing, 33, 981-996.
    • (1995) IEEE Trans. Geoscience and Remote Sensing , vol.33 , pp. 981-996
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 135
    • 0029772671 scopus 로고    scopus 로고
    • A markov random field model for classification of multisource satellite imagery
    • A.H.S. Solberg, T. Taxt and A.K. Jain, 1996:AMarkov Random Field Model for Classification of Multisource Satellite Imagery. IEEE Trans. Geoscience and Remote Sensing, 34, 100- 113.
    • (1996) IEEE Trans. Geoscience and Remote Sensing , vol.34 , pp. 100-113
    • Solberg, A.H.S.1    Taxt, T.2    Jain, A.K.3
  • 137
    • 0017517024 scopus 로고
    • The decision tree classifier: Design and potential
    • P.H. Swain and H. Hauska, 1977: The Decision Tree Classifier: Design and Potential. IEEE Trans. Geoscience Electronics, GE-15, 142-147.
    • (1977) IEEE Trans. Geoscience Electronics , vol.GE-15 , pp. 142-147
    • Swain, P.H.1    Hauska, H.2
  • 138
    • 0019728208 scopus 로고
    • Contextual classification of multispectral image data
    • P.H. Swain, S.B. Varderman and J.C. Tilton, 1981: Contextual Classification of Multispectral Image Data. Pattern Recognition, 13, 429-441.
    • (1981) Pattern Recognition , vol.13 , pp. 429-441
    • Swain, P.H.1    Varderman, S.B.2    Tilton, J.C.3
  • 140
    • 0022927181 scopus 로고
    • The enhancement of computer classifications by logical smoothing
    • F.E. Townsend, 1986: The Enhancement of Computer Classifications by Logical Smoothing. Photogrammetric Engineering and Remote Sensing, 52, 213-221.
    • (1986) Photogrammetric Engineering and Remote Sensing , vol.52 , pp. 213-221
    • Townsend, F.E.1
  • 143
    • 0343978175 scopus 로고
    • Gaussian maximum likelihood and contextual classification algorithms for multicrop classification experiments using thematic mapper and multispectral scanner sensor data
    • S.D. Zenzo, S.D. Degloria, R. Bernstein and H.G. Kolsky, 1987: Gaussian Maximum Likelihood and Contextual Classification Algorithms for Multicrop Classification Experiments Using Thematic Mapper and Multispectral Scanner Sensor Data. IEEE Trans. Geoscience and Remote Sensing, 25, 815-824.
    • (1987) IEEE Trans. Geoscience and Remote Sensing , vol.25 , pp. 815-824
    • Zenzo, S.D.1    Degloria, S.D.2    Bernstein, R.3    Kolsky, H.G.4
  • 146
    • 0018465738 scopus 로고
    • Image segmentation by clustering
    • G.R. Coleman and H.C. Andrews, 1979: Image Segmentation by Clustering. Proc. IEEE, 67, 773-785.
    • (1979) Proc. IEEE , vol.67 , pp. 773-785
    • Coleman, G.R.1    Andrews, H.C.2
  • 151
    • 33748585537 scopus 로고
    • Unsupervised classification in the aries image analysis system
    • P.A. Letts, 1978: Unsupervised Classification in The Aries Image Analysis System. Proc. 5th Canadian Symp. on Remote Sensing, 61-71.
    • (1978) Proc. 5th Canadian Symp. on Remote Sensing , pp. 61-71
    • Letts, P.A.1
  • 155
    • 0000116015 scopus 로고
    • The geometry of canonical variate analysis
    • N.A. Campbell and W.R. Atchley, 1981: The Geometry of Canonical Variate Analysis. Systematic Zoology, 30, 268-280.
    • (1981) Systematic Zoology , vol.30 , pp. 268-280
    • Campbell, N.A.1    Atchley, W.R.2
  • 157
    • 0016894696 scopus 로고
    • Canonical analysis for increased classification speed and channel selection
    • W. Eppler, 1976: CanonicalAnalysis for Increased Classification Speed and Channel Selection, IEEE Trans. Geoscience Electronics, GE-14, 26-33.
    • (1976) IEEE Trans. Geoscience Electronics , vol.GE-14 , pp. 26-33
    • Eppler, W.1
  • 160
    • 65249157560 scopus 로고
    • The divergence and bhattacharyya distance measures in signal selection
    • T. Kailath, 1967: The Divergence and Bhattacharyya Distance Measures in Signal Selection, IEEE Trans. Communication Theory, COM-15, 52-60.
    • (1967) IEEE Trans Communication Theory , vol.COM-15 , pp. 52-60
    • Kailath, T.1
  • 165
    • 0019005054 scopus 로고
    • Directed canonical analysis and the performance of classifiers under its associated linear transformation
    • B.F. Merembeck and B.J. Turner, 1980: Directed Canonical Analysis and the Performance of Classifiers under its Associated Linear Transformation, IEEE Trans. Geoscience and Remote Sensing, GE-18, 190-196.
    • (1980) IEEE Trans Geoscience and Remote Sensing , vol.GE-18 , pp. 190-196
    • Merembeck, B.F.1    Turner, B.J.2
  • 166
    • 84892292660 scopus 로고
    • R.N. Colwell (Ed.): Manual of Remote Sensing, 2e, American Soc. of Photogrammetry, Falls Church
    • V.I. Myers, 1983: Remote Sensing Applications in Agriculture. In: R.N. Colwell (Ed.): Manual of Remote Sensing, 2e, American Soc. of Photogrammetry, Falls Church.
    • (1983) Remote Sensing Applications in Agriculture
    • Myers, V.I.1
  • 169
    • 0015744443 scopus 로고
    • Two effective feature selection criteria for multispectral remote sensing
    • November
    • P.H. Swain and R.C. King, 1973: Two Effective Feature Selection Criteria for Multispectral Remote Sensing, Proc. First Int. Joint Conf. on Pattern Recognition, 536-540, November.
    • (1973) Proc. First Int. Joint Conf. on Pattern Recognition , pp. 536-540
    • Swain, P.H.1    King, R.C.2
  • 170
    • 84892286884 scopus 로고
    • Comparison of divergence and b-distance in feature selection, information note 020871
    • Purdue University, West Lafayette
    • P.H.Swain, T.V. Robertson and A.G.Wacker, 1971: Comparison of Divergence and B-Distance in Feature Selection, Information Note 020871, Laboratory for Applications of Remote Sensing, Purdue University, West Lafayette.
    • (1971) Laboratory for Applications of Remote Sensing
    • Swain, P.H.1    Robertson, T.V.2    Wacker, A.G.3
  • 173
    • 0020110810 scopus 로고
    • Modeling misregistration and related effects on multispectral classification
    • F.C. Billingsley, 1982: Modeling Misregistration and Related Effects on Multispectral Classification. Photogrammetric Engineering and Remote Sensing, 48, 421-430.
    • (1982) Photogrammetric Engineering and Remote Sensing , vol.48 , pp. 421-430
    • Billingsley, F.C.1
  • 174
  • 175
    • 0019229529 scopus 로고
    • Monitoring land cover changes by principal components analysis of multitemporal landsat data
    • G.R. Byrne, P.F. Crapper and K.K. Mayo, 1980: Monitoring Land Cover Changes by Principal Components Analysis of Multitemporal Landsat Data. Remote Sensing of Environment, 10, 175-184.
    • (1980) Remote Sensing of Environment , vol.10 , pp. 175-184
    • Byrne, G.R.1    Crapper, P.F.2    Mayo, K.K.3
  • 180
    • 0023469475 scopus 로고
    • Application of principal components analysis to change detection
    • T. Fung and E. LeDrew, 1987: Application of Principal Components Analysis to Change Detection. Photogrammetric Engineering and Remote Sensing, 53, 1649-1658.
    • (1987) Photogrammetric Engineering and Remote Sensing , vol.53 , pp. 1649-1658
    • Fung, T.1    Ledrew, E.2
  • 183
    • 0025919864 scopus 로고
    • Utilisation of a best linear discriminant function for designing the binary decision tree
    • Y. Iikura and Y. Yasuoka, 1991: Utilisation of a Best Linear Discriminant Function for Designing the Binary Decision Tree. Int. J. Remote Sensing, 12, 55-67.
