-
1
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
Dec.
-
A. Blum and P. Langley, "Selection of relevant features and examples in machine learning," Artif. Intell., vol. 97, no. 1/2, pp. 245-271, Dec. 1997.
-
(1997)
Artif. Intell.
, vol.97
, Issue.1-2
, pp. 245-271
-
-
Blum, A.1
Langley, P.2
-
2
-
-
0031381525
-
Wrappers for features subset selection
-
Dec.
-
R. Kohavi and G. H. John, "Wrappers for features subset selection," Artif. Intell., vol. 97, no. 1/2, pp. 273-324, Dec. 1997.
-
(1997)
Artif. Intell.
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
3
-
-
33846636871
-
Extraction of spectral channels from hyperspectral images for classification purposes
-
Feb.
-
S. B. Serpico and G. Moser, "Extraction of spectral channels from hyperspectral images for classification purposes," IEEE Trans. Geosci. Remote Sens., vol.45, no.2, pp. 484-495, Feb. 2007.
-
(2007)
IEEE Trans. Geosci. Remote Sens.
, vol.45
, Issue.2
, pp. 484-495
-
-
Serpico, S.B.1
Moser, G.2
-
4
-
-
53849136303
-
Canonical correlation feature selection for sensors with overlapping bands: Theory and application
-
Oct.
-
B. Paskaleva,M.M. Hayat, Z.Wang, J. S. Tyo, and S. Krishna, "Canonical correlation feature selection for sensors with overlapping bands: Theory and application," IEEE Trans. Geosci. Remote Sens., vol.46, no.10, pp. 3346-3358, Oct. 2008.
-
(2008)
IEEE Trans. Geosci. Remote Sens.
, vol.46
, Issue.10
, pp. 3346-3358
-
-
Paskaleva, B.1
Hayat, M.M.2
Wang, Z.3
Tyo, J.S.4
Krishna, S.5
-
5
-
-
0035391615
-
A new search algorithm for feature selection in hyperspectral remote sensing images
-
Jul.
-
S. B. Serpico and L. Bruzzone, "A new search algorithm for feature selection in hyperspectral remote sensing images," IEEE Trans. Geosci. Remote Sens., vol.39, no.7, pp. 1360-1367, Jul. 2001.
-
(2001)
IEEE Trans. Geosci. Remote Sens.
, vol.39
, Issue.7
, pp. 1360-1367
-
-
Serpico, S.B.1
Bruzzone, L.2
-
6
-
-
35348920168
-
Feature selection and classification of hyperspectral images with support vector machines
-
Oct.
-
R. Archibald and G. Fann, "Feature selection and classification of hyperspectral images with support vector machines," IEEE Geosci. Remote Sens. Lett., vol.4, no.4, pp. 674-679, Oct. 2007.
-
(2007)
IEEE Geosci. Remote Sens. Lett.
, vol.4
, Issue.4
, pp. 674-679
-
-
Archibald, R.1
Fann, G.2
-
7
-
-
33750798496
-
Toward an optimal SVM classification system for hyperspectral remote sensing images
-
Nov.
-
Y. Bazi and F. Melgani, "Toward an optimal SVM classification system for hyperspectral remote sensing images," IEEE Trans. Geosci. Remote Sens., vol.44, no.11, pp. 3374-3385, Nov. 2006.
-
(2006)
IEEE Trans. Geosci. Remote Sens.
, vol.44
, Issue.11
, pp. 3374-3385
-
-
Bazi, Y.1
Melgani, F.2
-
8
-
-
33646528415
-
Measuring statistical dependence with Hilbert-Schmidt norms
-
S. Jain and W.-S. Lee, Eds.
-
A. Gretton, O. Bousquet, A. J. Smola, and B. Schölkopf, "Measuring statistical dependence with Hilbert-Schmidt norms," in Proc. Algorithmic Learn. Theory, S. Jain and W.-S. Lee, Eds., 2005, pp. 63-77.
-
(2005)
Proc. Algorithmic Learn. Theory
, pp. 63-77
-
-
Gretton, A.1
Bousquet, O.2
Smola, A.J.3
Schölkopf, B.4
-
9
-
-
34547964410
-
Supervised feature selection via dependence estimation
-
C. Sammut and Z. Ghahramani, Eds.
-
L. Song, A. J. Smola, A. Gretton, K. M. Borgwardt, and J. Bedo, "Supervised feature selection via dependence estimation," in Proc. Int. Conf. Mach. Learn., C. Sammut and Z. Ghahramani, Eds., 2007, pp. 823-830.
-
(2007)
Proc. Int. Conf. Mach. Learn.
, pp. 823-830
-
-
Song, L.1
Smola, A.J.2
Gretton, A.3
Borgwardt, K.M.4
Bedo, J.5
-
10
-
-
34547830852
-
Gene selection via the BAHSIC family of algorithms
-
Jul.
-
L. Song, J. Bedo, K. M. Borgwardt, A. Gretton, and A. J. Smola, "Gene selection via the BAHSIC family of algorithms," Bioinformatics (ISMB), vol.23, no.13, pp. i490-i498, Jul. 2007.
