메뉴 건너뛰기




Volumn 7, Issue 3, 2010, Pages 587-591

Remote sensing feature selection by kernel dependence measures

Author keywords

Dependence estimation; feature selection; image classification; kernel methods; support vector machine (SVM)

Indexed keywords

CLASS LABELS; CROSS-COVARIANCE; DEPENDENCE MEASURES; FEATURE SELECTION; HILBERT-SCHMIDT NORM; HYPERSPECTRAL; KERNEL METHODS; MULTI-SPECTRAL; NONLINEAR MEASURE; P-VALUES; SAR DATA; STATISTICAL DEPENDENCE; SUPPORT VECTOR MACHINE (SVM);

EID: 77954623833     PISSN: 1545598X     EISSN: None     Source Type: Journal    
DOI: 10.1109/LGRS.2010.2041896     Document Type: Article
Times cited : (85)

References (22)
  • 1
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Dec.
    • A. Blum and P. Langley, "Selection of relevant features and examples in machine learning," Artif. Intell., vol. 97, no. 1/2, pp. 245-271, Dec. 1997.
    • (1997) Artif. Intell. , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 2
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for features subset selection
    • Dec.
    • R. Kohavi and G. H. John, "Wrappers for features subset selection," Artif. Intell., vol. 97, no. 1/2, pp. 273-324, Dec. 1997.
    • (1997) Artif. Intell. , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 3
    • 33846636871 scopus 로고    scopus 로고
    • Extraction of spectral channels from hyperspectral images for classification purposes
    • Feb.
    • S. B. Serpico and G. Moser, "Extraction of spectral channels from hyperspectral images for classification purposes," IEEE Trans. Geosci. Remote Sens., vol.45, no.2, pp. 484-495, Feb. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.2 , pp. 484-495
    • Serpico, S.B.1    Moser, G.2
  • 4
    • 53849136303 scopus 로고    scopus 로고
    • Canonical correlation feature selection for sensors with overlapping bands: Theory and application
    • Oct.
    • B. Paskaleva,M.M. Hayat, Z.Wang, J. S. Tyo, and S. Krishna, "Canonical correlation feature selection for sensors with overlapping bands: Theory and application," IEEE Trans. Geosci. Remote Sens., vol.46, no.10, pp. 3346-3358, Oct. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.10 , pp. 3346-3358
    • Paskaleva, B.1    Hayat, M.M.2    Wang, Z.3    Tyo, J.S.4    Krishna, S.5
  • 5
    • 0035391615 scopus 로고    scopus 로고
    • A new search algorithm for feature selection in hyperspectral remote sensing images
    • Jul.
    • S. B. Serpico and L. Bruzzone, "A new search algorithm for feature selection in hyperspectral remote sensing images," IEEE Trans. Geosci. Remote Sens., vol.39, no.7, pp. 1360-1367, Jul. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.7 , pp. 1360-1367
    • Serpico, S.B.1    Bruzzone, L.2
  • 6
    • 35348920168 scopus 로고    scopus 로고
    • Feature selection and classification of hyperspectral images with support vector machines
    • Oct.
    • R. Archibald and G. Fann, "Feature selection and classification of hyperspectral images with support vector machines," IEEE Geosci. Remote Sens. Lett., vol.4, no.4, pp. 674-679, Oct. 2007.
    • (2007) IEEE Geosci. Remote Sens. Lett. , vol.4 , Issue.4 , pp. 674-679
    • Archibald, R.1    Fann, G.2
  • 7
    • 33750798496 scopus 로고    scopus 로고
    • Toward an optimal SVM classification system for hyperspectral remote sensing images
    • Nov.
    • Y. Bazi and F. Melgani, "Toward an optimal SVM classification system for hyperspectral remote sensing images," IEEE Trans. Geosci. Remote Sens., vol.44, no.11, pp. 3374-3385, Nov. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.11 , pp. 3374-3385
    • Bazi, Y.1    Melgani, F.2
  • 8
    • 33646528415 scopus 로고    scopus 로고
    • Measuring statistical dependence with Hilbert-Schmidt norms
    • S. Jain and W.-S. Lee, Eds.