    • (1991) Int. J. Remote Sensing , vol.12 , pp. 55-67
    • Iikura, Y.1    Yasuoka, Y.2
  • 184
    • 0022267181 scopus 로고
    • Principal components analysis of multitemporal image Pairs
    • S.E. Ingebritsen and R.J.P. Lyon, 1985: Principal Components Analysis of Multitemporal Image Pairs. Int. J. Remote Sensing, 6, 687-696.
    • (1985) Int. J. Remote Sensing , vol.6 , pp. 687-696
    • Ingebritsen, S.E.1    Lyon, R.J.P.2
  • 185
    • 0032010537 scopus 로고    scopus 로고
    • Progressive two-class decision classifier for optimization of class discriminations
    • X. Jia and J.A. Richards, 1998: Progressive Two-class Decision Classifier for Optimization of Class Discriminations. Remote Sensing of Environment, 63, 289-297.
    • (1998) Remote Sensing of Environment , vol.63 , pp. 289-297
    • Jia, X.1    Richards, J.A.2
  • 186
    • 0019102590 scopus 로고
    • Measurement of irrigated acreage in western kansas from landsat images
    • K.M. Keene and C.D. Conley, 1980: Measurement of Irrigated Acreage in Western Kansas from Landsat Images. Environmental Geology, 3, 107-116.
    • (1980) Environmental Geology , vol.3 , pp. 107-116
    • Keene, K.M.1    Conley, C.D.2
  • 187
    • 0026190348 scopus 로고
    • Hierarchical classifier design in high-dimensional, numerous class cases
    • B. Kim and D.A. Landgrebe, 1991: Hierarchical Classifier Design in High-dimensional, Numerous Class Cases. IEEE Trans. on Geoscience and Remote Sensing, 29, 518-528.
    • (1991) IEEE Trans. on Geoscience and Remote Sensing , vol.29 , pp. 518-528
    • Kim, B.1    Landgrebe, D.A.2
  • 190
    • 0022236553 scopus 로고
    • A Low cost classifier for multitemporal applications
    • T. Lee and J.A. Richards, 1985:A Low Cost Classifier for Multitemporal Applications. Int. J. Remote Sensing, 6, 1405-1417.
    • (1985) Int. J. Remote Sensing , vol.6 , pp. 1405-1417
    • Lee, T.1    Richards, J.A.2
  • 192
    • 0019058733 scopus 로고
    • Automated classification of nucleated blood cells using a binary tree classifier
    • J.K. Mui and K.S. Fu, 1980: Automated Classification of Nucleated Blood Cells Using a Binary Tree Classifier. IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-2, 429-443.
    • (1980) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.PAMI-2 , pp. 429-443
    • Mui, J.K.1    Fu, K.S.2
  • 196
    • 0021644167 scopus 로고
    • Thematic mapping from multitemporal image data using the principal components transformation
    • J.A. Richards, 1984: Thematic Mapping from Multitemporal Image Data Using the Principal Components Transformation. Remote Sensing of Environment, 16, 35-46.
    • (1984) Remote Sensing of Environment , vol.16 , pp. 35-46
    • Richards, J.A.1
  • 197
    • 0030222696 scopus 로고    scopus 로고
    • Classifier performance and map accuracy
    • J.A. Richards, 1996: Classifier Performance and Map Accuracy. Remote Sensing of Environment, 57, 161-166.
    • (1996) Remote Sensing of Environment , vol.57 , pp. 161-166
    • Richards, J.A.1
  • 199
    • 0019181932 scopus 로고
    • A combined nonparametric approach to feature selection and binary decision tree design
    • E.M. Rounds, 1980: A Combined Nonparametric Approach to Feature Selection and Binary Decision Tree Design. Pattern Recognition, 12, 313-317.
    • (1980) Pattern Recognition , vol.12 , pp. 313-317
    • Rounds, E.M.1
  • 201
    • 0032084126 scopus 로고    scopus 로고
    • Design and analysis for thematic map accuracy assessment, fundamental principles
    • S.V. Stehman and R.L. Czaplewski, 1998: Design and Analysis for Thematic Map Accuracy Assessment, Fundamental Principles. Remote Sensing of Environment, 64, 331-344.
    • (1998) Remote Sensing of Environment , vol.64 , pp. 331-344
    • Stehman, S.V.1    Czaplewski, R.L.2
  • 202
  • 203
    • 0016337243 scopus 로고
    • Operational use of satellite and high altitude remote sensing for the generation of input data for water demand models
    • Michigan
    • L.R. Tinney, J.E. Estes, K.H. Thaman and R.R. Thaman, 1974: Operational Use of Satellite and High Altitude Remote Sensing for the Generation of Input Data for Water Demand Models. Proc. 9th Int. Symp. on Remote Sensing of Environment, Michigan, 739-757.
    • (1974) Proc. 9th Int. Symp. on Remote Sensing of Environment , pp. 739-757
    • Tinney, L.R.1    Estes, J.E.2    Thaman, K.H.3    Thaman, R.R.4
  • 205
    • 9444228570 scopus 로고
    • Corrected vs uncorrected landsat 4 MSS data
    • Sioux Falls, NOAA, June 4-8
    • J. Verdin, 1983: Corrected vs Uncorrected Landsat 4 MSS Data. Landsat Data Users Notes, Issue No. 27, Sioux Falls, NOAA, June 4-8.
    • (1983) Landsat Data Users Notes, Issue , Issue.27
    • Verdin, J.1
  • 207
    • 0030618061 scopus 로고    scopus 로고
    • Multisource classification of complex rural areas by statistical and neural-network approaches
    • L. Bruzzone, C. Conese, F. Maselli and F. Roli, 1997: Multisource Classification of Complex Rural Areas by Statistical and Neural-Network Approaches. Photogrammetric Engineering and Remote Sensing, 63, 523-533.
    • (1997) Photogrammetric Engineering and Remote Sensing , vol.63 , pp. 523-533
    • Bruzzone, L.1    Conese, C.2    Maselli, F.3    Roli, F.4
  • 210
    • 21244495584 scopus 로고    scopus 로고
    • Computational intelligence methods for rule- based data understanding
    • W. Duch, R. Setiono and J.M. Zurada, 2004: Computational Intelligence Methods for Rule- Based Data Understanding. Proc. IEEE, 92, 771-805.
    • (2004) Proc. IEEE , vol.92 , pp. 771-805
    • Duch, W.1    Setiono, R.2    Zurada, J.M.3
  • 212
    • 0022719267 scopus 로고
    • Evidential reasoning for geographic evaluation for helicopter route planning
    • T.D. Garvey, 1987: Evidential Reasoning for Geographic Evaluation for Helicopter Route Planning. IEEE Trans Geoscience and Remote Sensing, GE-25, 294-304.
    • (1987) IEEE Trans Geoscience and Remote Sensing , vol.GE-25 , pp. 294-304
    • Garvey, T.D.1
  • 214
    • 0022070802 scopus 로고
    • A hierarchical expert system for updating forestry maps with landsat data
    • M. Goldberg, D.G. Goodenough, M.Alvo and G. Karam, 1985:A Hierarchical Expert System for Updating Forestry Maps with Landsat Data. Proceedings of the IEEE, 73, 1054-1063.
    • (1985) Proceedings of the IEEE , vol.73 , pp. 1054-1063
    • Goldberg, M.1    Goodenough, D.G.2    Alvo, M.3    Karam, G.4
  • 215
    • 0029768950 scopus 로고    scopus 로고
    • Integrated analysis of spatial data from multiple sources: Using evidential reasoning and artificial neural network techniques for geologic mapping
    • P. Gong, 1996: Integrated Analysis of Spatial Data from Multiple Sources: Using Evidential Reasoning and Artificial Neural Network Techniques for Geologic Mapping. Photogrammetric Engineering and Remote Sensing, 62, 513-523.
