메뉴 건너뛰기




Volumn 17, Issue 4, 2008, Pages 622-629

Customizing Kernel functions for SVM-based hyperspectral image classification

Author keywords

Hyperspectral image processing; Mutual information (MI); Remote sensing; Support vector machines (SVMs)

Indexed keywords

IMAGE SENSORS; OPTIMIZATION; REMOTE SENSING; SUPPORT VECTOR MACHINES;

EID: 41849112041     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2008.918955     Document Type: Article
Times cited : (173)

References (28)
  • 2
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis
    • Jan
    • D. Landgrebe, "Hyperspectral image data analysis," IEEE Signal Process. Mag., Vol. 19, no. 1, pp. 17-28, Jan. 2002.
    • (2002) IEEE Signal Process. Mag , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 3
    • 0003497127 scopus 로고    scopus 로고
    • On information extraction principles for hyperspectral data: A white paper,
    • Tech. Rep, School Elect Comput Eng, Purdue Univ, West Lafayette, IN, Online, Available
    • D. Landgrebe, "On information extraction principles for hyperspectral data: A white paper," Tech. Rep., School Elect Comput Eng., Purdue Univ., West Lafayette, IN, 1997 [Online]. Available: http//dynamo. ecn.purdue.edu/landgreb/whitepaper.pdf
    • (1997)
    • Landgrebe, D.1
  • 4
    • 0030733358 scopus 로고    scopus 로고
    • Automatic target detection and recognition in multiband imagery: A unified ml detection and estimation approach
    • Jan
    • X. Yu, L. Hoff, I. Reed, A. Chen, and L. Stotts, "Automatic target detection and recognition in multiband imagery: A unified ml detection and estimation approach," IEEE Trans. Image Process., Vol. 6, no. 1, pp. 143-156, Jan. 1997.
    • (1997) IEEE Trans. Image Process , vol.6 , Issue.1 , pp. 143-156
    • Yu, X.1    Hoff, L.2    Reed, I.3    Chen, A.4    Stotts, L.5
  • 5
    • 0035309562 scopus 로고    scopus 로고
    • Efficient detection in hypperspectral imagery
    • Apr
    • S. M. Schweizer and J. M. F. Moura, "Efficient detection in hypperspectral imagery," IEEE Trans. Image Process., Vol. 10, no. 4, pp. 584-584, Apr. 2001.
    • (2001) IEEE Trans. Image Process , vol.10 , Issue.4 , pp. 584-584
    • Schweizer, S.M.1    Moura, J.M.F.2
  • 6
    • 85032751238 scopus 로고    scopus 로고
    • Signal processing for hyperspectral image exploitation
    • G. Shaw and D. Manolakis, "Signal processing for hyperspectral image exploitation," IEEE Signal Process. Mag., Vol. 19, no. 1, pp. 12-16, 2002.
    • (2002) IEEE Signal Process. Mag , vol.19 , Issue.1 , pp. 12-16
    • Shaw, G.1    Manolakis, D.2
  • 7
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Jan
    • G. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE Trans. Inf. Theory, Vol. IT-14, no. 1, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 9
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. N. Vapnik, "Support-vector networks," Mach. Learn. Vol. 20, no. 3, pp. 1-25, 1995.
    • (1995) Mach. Learn , vol.20 , Issue.3 , pp. 1-25
    • Cortes, C.1    Vapnik, V.N.2
  • 10
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. Burges, "A tutorial on support vector machines for pattern recognition," Knowl. Disc. Data Mining, Vol. 2, no. 2, pp. 121-167, 1998.
    • (1998) Knowl. Disc. Data Mining , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.1
  • 11
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • Jun
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IFFE Trans. Geosci. Remote Sens., Vol. 43, no. 6, pp. 1351-1362, Jun. 2005.
    • (2005) IFFE Trans. Geosci. Remote Sens , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 13
    • 0034270699 scopus 로고    scopus 로고
    • Linear spectral mixture models and support vector machines for remote sensing
    • May
    • M. Brown, H. G. Lewis, and S. Gunn, "Linear spectral mixture models and support vector machines for remote sensing," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 5, pp. 2346-2360, May 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens , vol.38 , Issue.5 , pp. 2346-2360
