메뉴 건너뛰기




Volumn 52, Issue 9, 2014, Pages 5567-5578

Semisupervised kernel feature extraction for remote sensing image analysis

Author keywords

Biophysical parameter estimation; classification; clustering; feature extraction; generative kernels; kernel methods; partial least squares (PLS); principal component analysis (PCA); semisupervised learning

Indexed keywords

BIOPHYSICS; CLASSIFICATION (OF INFORMATION); FEATURE EXTRACTION; IMAGE CLASSIFICATION; IMAGE RECONSTRUCTION; LEARNING ALGORITHMS; LEAST SQUARES APPROXIMATIONS; PRINCIPAL COMPONENT ANALYSIS;

EID: 84900818206     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2013.2290372     Document Type: Article
Times cited : (34)

References (33)
  • 3
    • 0023854011 scopus 로고
    • Transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • DOI 10.1109/36.3001
    • A. A. Green, M. Berman, P. Switzer, and M. D. Craig, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal," IEEE Trans. Geosci. Remote Sens., vol. 26, no. 1, pp. 65-74, Jan. 1988. (Pubitemid 18596008)
    • (1988) IEEE Transactions on Geoscience and Remote Sensing , vol.26 , Issue.1 , pp. 65-74
    • Green, A.A.1    Berman, M.2    Switzer, P.3    Craig, M.D.4
  • 4
    • 27844561048 scopus 로고    scopus 로고
    • A neural-network technique for the retrieval of atmospheric temperature and moisture profiles from high spectral resolution sounding data
    • DOI 10.1109/TGRS.2005.855071
    • W. J. Blackwell, "A neural-network technique for the retrieval of atmospheric temperature and moisture profiles from high spectral resolution sounding data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 11, pp. 2535-2546, Nov. 2005. (Pubitemid 41640777)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.11 , pp. 2535-2546
    • Blackwell, W.J.1
  • 5
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • DOI 10.1126/science.290.5500.2323
    • S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, no. 5500, pp. 2323-2326, Dec. 2000. (Pubitemid 32041578)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 6
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • M. A. Kramer, "Nonlinear principal component analysis using autoassociative neural networks," AIChE J., vol. 37, no. 2, pp. 233-243, 1991.
    • (1991) AIChE J. , vol.37 , Issue.2 , pp. 233-243
    • Kramer, M.A.1
  • 9
    • 0038259120 scopus 로고    scopus 로고
    • Kernel partial least squares regression in reproducing kernel Hilbert space
    • Mar
    • R. Rosipal and L. J. Trejo, "Kernel partial least squares regression in reproducing kernel Hilbert space," J. Mach. Learn. Res., vol. 2, pp. 97-123, Mar. 2002.
    • (2002) J. Mach. Learn. Res. , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.J.2
  • 10
    • 53949085760 scopus 로고    scopus 로고
    • Efficient kernel orthonormalized PLS for remote sensing applications
    • Oct
    • J. Arenas-Garcia and G. Camps-Valls, "Efficient kernel orthonormalized PLS for remote sensing applications," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 10, pp. 2872-2881, Oct. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.10 , pp. 2872-2881
    • Arenas-Garcia, J.1    Camps-Valls, G.2
  • 11
    • 38349158946 scopus 로고    scopus 로고
    • A selective KPCA algorithm based on high-order statistics for anomaly detection in hyperspectral imagery
    • Jan
    • Y. Gu, Y. Liu, and Y. Zhang, "A selective KPCA algorithm based on high-order statistics for anomaly detection in hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 1, pp. 43-47, Jan. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.1 , pp. 43-47
    • Gu, Y.1    Liu, Y.2    Zhang, Y.3
  • 12
    • 63149143190 scopus 로고    scopus 로고
    • Kernel nonparametric weighted feature extraction for hyperspectral image classification
    • Apr
    • B.-C. Kuo, C.-H. Li, and J.-M. Yang, "Kernel nonparametric weighted feature extraction for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 4, pp. 1139-1155, Apr. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.4 , pp. 1139-1155
    • Kuo, B.-C.1    Li, C.-H.2    Yang, J.-M.3
  • 13
    • 79951820684 scopus 로고    scopus 로고
    • Kernel maximum autocorrelation factor and minimum noise fraction transformations
    • Mar
    • A. A. Nielsen, "Kernel maximum autocorrelation factor and minimum noise fraction transformations," IEEE Trans. Image Process., vol. 20, no. 3, pp. 612-624, Mar. 2011.
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.3 , pp. 612-624
    • Nielsen, A.A.1
  • 14
    • 80955159602 scopus 로고    scopus 로고
    • Explicit signal to noise ratio in reproducing kernel Hilbert spaces
    • Jul
    • L. Gómez-Chova, A. A. Nielsen, and G. Camps-Valls, "Explicit signal to noise ratio in reproducing kernel Hilbert spaces," in Proc. IEEE IGARSS, Jul. 2011, pp. 3570-3570.
    • (2011) Proc IEEE IGARSS , pp. 3570-3570