    • (1996) Photogrammetric Engineering and Remote Sensing , vol.62 , pp. 513-523
    • Gong, P.1
  • 217
    • 0031988778 scopus 로고    scopus 로고
    • Application of spectral mixture analysis and image fusion techniques for image sharpening
    • H.N. Gross and J.R. Schott, 1998: Application of Spectral Mixture Analysis and Image Fusion Techniques for Image Sharpening. Remote Sensing of Environment, 63, 85-94.
    • (1998) Remote Sensing of Environment , vol.63 , pp. 85-94
    • Gross, H.N.1    Schott, J.R.2
  • 219
  • 220
    • 0025457848 scopus 로고
    • Integration of geophysical and geological data using evidential belief function
    • W.L. Moon, 1990: Integration of Geophysical and Geological Data Using Evidential Belief Function. IEEE Trans Geoscience and Remote Sensing, 28, 711-720.
    • (1990) IEEE Trans Geoscience and Remote Sensing , vol.28 , pp. 711-720
    • Moon, W.L.1
  • 223
    • 0022716761 scopus 로고
    • A knowledge-based system for the analysis of aerial images
    • B. Nicholin and R. Gabler, 1987: A Knowledge-Based System for the Analysis of Aerial Images. IEEE Trans Geoscience and Remote Sensing, GE-25, 317-328.
    • (1987) IEEE Trans Geoscience and Remote Sensing , vol.GE-25 , pp. 317-328
    • Nicholin, B.1    Gabler, R.2
  • 225
    • 0029510709 scopus 로고
    • MERCURY⊕: An evidential reasoning image classifier
    • D.R. Peddle, 1995 a: MERCURY⊕: An Evidential Reasoning Image Classifier. Computers and Geosciences, 21, 1163-1176.
    • (1995) Computers and Geosciences , vol.21 , pp. 1163-1176
    • Peddle, D.R.1
  • 226
    • 0028572077 scopus 로고
    • Knowledge formulation for supervised evidential classification
    • D.R. Peddle, 1995 b: Knowledge Formulation for Supervised Evidential Classification. Photogrammetric Engineering and Remote Sensing, 61, 409-417.
    • (1995) Photogrammetric Engineering and Remote Sensing , vol.61 , pp. 409-417
    • Peddle, D.R.1
  • 229
    • 0028463641 scopus 로고
    • Multisource classification of remotely sensed data: Fusion of landsat TM and SAR images
    • A.H. Schistad Solberg, A.K. Jain and T. Taxt, 1994: Multisource Classification of Remotely Sensed Data: Fusion of Landsat TM and SAR Images. IEEE Trans Geoscience and Remote Sensing. 32, 768-778.
    • (1994) IEEE Trans Geoscience and Remote Sensing , vol.32 , pp. 768-778
    • Schistad Solberg, A.H.1    Jain, A.K.2    Taxt, T.3
  • 236
    • 0019227654 scopus 로고
    • The use of prior probabilities in maximum likelihood classification of remotely sensed data
    • A.H. Strahler, 1980: The Use of Prior Probabilities in Maximum Likelihood Classification of Remotely Sensed Data. Remote Sensing of Environment, 10, 135-163.
    • (1980) Remote Sensing of Environment , vol.10 , pp. 135-163
    • Strahler, A.H.1
  • 238
    • 0030737312 scopus 로고    scopus 로고
    • What does multisensor image fusion add in terms of information content for visual interpretation?
    • F. Van Der Meer, 1997: What Does Multisensor Image Fusion Add in Terms of Information Content for Visual Interpretation? Int. J. Remote Sensing, 18, 445-452.
    • (1997) Int J. Remote Sensing , vol.18 , pp. 445-452
    • Meer Der F.Van1
  • 239
    • 0022720470 scopus 로고
    • A spectral knowledge based approach for urban land cover discrimination
    • S.W. Wharton, 1987:A Spectral Knowledge Based Approach for Urban Land Cover Discrimination. IEEE Trans Geoscience and Remote Sensing, 25, 272-282.
    • (1987) IEEE Trans Geoscience and Remote Sensing , vol.25 , pp. 272-282
    • Wharton, S.W.1
  • 240
    • 0001888403 scopus 로고
    • MODTRAN3: An update and recent validations against airborne high resolution interferometer measurements
    • (AVIRIS Workshop)
    • G.P. Anderson, J. Wang and J.H. Chetwynd, 1995: MODTRAN3: An Update and Recent Validations Against Airborne High Resolution Interferometer Measurements, 5th Annual JPL Airborne Sciences Workshop, Vol 1 (AVIRIS Workshop), 5-8.
    • (1995) 5th Annual JPL Airborne Sciences Workshop , vol.1 , pp. 5-8
    • Anderson, G.P.1    Wang, J.2    Chetwynd, J.H.3
  • 245
    • 0031988778 scopus 로고    scopus 로고
    • Application of spectral mixture analysis and image fusion techniques for image sharpening
    • H.N. Gross and J.R. Schott, 1998. Application of Spectral Mixture Analysis and Image Fusion Techniques for Image Sharpening. Remote Sensing of Environment, 63, 85-94.
    • (1998) Remote Sensing of Environment , vol.63 , pp. 85-94
    • Gross, H.N.1    Schott, J.R.2
  • 246
    • 0004403717 scopus 로고    scopus 로고
    • PhD Thesis, School of Electrical Engineering, University College, ADFA, The University of New SouthWales
    • X. Jia, 1996: Classification Techniques for Hyperspectral Remote Sensing Image Data, PhD Thesis, School of Electrical Engineering, University College, ADFA, The University of New SouthWales.
    • (1996) Classification Techniques for Hyperspectral Remote Sensing Image Data
    • Jia, X.1
  • 247
    • 0027201479 scopus 로고
    • Binary coding of imaging spectrometer data for fast spectral matching and classification
    • X. Jia and J.A. Richards, 1993: Binary Coding of Imaging Spectrometer Data for Fast Spectral Matching and Classification, Remote Sensing of Environment, 43, 47-53.
    • (1993) Remote Sensing of Environment , vol.43 , pp. 47-53
    • Jia, X.1    Richards, J.A.2
  • 248
    • 0028403418 scopus 로고
    • Efficient maximum likelihood classification for imaging spectrometer data sets
    • X. Jia and J.A. Richards, 1994: Efficient Maximum Likelihood Classification for Imaging Spectrometer Data Sets, IEEE Trans on Geoscience and Remote Sensing, 32, 274-281.
    • (1994) IEEE Trans on Geoscience and Remote Sensing , vol.32 , pp. 274-281
    • Jia, X.1    Richards, J.A.2
  • 252
    • 84975557434 scopus 로고
    • Symbolic representation of hyperspectral data
    • M.A. Piech and K.R. Piech, 1987: Symbolic Representation of Hyperspectral Data, Applied Optics, 26, 4018-4026.
    • (1987) Applied Optics , vol.26 , pp. 4018-4026
    • Piech, M.A.1    Piech, K.R.2
  • 254
    • 0041451813 scopus 로고
    • Calibration of airborne imaging spectrometer data to percent reflectance using field spectral measurements
    • Ann Arbor, Michigan, October
    • D.A. Roberts, Y.Yamaguchi and R.J.P. Lyon, 1985: Calibration of Airborne Imaging Spectrometer Data to Percent Reflectance Using Field Spectral Measurements, 19th International Symposium on Remote Sensing of Environment, Ann Arbor, Michigan, October 21-25.
    • (1985) 19th International Symposium on Remote Sensing of Environment , pp. 21-25
    • Roberts, D.A.1    Yamaguchi, Y.2    Lyon, R.J.P.3
  • 256
    • 0031139679 scopus 로고    scopus 로고
    • The lossless compression of AVIRIS images by vector quantization
    • M.J. Ryan and J.F. Arnold, 1997a: The Lossless Compression of AVIRIS Images by Vector Quantization. IEEE Trans Geoscience and Remote Sensing, 35, 546-550.
    • (1997) IEEE Trans Geoscience and Remote Sensing , vol.35 , pp. 546-550
    • Ryan, M.J.1    Arnold, J.F.2
  • 257
    • 0031228765 scopus 로고    scopus 로고
    • Lossy compression of hyperspectral data using vector quantization
    • M.J. Ryan and J.F. Arnold, 1997b: Lossy Compression of Hyperspectral Data Using Vector Quantization. Remote Sensing of Environment, 61, 419-436.