    • Brown, M.1    Lewis, H.G.2    Gunn, S.3
  • 14
    • 0035054167 scopus 로고    scopus 로고
    • F. Roli and G, Fumera, S. B. Serpico, Ed., Support vector machines for remote-sensing image ciassificafion, in Proc. SPIE Image and Signal Processing for Remote Sensing VI, 2001, 4170, p. 160-166.
    • F. Roli and G, Fumera, S. B. Serpico, Ed., "Support vector machines for remote-sensing image ciassificafion," in Proc. SPIE Image and Signal Processing for Remote Sensing VI, 2001, vol. 4170, p. 160-166.
  • 15
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • Feb
    • C. Huang, L. S. Davis, and J. R. Townshend, "An assessment of support vector machines for land cover classification," Int. J. Remote Sens. vol. 23, no. 4, pp. 725-749, Feb. 2002.
    • (2002) Int. J. Remote Sens , vol.23 , Issue.4 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.3
  • 16
    • 0036403214 scopus 로고    scopus 로고
    • Classification of hyperspectral images with nonlinear filtering and support vector machines
    • Toronto, ON, Canada, Jun. 24-28
    • M. Lennon, G. Mercier, and L. Hubert-Moy, "Classification of hyperspectral images with nonlinear filtering and support vector machines," in Proc. IEEE Int. Geoscience and Remote Sensing Symp. Toronto, ON, Canada, Jun. 24-28, 2002, vol. 3, pp. 1670-1672.
    • (2002) Proc. IEEE Int. Geoscience and Remote Sensing Symp , vol.3 , pp. 1670-1672
    • Lennon, M.1    Mercier, G.2    Hubert-Moy, L.3
  • 19
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 20
    • 0035391615 scopus 로고    scopus 로고
    • S. Serpico and L. Bruzzone, A new search algorithm for feature selection in hypperspectral remote sensing images, IEEE Trans. Geosci. Remote Sens., 39, no. pp. 1360-1367, Jul. 2001.
    • S. Serpico and L. Bruzzone, "A new search algorithm for feature selection in hypperspectral remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 39, no. pp. 1360-1367, Jul. 2001.
  • 21
    • 33750590333 scopus 로고    scopus 로고
    • Band selection for hyperspectral image classification using mutual information
    • Apr
    • B. Guo, S. R. Gunn, R. I. Damper and J. D. B. Nelson, "Band selection for hyperspectral image classification using mutual information," IEEE Trans. Geosci. Remote Sens., vol. 3, no. 4, pp. 522-526, Apr. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.3 , Issue.4 , pp. 522-526
    • Guo, B.1    Gunn, S.R.2    Damper, R.I.3    Nelson, J.D.B.4
  • 22
    • 0036161011 scopus 로고    scopus 로고
    • Closing multiple parameters for support vector mactunes
    • Jan
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Closing multiple parameters for support vector mactunes," Mach. Learn., vol. 46, no. 1, pp. 131-159, Jan. 2002.
    • (2002) Mach. Learn , vol.46 , Issue.1 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 24
    • 84899001870 scopus 로고    scopus 로고
    • Adaptive scaling for feature selection in SVMs
    • S. T. S. Becker and K. Obermayer, Eds. Cambridge, MA: MIT Press
    • Y. Grandvalet and S. Canu, "Adaptive scaling for feature selection in SVMs," in Advances in Neural Information Process Systems 15, S. T. S. Becker and K. Obermayer, Eds. Cambridge, MA: MIT Press, 2003, pp. 553-560.
    • (2003) Advances in Neural Information Process Systems 15 , pp. 553-560
    • Grandvalet, Y.1    Canu, S.2
  • 26
    • 1942450610 scopus 로고    scopus 로고
    • Feature extractJon by non-parametric mutual information maximazation
    • K. Torkkola, "Feature extractJon by non-parametric mutual information maximazation," J. Mach. Learn. Res., vol. 3, no. 3, pp. 1415-1438, 2003.
    • (2003) J. Mach. Learn. Res , vol.3 , Issue.3 , pp. 1415-1438
    • Torkkola, K.1
  • 27
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Jul
    • R. Battiti, "Using mutual information for selecting features in supervised neural net learning," IEEE Trans Neural Netw., vol. 5, no. 4, pp. 537-550, Jul. 1994.
    • (1994) IEEE Trans Neural Netw , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.