    • Gómez-Chova, L.1    Nielsen, A.A.2    Camps-Valls, G.3
  • 15
    • 84856976376 scopus 로고    scopus 로고
    • Kernel entropy component analysis for remote sensing image clustering
    • Mar
    • L. Gómez-Chova, R. Jenssen, and G. Camps-Valls, "Kernel entropy component analysis for remote sensing image clustering," IEEE Geosci. Remote Sens. Lett., vol. 9, no. 2, pp. 312-316, Mar. 2012.
    • (2012) IEEE Geosci. Remote Sens. Lett. , vol.9 , Issue.2 , pp. 312-316
    • Gómez-Chova, L.1    Jenssen, R.2    Camps-Valls, G.3
  • 16
    • 85032751590 scopus 로고    scopus 로고
    • Kernel multivariate analysis framework for supervised subspace learning: A tutorial on linear and kernel multivariate methods
    • Jul
    • J. Arenas-Garcia, K. Petersen, G. Camps-Valls, and L. K. Hansen, "Kernel multivariate analysis framework for supervised subspace learning: A tutorial on linear and kernel multivariate methods," IEEE Signal Process. Mag., vol. 30, no. 4, pp. 16-29, Jul. 2013.
    • (2013) IEEE Signal Process. Mag. , vol.30 , Issue.4 , pp. 16-29
    • Arenas-Garcia, J.1    Petersen, K.2    Camps-Valls, G.3    Hansen, L.K.4
  • 18
    • 0001098205 scopus 로고
    • Estimation of principal components and related models by iterative least squares
    • H. Wold, "Estimation of principal components and related models by iterative least squares," Multivariate Anal., pp. 391-420, 1966.
    • (1966) Multivariate Anal. , pp. 391-420
    • Wold, H.1
  • 19
    • 0024805647 scopus 로고
    • Neurobehavioral effects of prenatal alcohol: Part II. Partial least squares analysis
    • DOI 10.1016/0892-0362(89)90025-1
    • P. D. Sampson, A. P. Streissguth, H. M. Barr, and F. L. Bookstein, "Neurobehavioral effects of prenatal alcohol: Partial least squares analysis," Neurotoxicol. Teratol., vol. 11, no. 5, pp. 477-491, Sep./Oct. 1989. (Pubitemid 20043114)
    • (1989) Neurotoxicology and Teratology , vol.11 , Issue.5 , pp. 477-491
    • Sampson, P.D.1    Streissguth, P.2    Barr, H.M.3    Bookstein, F.L.4
  • 20
    • 65049084094 scopus 로고    scopus 로고
    • Semisupervised remote sensing image classification with cluster kernels
    • Apr
    • D. Tuia and G. Camps-Valls, "Semisupervised remote sensing image classification with cluster kernels," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 2, pp. 224-228, Apr. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.2 , pp. 224-228
    • Tuia, D.1    Camps-Valls, G.2
  • 22
    • 79953094686 scopus 로고    scopus 로고
    • Urban image classification with semisupervised multiscale cluster kernels
    • Mar
    • D. Tuia and G. Camps-Valls, "Urban image classification with semisupervised multiscale cluster kernels," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 4, no. 1, pp. 65-74, Mar. 2011.
    • (2011) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.4 , Issue.1 , pp. 65-74
    • Tuia, D.1    Camps-Valls, G.2
  • 25
    • 84898982939 scopus 로고    scopus 로고
    • Exploiting generative models in discriminative classifiers
    • T. Jaakkola and D. Haussler, "Exploiting generative models in discriminative classifiers," in Proc. NIPS, 1998, pp. 487-493.
    • (1998) Proc. NIPS , pp. 487-493
    • Jaakkola, T.1    Haussler, D.2
  • 26
    • 32844455952 scopus 로고    scopus 로고
    • Cluster kernels for semisupervised learning
    • O. Chapelle, J. Weston, and B. Schölkopf, "Cluster kernels for semisupervised learning," in Proc. NIPS, 2002, pp. 585-592.
    • (2002) Proc. NIPS , pp. 585-592
    • Chapelle, O.1    Weston, J.2    Schölkopf, B.3
  • 28
    • 50949127418 scopus 로고    scopus 로고
    • On relevant dimensions in kernel feature spaces
    • Jun
    • M. L. Braun, J. Buhmann, and K.-R. Müller, "On relevant dimensions in kernel feature spaces," J. Mach. Learn. Res., vol. 9, pp. 1875-1908, Jun. 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 1875-1908
    • Braun, M.L.1    Buhmann, J.2    Müller, K.-R.3
  • 29
    • 44049095033 scopus 로고    scopus 로고
    • Bayesian data fusion for adaptable image pansharpening
    • DOI 10.1109/TGRS.2008.917131, 4505280
    • D. Fasbender, J. Radoux, and P. Bogaert, "Bayesian data fusion for adaptable image pansharpening," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 6, pp. 1847-1857, Jun. 2008. (Pubitemid 351711222)
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.6 , pp. 1847-1857
    • Fasbender, D.1    Radoux, J.2    Bogaert, P.3
  • 32
    • 77954623833 scopus 로고    scopus 로고
    • Remote sensing feature selection by kernel dependence measures
    • Jul
    • G. Camps-Valls, J. Mooij, and B. Schölkopf, "Remote sensing feature selection by kernel dependence measures," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 3, pp. 587-591, Jul. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.3 , pp. 587-591
    • Camps-Valls, G.1    Mooij, J.2    Schölkopf, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.