    • (1997) Remote Sensing of Environment , vol.61 , pp. 419-436
    • Ryan, M.J.1    Arnold, J.F.2
  • 260
    • 0027338790 scopus 로고
    • Terrestrial imaging spectrometry: Current status, future trends
    • G. Vane and A.F.H. Goetz, 1993: Terrestrial Imaging Spectrometry: Current Status, Future Trends, Remote Sensing of Environment, 44, 117-126.
    • (1993) Remote Sensing of Environment , vol.44 , pp. 117-126
    • Vane, G.1    Goetz, A.F.H.2
  • 263
    • 0019229529 scopus 로고
    • Monitoring land-cover change by principal components analysis of multitemporal landsat data
    • E.F. Byrne, P.F. Crapper and K.K. Mayo, 1980: Monitoring Land-Cover Change by Principal Components Analysis of Multitemporal Landsat Data. Remote Sensing of Environment, 10, 175-184.
    • (1980) Remote Sensing of Environment , vol.10 , pp. 175-184
    • Byrne, E.F.1    Crapper, P.F.2    Mayo, K.K.3
  • 264
    • 0030185628 scopus 로고    scopus 로고
    • The decorrelation stretch transformation
    • N.A. Campbell, 1996: The Decorrelation Stretch Transformation. Int. J. Remote Sensing, 17, 1939-1949.
    • (1996) Int. J. Remote Sensing , vol.17 , pp. 1939-1949
    • Campbell, N.A.1
  • 267
    • 0020971629 scopus 로고
    • Landsat digital enhancements for change detection in urban environments
    • P.J. Howarth and E. Boasson, 1983: Landsat Digital Enhancements for Change Detection in Urban Environments. Remote Sensing of Environment, 13, 149-160.
    • (1983) Remote Sensing of Environment , vol.13 , pp. 149-160
    • Howarth, P.J.1    Boasson, E.2
  • 268
    • 0022267181 scopus 로고
    • Principal components analysis of multitemporal image Pairs
    • S.E. Ingebritsen and R.J.P. Lyon, 1985: Principal Components Analysis of Multitemporal Image Pairs. Int. J. Remote Sensing, 6, 687-696.
    • (1985) Int. J. Remote Sensing , vol.6 , pp. 687-696
    • Ingebritsen, S.E.1    Lyon, R.J.P.2
  • 270
    • 0017242348 scopus 로고
    • The tasseled cap-a graphic description of the spectral- temporal development of agricultural crops as seen by landsat
    • Remotely Sensed Data, Purdue University
    • R.J. Kauth and G.S. Thomas, 1976: The Tasseled Cap -A Graphic Description of the Spectral- Temporal Development of Agricultural Crops as Seen by Landsat. Proc.LARS1976 Symp. on Machine Process. Remotely Sensed Data, Purdue University.
    • (1976) Proc.LARS 1976 Symp. on Machine Process
    • Kauth, R.J.1    Thomas, G.S.2
  • 271
    • 0027627788 scopus 로고
    • Estimation of noise in images: An evaluation
    • S.I. Olsen, 1993: Estimation of Noise in Images: an Evaluation. Graphical Models and Image Processing, 55, 319-323.
    • (1993) Graphical Models and Image Processing , vol.55 , pp. 319-323
    • Olsen, S.I.1
  • 272
    • 0021644167 scopus 로고
    • Thematic mapping from multitemporal image data using the principal components transformation
    • J.A. Richards, 1984: Thematic Mapping from Multitemporal Image Data Using the Principal Components Transformation. Remote Sensing of Environment, 16, 35-46.
    • (1984) Remote Sensing of Environment , vol.16 , pp. 35-46
    • Richards, J.A.1
  • 273
    • 0018195533 scopus 로고
    • Principal components of a multispectral image: Application to a geologic problem
    • A. Santisteban and L. Muñoz, 1978: Principal Components of a Multispectral Image: Application to a Geologic Problem. IBM J. Research and Development, 22, 444-454.
    • (1978) IBM J. Research and Development , vol.22 , pp. 444-454
    • Santisteban, A.1    Muñoz, L.2
  • 285
    • 0025453627 scopus 로고
    • Neural network approaches versus statistical methods in classification of multisource remote sensing data
    • J.A. Benediktsson, P.H. Swain and O.K. Esroy, 1990: Neural Network Approaches Versus Statistical Methods in Classification of Multisource Remote Sensing Data. IEEE Trans Geoscience and Remote Sensing, 28, 540-552.
    • (1990) IEEE Trans Geoscience and Remote Sensing , vol.28 , pp. 540-552
    • Benediktsson, J.A.1    Swain, P.H.2    Esroy, O.K.3
  • 286
    • 0027789411 scopus 로고
    • Conjugate-gradient neural networks in classification of multisource and very-high-dimensional remote sensing data
    • J.A. Benediktsson, P.H. Swain and O.K. Esroy, 1993: Conjugate-Gradient Neural Networks in Classification of Multisource and Very-High-Dimensional Remote Sensing Data. Int. J. Remote Sensing, 14, 2883-2903.
    • (1993) Int. J. Remote Sensing , vol.14 , pp. 2883-2903
    • Benediktsson, J.A.1    Swain, P.H.2    Esroy, O.K.3
  • 287
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • J. Besag, 1986: On the Statistical Analysis of Dirty Pictures. J. Royal Statistical Soc. (B), 48, 259-302.
    • (1986) J. Royal Statistical Soc. (B) , vol.48 , pp. 259-302
    • Besag, J.1
  • 288
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C.T.C. Burges, 1998: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2, 121-167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.T.C.1
  • 293
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • S. Geman and D. Geman, 1984: Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Trans Pattern Analysis and Machine Intelligence, PAMI-6, 721-740.
    • (1984) IEEE Trans Pattern Analysis and Machine Intelligence , vol.PAMI-6 , pp. 721-740
    • Geman, S.1    Geman, D.2
  • 294
    • 0024752431 scopus 로고
    • Performance analyses of probabilistic relaxation methods for land-cover classification
    • P. Gong and P.J. Howarth, 1989: Performance Analyses of Probabilistic Relaxation Methods for Land-Cover Classification. Remote Sensing of Environment, 30, 33-42.
    • (1989) Remote Sensing of Environment , vol.30 , pp. 33-42
    • Gong, P.1    Howarth, P.J.2
  • 295
    • 0025247448 scopus 로고
    • The use of structural information for improving Land-Cover classification accuracies at the Rural-Urban fringe
    • P. Gong and P.J. Howarth, 1990: The Use of Structural Information for Improving Land-Cover Classification Accuracies at the Rural-Urban Fringe. Photogrammetric Engineering and Remote Sensing, 56, 67-73.
    • (1990) Photogrammetric Engineering and Remote Sensing , vol.56 , pp. 67-73
    • Gong, P.1    Howarth, P.J.2
  • 296
    • 0032636659 scopus 로고    scopus 로고
    • Support vector machines for hyperspectral remote sensing classification
    • J.A. Gualtieri and R.F. Cromp, 1999: Support Vector Machines for Hyperspectral Remote Sensing Classification. Proc. SPIE, 3584, 221-232.
    • (1999) Proc. SPIE , vol.3584 , pp. 221-232
    • Gualtieri, J.A.1    Cromp, R.F.2
  • 297
    • 0022267179 scopus 로고
    • Contextual classification post-processing of landsat data using a probabilistic relaxation model
    • R. Harris, 1985: Contextual Classification Post-Processing of Landsat Data Using a Probabilistic Relaxation Model. Int. J. Remote Sensing, 6, 847-866.
    • (1985) Int. J. Remote Sensing , vol.6 , pp. 847-866
    • Harris, R.1
  • 298
    • 0025573206 scopus 로고
    • Artificial neural network classification using a minimal training set: Comparison to conventional supervised classification
    • G.F. Hepner, 1990: Artificial Neural Network Classification Using a Minimal Training Set: Comparison to Conventional Supervised Classification. Photogrammetric Engineering and Remote Sensing, 56, 469-473.