-
(2007)
Bioinformatics (ISMB)
, vol.23
, Issue.13
-
-
Song, L.1
Bedo, J.2
Borgwardt, K.M.3
Gretton, A.4
Smola, A.J.5
-
11
-
-
84889287185
-
-
G. Camps-Valls and L. Bruzzone, Eds., London, U.K.: Wiley Nov.
-
G. Camps-Valls and L. Bruzzone, Eds., Kernel Methods for Remote Sensing Data Analysis. London, U.K.: Wiley, Nov. 2009.
-
(2009)
Kernel Methods for Remote Sensing Data Analysis
-
-
-
12
-
-
57749174819
-
-
Ph.D. dissertation, School Inf. Technol., Univ. Sydney, Sydney, Australia
-
L. Song, "Learning via Hilbert space embedding of distributions," Ph.D. dissertation, School Inf. Technol., Univ. Sydney, Sydney, Australia, 2008.
-
(2008)
Learning Via Hilbert Space Embedding of Distributions
-
-
Song, L.1
-
13
-
-
84966251435
-
Joint measures and cross-covariance operators
-
Dec.
-
C. Baker, "Joint measures and cross-covariance operators," Trans. Amer. Math. Soc., vol.186, pp. 273-289, Dec. 1973.
-
(1973)
Trans. Amer. Math. Soc.
, vol.186
, pp. 273-289
-
-
Baker, C.1
-
14
-
-
4544371135
-
Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces
-
K. Fukumizu, F. R. Bach, and M. I. Jordan, "Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces," J. Mach. Learn. Res., vol.5, pp. 73-99, 2004.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 73-99
-
-
Fukumizu, K.1
Bach, F.R.2
Jordan, M.I.3
-
15
-
-
0003446320
-
-
2nd ed. Hoboken, NJ: Wiley
-
N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions Extraction: Foundations and Applications, 2nd ed. Hoboken, NJ: Wiley, 1994.
-
(1994)
Continuous Univariate Distributions Extraction: Foundations and Applications
-
-
Johnson, N.L.1
Kotz, S.2
Balakrishnan, N.3
-
16
-
-
0010786475
-
On the influence of the kernel on the consistency of support vector machines
-
I. Steinwart, "On the influence of the kernel on the consistency of support vector machines," J. Mach. Learn. Res., vol.2, pp. 67-93, 2001.
-
(2001)
J. Mach. Learn. Res.
, vol.2
, pp. 67-93
-
-
Steinwart, I.1
-
17
-
-
30344462676
-
Urban monitoring using multitemporal SAR and multispectral data
-
Mar.
-
L. Gómez-Chova, D. Fernández-Prieto, J. Calpe, E. Soria, J. Vila-Francés, and G. Camps-Valls, "Urban monitoring using multitemporal SAR and multispectral data," Pattern Recognit. Lett., vol.27, no.4, pp. 234-243, Mar. 2006.
-
(2006)
Pattern Recognit. Lett.
, vol.27
, Issue.4
, pp. 234-243
-
-
Gómez-Chova, L.1
Fernández-Prieto, D.2
Calpe, J.3
Soria, E.4
Vila-Francés, J.5
Camps-Valls, G.6
-
18
-
-
0035694667
-
An adaptive classifier design for high-dimensional data analysis with a limited training data set
-
DOI 10.1109/36.975001, PII S0196289201108776
-
Q. Jackson and D. A. Landgrebe, "An adaptive classifier design for high-dimensional data analysis with a limited training data set," IEEE Trans. Geosci. Remote Sens., vol.39, no.12, pp. 2664-2679, Dec. 2001. (Pubitemid 34091845)
-
(2001)
IEEE Transactions on Geoscience and Remote Sensing
, vol.39
, Issue.12
, pp. 2664-2679
-
-
Jackson, Q.1
Landgrebe, D.A.2
-
19
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Jan.
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Mach. Learn., vol.46, no.1-3, pp. 389-422, Jan. 2002.
-
(2002)
Mach. Learn.
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
20
-
-
84890520049
-
Use of the zero-norm with linear models and kernel methods
-
J. Weston, A. Elisseeff, B. Scholkopf, M. Tipping, and P. Kaelbling, "Use of the zero-norm with linear models and kernel methods," J. Mach. Learn. Res., vol.3, pp. 1439-1461, 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1439-1461
-
-
Weston, J.1
Elisseeff, A.2
Scholkopf, B.3
Tipping, M.4
Kaelbling, P.5
-
21
-
-
3042661357
-
Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
-
May
-
G. M. Foody, "Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy," Photogramm. Eng. Remote Sens., vol.70, no.5, pp. 627-663, May 2004.
-
(2004)
Photogramm. Eng. Remote Sens.
, vol.70
, Issue.5
, pp. 627-663
-
-
Foody, G.M.1
-
22
-
-
57749178216
-
Using SVM weight-based methods to identify causally relevant and non-causally relevant variables
-
A. Statnikov, D. Hardin, and C. Aliferis, "Using SVM weight-based methods to identify causally relevant and non-causally relevant variables," in Proc. NIPS. Workshop Causality Feature Selection, 2006, pp. 129-150.
-
(2006)
Proc. NIPS. Workshop Causality Feature Selection
, pp. 129-150
-
-
Statnikov, A.1
Hardin, D.2
Aliferis, C.3
|