    • A. Gretton, O. Bousquet, A. J. Smola, and B. Schölkopf, "Measuring statistical dependence with Hilbert-Schmidt norms," in Proc. Algorithmic Learn. Theory, S. Jain and W.-S. Lee, Eds., 2005, pp. 63-77.
    • (2005) Proc. Algorithmic Learn. Theory , pp. 63-77
    • Gretton, A.1    Bousquet, O.2    Smola, A.J.3    Schölkopf, B.4
  • 9
    • 34547964410 scopus 로고    scopus 로고
    • Supervised feature selection via dependence estimation
    • C. Sammut and Z. Ghahramani, Eds.
    • L. Song, A. J. Smola, A. Gretton, K. M. Borgwardt, and J. Bedo, "Supervised feature selection via dependence estimation," in Proc. Int. Conf. Mach. Learn., C. Sammut and Z. Ghahramani, Eds., 2007, pp. 823-830.
    • (2007) Proc. Int. Conf. Mach. Learn. , pp. 823-830
    • Song, L.1    Smola, A.J.2    Gretton, A.3    Borgwardt, K.M.4    Bedo, J.5
  • 11
    • 84889287185 scopus 로고    scopus 로고
    • G. Camps-Valls and L. Bruzzone, Eds., London, U.K.: Wiley Nov.
    • G. Camps-Valls and L. Bruzzone, Eds., Kernel Methods for Remote Sensing Data Analysis. London, U.K.: Wiley, Nov. 2009.
    • (2009) Kernel Methods for Remote Sensing Data Analysis
  • 13
    • 84966251435 scopus 로고
    • Joint measures and cross-covariance operators
    • Dec.
    • C. Baker, "Joint measures and cross-covariance operators," Trans. Amer. Math. Soc., vol.186, pp. 273-289, Dec. 1973.
    • (1973) Trans. Amer. Math. Soc. , vol.186 , pp. 273-289
    • Baker, C.1
  • 14
    • 4544371135 scopus 로고    scopus 로고
    • Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces
    • K. Fukumizu, F. R. Bach, and M. I. Jordan, "Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces," J. Mach. Learn. Res., vol.5, pp. 73-99, 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 73-99
    • Fukumizu, K.1    Bach, F.R.2    Jordan, M.I.3
  • 16
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the kernel on the consistency of support vector machines
    • I. Steinwart, "On the influence of the kernel on the consistency of support vector machines," J. Mach. Learn. Res., vol.2, pp. 67-93, 2001.
    • (2001) J. Mach. Learn. Res. , vol.2 , pp. 67-93
    • Steinwart, I.1
  • 18
    • 0035694667 scopus 로고    scopus 로고
    • An adaptive classifier design for high-dimensional data analysis with a limited training data set
    • DOI 10.1109/36.975001, PII S0196289201108776
    • Q. Jackson and D. A. Landgrebe, "An adaptive classifier design for high-dimensional data analysis with a limited training data set," IEEE Trans. Geosci. Remote Sens., vol.39, no.12, pp. 2664-2679, Dec. 2001. (Pubitemid 34091845)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.12 , pp. 2664-2679
    • Jackson, Q.1    Landgrebe, D.A.2
  • 19
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Jan.
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Mach. Learn., vol.46, no.1-3, pp. 389-422, Jan. 2002.
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 21
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
    • May
    • G. M. Foody, "Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy," Photogramm. Eng. Remote Sens., vol.70, no.5, pp. 627-663, May 2004.
    • (2004) Photogramm. Eng. Remote Sens. , vol.70 , Issue.5 , pp. 627-663
    • Foody, G.M.1
  • 22
    • 57749178216 scopus 로고    scopus 로고
    • Using SVM weight-based methods to identify causally relevant and non-causally relevant variables
    • A. Statnikov, D. Hardin, and C. Aliferis, "Using SVM weight-based methods to identify causally relevant and non-causally relevant variables," in Proc. NIPS. Workshop Causality Feature Selection, 2006, pp. 129-150.
    • (2006) Proc. NIPS. Workshop Causality Feature Selection , pp. 129-150
    • Statnikov, A.1    Hardin, D.2    Aliferis, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.