    • (1990) Photogrammetric Engineering and Remote Sensing , vol.56 , pp. 469-473
    • Hepner, G.F.1
  • 299
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • C. Huang, L.S.Davis and J.R.G.Townshend, 2002:AnAssessment of SupportVector Machines for Land Cover Classification. Int. J. Remote Sensing, 23, 725-749.
    • (2002) Int. J. Remote Sensing , vol.23 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.G.3
  • 300
    • 0026897311 scopus 로고
    • Classification with spatio-temporal interpixel class dependency contexts
    • B. Jeon and D.A. Landgrebe, 1992: Classification with Spatio-Temporal Interpixel Class Dependency Contexts. IEEE Trans. Geoscience and Remote Sensing, 30, 663-672.
    • (1992) IEEE Trans. Geoscience and Remote Sensing , vol.30 , pp. 663-672
    • Jeon, B.1    Landgrebe, D.A.2
  • 301
    • 0029778002 scopus 로고    scopus 로고
    • Bayesian contextual classification based on modified mestimates and Markov random fields
    • Y. Jung and P.H. Swain, 1996: Bayesian Contextual Classification based on Modified Mestimates and Markov Random Fields. IEEE Trans. Geoscience and Remote Sensing, 34, 67-75.
    • (1996) IEEE Trans. Geoscience and Remote Sensing , vol.34 , pp. 67-75
    • Jung, Y.1    Swain, P.H.2
  • 302
    • 0016882368 scopus 로고
    • Classification of multispectral image data by extraction and classification of homogeneous objects
    • R.L. Kettig and D.A. Landgrebe, 1976: Classification of Multispectral Image Data by Extraction and Classification of Homogeneous Objects. IEEE Trans. Geoscience Electronics, GE-14, 19-26.
    • (1976) IEEE Trans. Geoscience Electronics , vol.GE-14 , pp. 19-26
    • Kettig, R.L.1    Landgrebe, D.A.2
  • 303
    • 0025455578 scopus 로고
    • Spatial-Temporal autocorrelation model for contextual classification
    • N. Khazenie and M.M. Crawford, 1990: Spatial-Temporal Autocorrelation Model for Contextual Classification. IEEE Trans. Geoscience and Remote Sensing, 28, 529-539.
    • (1990) IEEE Trans. Geoscience and Remote Sensing , vol.28 , pp. 529-539
    • Khazenie, N.1    Crawford, M.M.2
  • 304
    • 0022150261 scopus 로고
    • Contextual pattern recognition applied to cloud detection and identification
    • J. Kittler and D. Pairman, 1985: Contextual Pattern Recognition Applied to Cloud Detection and Identification. IEEE Trans Geoscience and Remote Sensing, GE-23, 855-863.
    • (1985) IEEE Trans Geoscience and Remote Sensing , vol.GE-23 , pp. 855-863
    • Kittler, J.1    Pairman, D.2
  • 305
    • 0036875217 scopus 로고    scopus 로고
    • A robust classification procedure based on mixture classifiers and nonparametric weighted feature extraction
    • B.-C. Kuo and D.A. Landgrebe, 2002: A Robust Classification Procedure Based on Mixture Classifiers and Nonparametric Weighted Feature Extraction. IEEE Trans. Geoscience and Remote Sensing, 40, 2486-2494.
    • (2002) IEEE Trans. Geoscience and Remote Sensing , vol.40 , pp. 2486-2494
    • Kuo, B.-C.1    Landgrebe, D.A.2
  • 307
    • 0022236553 scopus 로고
    • A low cost classifier for multitemporal applications
    • T. Lee and J.A. Richards, 1985:A Low Cost Classifier for Multitemporal Applications. Int. J. Remote Sensing, 6, 1405-1417.
    • (1985) Int. J. Remote Sensing , vol.6 , pp. 1405-1417
    • Lee, T.1    Richards, J.A.2
  • 308
    • 0024897709 scopus 로고
    • Pixel relaxation labelling using a diminishing neighbourhood effect
    • Vancouver
    • T. Lee and J.A. Richards, 1989: Pixel Relaxation Labelling Using a Diminishing Neighbourhood Effect. Proc. IGARSS'89. Vancouver, 634-637.
    • (1989) Proc. IGARSS'89 , pp. 634-637
    • Lee, T.1    Richards, J.A.2
  • 309
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • April, MATLAB, 1984-2004: Neural Network Toolbox. The MathWorks, Inc, MA
    • R.P. Lippmann, 1987:An Introduction to Computing with Neural Nets. IEEE ASSP Magazine, April, 4-22. MATLAB, 1984-2004: Neural Network Toolbox. The MathWorks, Inc, MA.
    • (1987) IEEE ASSP Magazine , pp. 4-22
    • Lippmann, R.P.1
  • 310
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • F. Melgani and L. Bruzzone, 2004: Classification of Hyperspectral Remote Sensing Images with Support Vector Machines. IEEE Trans. Geoscience and Remote Sensing, 42, 1778- 1790.
    • (2004) IEEE Trans. Geoscience and Remote Sensing , vol.42 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 311
    • 0012163326 scopus 로고
    • A simulation study of some contextual classification methods for remotely sensed data
    • E. Mohn, N.L. Hjort and G.O. Storvik, 1987:ASimulation Study of Some Contextual Classification Methods for Remotely Sensed Data. IEEE Trans. Geoscience and Remote Sensing, 25, 796-804.
    • (1987) IEEE Trans. Geoscience and Remote Sensing , vol.25 , pp. 796-804
    • Mohn, E.1    Hjort, N.L.2    Storvik, G.O.3
  • 315
    • 0029415649 scopus 로고
    • A review and analysis of back propagation neural networks for classification of remotely-sensed multi-spectral imagery
    • J.D. Paola and R.A. Schowengerdt, 1995a:A Review and Analysis of Backpropagation Neural Networks for Classification of Remotely-Sensed Multi-Spectral Imagery. Int. J. Remote Sensing, 16, 3033-3058.
    • (1995) Int. J. Remote Sensing , vol.16 , pp. 3033-3058
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 316
    • 0029341018 scopus 로고
    • A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification
    • J.D. Paola and R.A. Schowengerdt, 1995b:ADetailed Comparison of Backpropagation Neural Network and Maximum-Likelihood Classifiers for Urban Land Use Classification. IEEE Trans. Geoscience and Remote Sensing, 33, 981-996.
    • (1995) IEEE Trans. Geoscience and Remote Sensing , vol.33 , pp. 981-996
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 321
    • 0029772671 scopus 로고    scopus 로고
    • A markov random field model for classification of multisource satellite imagery
    • A.H.S. Solberg, T. Taxt and A.K. Jain, 1996:AMarkov Random Field Model for Classification of Multisource Satellite Imagery. IEEE Trans. Geoscience and Remote Sensing, 34, 100- 113.
    • (1996) IEEE Trans. Geoscience and Remote Sensing , vol.34 , pp. 100-113
    • Solberg, A.H.S.1    Taxt, T.2    Jain, A.K.3
  • 323
    • 0017517024 scopus 로고
    • The decision tree classifier: Design and potential
    • P.H. Swain and H. Hauska, 1977: The Decision Tree Classifier: Design and Potential. IEEE Trans. Geoscience Electronics, GE-15, 142-147.
    • (1977) IEEE Trans. Geoscience Electronics , vol.GE-15 , pp. 142-147
    • Swain, P.H.1    Hauska, H.2
  • 324
    • 0019728208 scopus 로고
    • Contextual classification of multispectral image data
    • P.H. Swain, S.B. Varderman and J.C. Tilton, 1981: Contextual Classification of Multispectral Image Data. Pattern Recognition, 13, 429-441.
    • (1981) Pattern Recognition , vol.13 , pp. 429-441
    • Swain, P.H.1    Varderman, S.B.2    Tilton, J.C.3
  • 326
    • 0022927181 scopus 로고
    • The enhancement of computer classifications by logical smoothing
    • F.E. Townsend, 1986: The Enhancement of Computer Classifications by Logical Smoothing. Photogrammetric Engineering and Remote Sensing, 52, 213-221.
    • (1986) Photogrammetric Engineering and Remote Sensing , vol.52 , pp. 213-221
    • Townsend, F.E.1
  • 329
    • 0343978175 scopus 로고
    • Gaussian maximum likelihood and contextual classification algorithms for multicrop classification experiments using thematic mapper and multispectral scanner sensor data
    • S.D. Zenzo, S.D. Degloria, R. Bernstein and H.G. Kolsky, 1987: Gaussian Maximum Likelihood and Contextual Classification Algorithms for Multicrop Classification Experiments Using Thematic Mapper and Multispectral Scanner Sensor Data. IEEE Trans. Geoscience and Remote Sensing, 25, 815-824.
    • (1987) IEEE Trans. Geoscience and Remote Sensing , vol.25 , pp. 815-824
    • Zenzo, S.D.1    Degloria, S.D.2    Bernstein, R.3    Kolsky, H.G.4
  • 332
    • 0018465738 scopus 로고
    • Image segmentation by clustering
    • G.R. Coleman and H.C. Andrews, 1979: Image Segmentation by Clustering. Proc. IEEE, 67, 773-785.
    • (1979) Proc. IEEE , vol.67 , pp. 773-785
    • Coleman, G.R.1    Andrews, H.C.2
  • 337
    • 33748585537 scopus 로고
    • Unsupervised classification in the aries image analysis system
    • P.A. Letts, 1978: Unsupervised Classification in The Aries Image Analysis System. Proc. 5th Canadian Symp. on Remote Sensing, 61-71.
    • (1978) Proc. 5th Canadian Symp. on Remote Sensing , pp. 61-71
    • Letts, P.A.1
  • 341
    • 0000116015 scopus 로고
    • The geometry of canonical variate analysis
    • N.A. Campbell and W.R. Atchley, 1981: The Geometry of Canonical Variate Analysis. Systematic Zoology, 30, 268-280.
    • (1981) Systematic Zoology , vol.30 , pp. 268-280
    • Campbell, N.A.1    Atchley, W.R.2
  • 343
    • 0016894696 scopus 로고
    • Canonicalanalysis for increased classification speed and channel selection
    • W. Eppler, 1976: CanonicalAnalysis for Increased Classification Speed and Channel Selection, IEEE Trans. Geoscience Electronics, GE-14, 26-33.
    • (1976) IEEE Trans. Geoscience Electronics , vol.GE-14 , pp. 26-33
    • Eppler, W.1
  • 346
    • 65249157560 scopus 로고
    • The divergence and bhattacharyya distance measures in signal selection
    • T. Kailath, 1967: The Divergence and Bhattacharyya Distance Measures in Signal Selection, IEEE Trans. Communication Theory, COM-15, 52-60.
    • (1967) IEEE Trans Communication Theory , vol.COM-15 , pp. 52-60
    • Kailath, T.1
  • 351
    • 0019005054 scopus 로고
    • Directed canonical analysis and the performance of classifiers under its associated linear transformation
    • B.F. Merembeck and B.J. Turner, 1980: Directed Canonical Analysis and the Performance of Classifiers under its Associated Linear Transformation, IEEE Trans. Geoscience and Remote Sensing, GE-18, 190-196.
    • (1980) IEEE Trans Geoscience and Remote Sensing , vol.GE-18 , pp. 190-196
    • Merembeck, B.F.1    Turner, B.J.2
  • 352
    • 84892292660 scopus 로고
    • R.N. Colwell (Ed.): Manual of Remote Sensing, 2e, American Soc. of Photogrammetry, Falls Church
    • V.I. Myers, 1983: Remote Sensing Applications in Agriculture. In: R.N. Colwell (Ed.): Manual of Remote Sensing, 2e, American Soc. of Photogrammetry, Falls Church.
    • (1983) Remote Sensing Applications in Agriculture
    • Myers, V.I.1
  • 355
    • 0015744443 scopus 로고
    • Two effective feature selection criteria for multispectral remote sensing
    • November
    • P.H. Swain and R.C. King, 1973: Two Effective Feature Selection Criteria for Multispectral Remote Sensing, Proc. First Int. Joint Conf. on Pattern Recognition, 536-540, November.
    • (1973) Proc. First Int. Joint Conf. on Pattern Recognition , pp. 536-540
    • Swain, P.H.1    King, R.C.2
  • 359
    • 0020110810 scopus 로고
    • Modeling misregistration and related effects on multispectral classification
    • F.C. Billingsley, 1982: Modeling Misregistration and Related Effects on Multispectral Classification. Photogrammetric Engineering and Remote Sensing, 48, 421-430.
    • (1982) Photogrammetric Engineering and Remote Sensing , vol.48 , pp. 421-430
    • Billingsley, F.C.1
  • 360
  • 361
    • 0019229529 scopus 로고
    • Monitoring land cover changes by principal components analysis of multitemporal landsat data
    • G.R. Byrne, P.F. Crapper and K.K. Mayo, 1980: Monitoring Land Cover Changes by Principal Components Analysis of Multitemporal Landsat Data. Remote Sensing of Environment, 10, 175-184.
    • (1980) Remote Sensing of Environment , vol.10 , pp. 175-184
    • Byrne, G.R.1    Crapper, P.F.2    Mayo, K.K.3
  • 366
    • 0023469475 scopus 로고
    • Application of principal components analysis to change detection
    • T. Fung and E. LeDrew, 1987: Application of Principal Components Analysis to Change Detection. Photogrammetric Engineering and Remote Sensing, 53, 1649-1658.
    • (1987) Photogrammetric Engineering and Remote Sensing , vol.53 , pp. 1649-1658
    • Fung, T.1    Ledrew, E.2
  • 369
    • 0025919864 scopus 로고
    • Utilisation of a best linear discriminant function for designing the binary decision tree
    • Y. Iikura and Y. Yasuoka, 1991: Utilisation of a Best Linear Discriminant Function for Designing the Binary Decision Tree. Int. J. Remote Sensing, 12, 55-67.
    • (1991) Int. J. Remote Sensing , vol.12 , pp. 55-67
    • Iikura, Y.1    Yasuoka, Y.2
  • 370
    • 0022267181 scopus 로고
    • Principal components analysis of multitemporal image pairs
    • S.E. Ingebritsen and R.J.P. Lyon, 1985: Principal Components Analysis of Multitemporal Image Pairs. Int. J. Remote Sensing, 6, 687-696.
    • (1985) Int. J. Remote Sensing , vol.6 , pp. 687-696
    • Ingebritsen, S.E.1    Lyon, R.J.P.2
  • 371
    • 0032010537 scopus 로고    scopus 로고
    • Progressive two-class decision classifier for optimization of class discriminations
    • X. Jia and J.A. Richards, 1998: Progressive Two-class Decision Classifier for Optimization of Class Discriminations. Remote Sensing of Environment, 63, 289-297.
    • (1998) Remote Sensing of Environment , vol.63 , pp. 289-297
    • Jia, X.1    Richards, J.A.2
  • 372
    • 0019102590 scopus 로고
    • Measurement of irrigated acreage in western kansas from landsat images
    • K.M. Keene and C.D. Conley, 1980: Measurement of Irrigated Acreage in Western Kansas from Landsat Images. Environmental Geology, 3, 107-116.
    • (1980) Environmental Geology , vol.3 , pp. 107-116
    • Keene, K.M.1    Conley, C.D.2
  • 373
    • 0026190348 scopus 로고
    • Hierarchical classifier design in high-dimensional, numerous class cases
    • B. Kim and D.A. Landgrebe, 1991: Hierarchical Classifier Design in High-dimensional, Numerous Class Cases. IEEE Trans. on Geoscience and Remote Sensing, 29, 518-528.
    • (1991) IEEE Trans. on Geoscience and Remote Sensing , vol.29 , pp. 518-528
    • Kim, B.1    Landgrebe, D.A.2
  • 376
    • 0022236553 scopus 로고
    • A low cost classifier for multitemporal applications
    • T. Lee and J.A. Richards, 1985:A Low Cost Classifier for Multitemporal Applications. Int. J. Remote Sensing, 6, 1405-1417.
    • (1985) Int. J. Remote Sensing , vol.6 , pp. 1405-1417
    • Lee, T.1    Richards, J.A.2
  • 378
    • 0019058733 scopus 로고
    • Automated classification of nucleated blood cells using a binary tree classifier
    • J.K. Mui and K.S. Fu, 1980: Automated Classification of Nucleated Blood Cells Using a Binary Tree Classifier. IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-2, 429-443.
    • (1980) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.PAMI-2 , pp. 429-443
    • Mui, J.K.1    Fu, K.S.2
  • 382
    • 0021644167 scopus 로고
    • Thematic mapping from multitemporal image data using the principal components transformation
    • J.A. Richards, 1984: Thematic Mapping from Multitemporal Image Data Using the Principal Components Transformation. Remote Sensing of Environment, 16, 35-46.
    • (1984) Remote Sensing of Environment , vol.16 , pp. 35-46
    • Richards, J.A.1
  • 383
    • 0030222696 scopus 로고    scopus 로고
    • Classifier performance and map accuracy
    • J.A. Richards, 1996: Classifier Performance and Map Accuracy. Remote Sensing of Environment, 57, 161-166.
    • (1996) Remote Sensing of Environment , vol.57 , pp. 161-166
    • Richards, J.A.1
  • 385
    • 0019181932 scopus 로고
    • A combined nonparametric approach to feature selection and binary decision tree design
    • E.M. Rounds, 1980: A Combined Nonparametric Approach to Feature Selection and Binary Decision Tree Design. Pattern Recognition, 12, 313-317.
    • (1980) Pattern Recognition , vol.12 , pp. 313-317
    • Rounds, E.M.1
  • 387
    • 0032084126 scopus 로고    scopus 로고
    • Design and analysis for thematic map accuracy assessment, fundamental principles
    • S.V. Stehman and R.L. Czaplewski, 1998: Design and Analysis for Thematic Map Accuracy Assessment, Fundamental Principles. Remote Sensing of Environment, 64, 331-344.
    • (1998) Remote Sensing of Environment , vol.64 , pp. 331-344
    • Stehman, S.V.1    Czaplewski, R.L.2
  • 388
  • 389
    • 0016337243 scopus 로고
    • Operational use of satellite and high altitude remote sensing for the generation of input data for water demand models
    • Michigan
    • L.R. Tinney, J.E. Estes, K.H. Thaman and R.R. Thaman, 1974: Operational Use of Satellite and High Altitude Remote Sensing for the Generation of Input Data for Water Demand Models. Proc. 9th Int. Symp. on Remote Sensing of Environment, Michigan, 739-757.
    • (1974) Proc. 9th Int. Symp. on Remote Sensing of Environment , pp. 739-757
    • Tinney, L.R.1    Estes, J.E.2    Thaman, K.H.3    Thaman, R.R.4
  • 391
    • 9444228570 scopus 로고
    • Corrected vs uncorrected landsat 4 MSS data
    • Sioux Falls, NOAA, June
    • J. Verdin, 1983: Corrected vs Uncorrected Landsat 4 MSS Data. Landsat Data Users Notes, Issue No. 27, Sioux Falls, NOAA, June 4-8.
    • (1983) Landsat Data Users Notes, Issue , Issue.27 , pp. 4-8
    • Verdin, J.1
  • 393
    • 0030618061 scopus 로고    scopus 로고
    • Multisource classification of complex rural areas by statistical and neural-network approaches
    • L. Bruzzone, C. Conese, F. Maselli and F. Roli, 1997: Multisource Classification of Complex Rural Areas by Statistical and Neural-Network Approaches. Photogrammetric Engineering and Remote Sensing, 63, 523-533.
    • (1997) Photogrammetric Engineering and Remote Sensing , vol.63 , pp. 523-533
    • Bruzzone, L.1    Conese, C.2    Maselli, F.3    Roli, F.4
  • 396
    • 21244495584 scopus 로고    scopus 로고
    • Computational intelligence methods for rule- based data understanding
    • W. Duch, R. Setiono and J.M. Zurada, 2004: Computational Intelligence Methods for Rule- Based Data Understanding. Proc. IEEE, 92, 771-805.
    • (2004) Proc. IEEE , vol.92 , pp. 771-805
    • Duch, W.1    Setiono, R.2    Zurada, J.M.3
  • 398
    • 0022719267 scopus 로고
    • Evidential reasoning for geographic evaluation for helicopter route planning
    • T.D. Garvey, 1987: Evidential Reasoning for Geographic Evaluation for Helicopter Route Planning. IEEE Trans Geoscience and Remote Sensing, GE-25, 294-304.
    • (1987) IEEE Trans Geoscience and Remote Sensing , vol.GE-25 , pp. 294-304
    • Garvey, T.D.1
  • 400
    • 0022070802 scopus 로고
    • A hierarchical expert system for updating forestry maps with landsat data
    • M. Goldberg, D.G. Goodenough, M.Alvo and G. Karam, 1985:A Hierarchical Expert System for Updating Forestry Maps with Landsat Data. Proceedings of the IEEE, 73, 1054-1063.
    • (1985) Proceedings of the IEEE , vol.73 , pp. 1054-1063
    • Goldberg, M.1    Goodenough, D.G.2    Alvo, M.3    Karam, G.4
  • 401
    • 0029768950 scopus 로고    scopus 로고
    • Integrated analysis of spatial data from multiple sources: Using evidential reasoning and artificial neural network techniques for geologic mapping
    • P. Gong, 1996: Integrated Analysis of Spatial Data from Multiple Sources: Using Evidential Reasoning and Artificial Neural Network Techniques for Geologic Mapping. Photogrammetric Engineering and Remote Sensing, 62, 513-523.
    • (1996) Photogrammetric Engineering and Remote Sensing , vol.62 , pp. 513-523
    • Gong, P.1
  • 403
    • 0031988778 scopus 로고    scopus 로고
    • Application of spectral mixture analysis and image fusion techniques for image sharpening
    • H.N. Gross and J.R. Schott, 1998: Application of Spectral Mixture Analysis and Image Fusion Techniques for Image Sharpening. Remote Sensing of Environment, 63, 85-94.
    • (1998) Remote Sensing of Environment , vol.63 , pp. 85-94
    • Gross, H.N.1    Schott, J.R.2
  • 405
  • 406
    • 0025457848 scopus 로고
    • Integration of geophysical and geological data using evidential belief function
    • W.L. Moon, 1990: Integration of Geophysical and Geological Data Using Evidential Belief Function. IEEE Trans Geoscience and Remote Sensing, 28, 711-720.
    • (1990) IEEE Trans Geoscience and Remote Sensing , vol.28 , pp. 711-720
    • Moon, W.L.1
  • 409
    • 0022716761 scopus 로고
    • A knowledge-based system for the analysis of aerial images
    • B. Nicholin and R. Gabler, 1987: A Knowledge-Based System for the Analysis of Aerial Images. IEEE Trans Geoscience and Remote Sensing, GE-25, 317-328.
    • (1987) IEEE Trans Geoscience and Remote Sensing , vol.GE-25 , pp. 317-328
    • Nicholin, B.1    Gabler, R.2
  • 411
    • 0029510709 scopus 로고
    • MERCURY⊕: An evidential reasoning image classifier
    • D.R. Peddle, 1995 a: MERCURY⊕: An Evidential Reasoning Image Classifier. Computers and Geosciences, 21, 1163-1176.
    • (1995) Computers and Geosciences , vol.21 , pp. 1163-1176
    • Peddle, D.R.1
  • 412
    • 0028572077 scopus 로고
    • Knowledge formulation for supervised evidential classification
    • D.R. Peddle, 1995 b: Knowledge Formulation for Supervised Evidential Classification. Photogrammetric Engineering and Remote Sensing, 61, 409-417.
    • (1995) Photogrammetric Engineering and Remote Sensing , vol.61 , pp. 409-417
    • Peddle, D.R.1
  • 414
    • 0020330547 scopus 로고
    • A means of utilizing ancillary information in multispectral classification
    • J.A. Richards, D.A. Landgrebe and P.H. Swain, 1982:A means of utilizing ancillary information in multispectral classification. Remote Sensing of Environment, 12, 463-477.
    • (1982) Remote Sensing of Environment , vol.12 , pp. 463-477
    • Richards, J.A.1    Landgrebe, D.A.2    Swain, P.H.3
  • 415
    • 0028463641 scopus 로고
    • Multisource classification of remotely sensed Data: Fusion of land sat TM and SAR images
    • A.H. Schistad Solberg, A.K. Jain and T. Taxt, 1994: Multisource Classification of Remotely Sensed Data: Fusion of Land sat TM and SAR Images. IEEE Trans Geoscience and Remote Sensing. 32, 768-778.
    • (1994) IEEE Trans Geoscience and Remote Sensing , vol.32 , pp. 768-778
    • Schistad Solberg, A.H.1    Jain, A.K.2    Taxt, T.3
  • 422
    • 0019227654 scopus 로고
    • The use of prior probabilities in maximum likelihood classification of remotely sensed data
    • A.H. Strahler, 1980: The Use of Prior Probabilities in Maximum Likelihood Classification of Remotely Sensed Data. Remote Sensing of Environment, 10, 135-163.
    • (1980) Remote Sensing of Environment , vol.10 , pp. 135-163
    • Strahler, A.H.1
  • 424
    • 0030737312 scopus 로고    scopus 로고
    • What does multisensor image fusion add in terms of information content for visual interpretation?
    • F. Van Der Meer, 1997: What Does Multisensor Image Fusion Add in Terms of Information Content for Visual Interpretation? Int. J. Remote Sensing, 18, 445-452.
    • (1997) Int J. Remote Sensing , vol.18 , pp. 445-452
    • Meer Der F.Van1
  • 425
    • 0022720470 scopus 로고
    • A spectral knowledge based approach for urban land cover discrimination
    • S.W. Wharton, 1987:A Spectral Knowledge Based Approach for Urban Land Cover Discrimination. IEEE Trans Geoscience and Remote Sensing, 25, 272-282.
    • (1987) IEEE Trans Geoscience and Remote Sensing , vol.25 , pp. 272-282
    • Wharton, S.W.1
  • 426
    • 0001888403 scopus 로고
    • MODTRAN3: An update and recent validations against airborne high resolution interferometer measurements
    • (AVIRIS Workshop)
    • G.P. Anderson, J. Wang and J.H. Chetwynd, 1995: MODTRAN3: An Update and Recent Validations Against Airborne High Resolution Interferometer Measurements, 5th Annual JPL Airborne Sciences Workshop, Vol 1 (AVIRIS Workshop), 5-8.
    • (1995) 5th Annual JPL Airborne Sciences Workshop , vol.1 , pp. 5-8
    • Anderson, G.P.1    Wang, J.2    Chetwynd, J.H.3
  • 430
    • 0002615469 scopus 로고
    • Analysis of aircraft spectrometer data with logarithmic residuals
    • JPL Publication 85-41, Jet Propulsion Laboratory, Pasadena, California, April 8-10
    • A.A. Green and M.D. Craig, 1985: Analysis of Aircraft Spectrometer Data with Logarithmic Residuals, Proc. AIS workshop, JPL Publication 85-41, Jet Propulsion Laboratory, Pasadena, California, April 8-10, 111-119.
    • (1985) Proc AIS Workshop , pp. 111-119
    • Green, A.A.1    Craig, M.D.2
  • 431
    • 0031988778 scopus 로고    scopus 로고
    • Application of spectral mixture analysis and image fusion techniques for image sharpening
    • H.N. Gross and J.R. Schott, 1998. Application of Spectral Mixture Analysis and Image Fusion Techniques for Image Sharpening. Remote Sensing of Environment, 63, 85-94.
    • (1998) Remote Sensing of Environment , vol.63 , pp. 85-94
    • Gross, H.N.1    Schott, J.R.2
  • 432
    • 0004403717 scopus 로고    scopus 로고
    • PhD Thesis, School of Electrical Engineering, University College, ADFA, The University of New SouthWales
    • X. Jia, 1996: Classification Techniques for Hyperspectral Remote Sensing Image Data, PhD Thesis, School of Electrical Engineering, University College, ADFA, The University of New SouthWales.
    • (1996) Classification Techniques for Hyperspectral Remote Sensing Image Data
    • Jia, X.1
  • 433
    • 0027201479 scopus 로고
    • Binary coding of imaging spectrometer data for fast spectral matching and classification
    • X. Jia and J.A. Richards, 1993: Binary Coding of Imaging Spectrometer Data for Fast Spectral Matching and Classification, Remote Sensing of Environment, 43, 47-53.
    • (1993) Remote Sensing of Environment , vol.43 , pp. 47-53
    • Jia, X.1    Richards, J.A.2
  • 434
    • 0028403418 scopus 로고
    • Efficient maximum likelihood classification for imaging spectrometer data sets
    • X. Jia and J.A. Richards, 1994: Efficient Maximum Likelihood Classification for Imaging Spectrometer Data Sets, IEEE Trans on Geoscience and Remote Sensing, 32, 274-281.
    • (1994) IEEE Trans on Geoscience and Remote Sensing , vol.32 , pp. 274-281
    • Jia, X.1    Richards, J.A.2
  • 438
    • 84975557434 scopus 로고
    • Symbolic representation of hyperspectral data
    • M.A. Piech and K.R. Piech, 1987: Symbolic Representation of Hyperspectral Data, Applied Optics, 26, 4018-4026.
    • (1987) Applied Optics , vol.26 , pp. 4018-4026
    • Piech, M.A.1    Piech, K.R.2
  • 440
    • 0041451813 scopus 로고
    • Calibration ofairborne imaging spectrometer data to percent reflectance using field spectral measurements
    • Ann Arbor, Michigan, October
    • D.A. Roberts,Y.Yamaguchi and R.J.P. Lyon, 1985: Calibration ofAirborne Imaging Spectrometer Data to Percent Reflectance Using Field Spectral Measurements, 19th International Symposium on Remote Sensing of Environment, Ann Arbor, Michigan, October 21-25.
    • (1985) 19th International Symposium on Remote Sensing of Environment , pp. 21-25
    • Roberts, D.A.1    Yamaguchi, Y.2    Lyon, R.J.P.3
  • 441
    • 0002611002 scopus 로고
    • Comparison of various techniques for calibration of AIS data
    • JPL Publication 86-35, Jet Propulsion Laboratory, Pasadena, California
    • D.A. Roberts, Y. Yamaguchi and R.J.P. Lyon, 1986: Comparison of Various Techniques for Calibration of AIS Data, in Proceedings, 2nd AIS workshop, JPL Publication 86-35, Jet Propulsion Laboratory, Pasadena, California, 21-30.
    • (1986) Proceedings, 2nd AIS Workshop , pp. 21-30
    • Roberts, D.A.1    Yamaguchi, Y.2    Lyon, R.J.P.3
  • 442
    • 0031139679 scopus 로고    scopus 로고
    • The lossless compression of AVIRIS images by vector quantization
    • M.J. Ryan and J.F. Arnold, 1997a: The Lossless Compression of AVIRIS Images by Vector Quantization. IEEE Trans Geoscience and Remote Sensing, 35, 546-550.
    • (1997) IEEE Trans Geoscience and Remote Sensing , vol.35 , pp. 546-550
    • Ryan, M.J.1    Arnold, J.F.2
  • 443
    • 0031228765 scopus 로고    scopus 로고
    • Lossy compression of hyperspectral data using vector quantization
    • M.J. Ryan and J.F. Arnold, 1997b: Lossy Compression of Hyperspectral Data Using Vector Quantization. Remote Sensing of Environment, 61, 419-436.
    • (1997) Remote Sensing of Environment , vol.61 , pp. 419-436
    • Ryan, M.J.1    Arnold, J.F.2
  • 446
    • 0027338790 scopus 로고
    • Terrestrial imaging spectrometry: Current status, future trends
    • G. Vane and A.F.H. Goetz, 1993: Terrestrial Imaging Spectrometry: Current Status, Future Trends, Remote Sensing of Environment, 44, 117-126.
    • (1993) Remote Sensing of Environment , vol.44 , pp. 117-126
    • Vane, G.1    Goetz, A.F.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.