메뉴 건너뛰기




Volumn 19, Issue 6, 2010, Pages 1403-1413

Bayesian Estimation of Linear Mixtures Using the Normal Compositional Model. Application to Hyperspectral Imagery

Author keywords

Bayesian inference; Hyperspectral images; Monte Carlo methods; Normal compositional model; Spectral unmixing

Indexed keywords

ADDITIVITY; BAYESIAN; BAYESIAN ALGORITHMS; BAYESIAN ESTIMATIONS; BAYESIAN INFERENCE; COMPOSITIONAL MODELS; CONJUGATE PRIOR; ENDMEMBER EXTRACTION ALGORITHMS; ENDMEMBERS; GAUSSIAN VECTOR; GIBBS SAMPLERS; HYPER-SPECTRAL IMAGES; HYPERSPECTRAL IMAGERY; LINEAR COMBINATIONS; LINEAR MIXTURES; MODEL UNCERTAINTIES; NOISE VARIANCE; REAL IMAGES; SPECTRAL UNMIXING; UNMIXING; VERTEX COMPONENT ANALYSIS;

EID: 77952616442     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2010.2042993     Document Type: Article
Times cited : (155)

References (22)
  • 2
    • 0000385570 scopus 로고    scopus 로고
    • Fast autonomous spectral endmember determination in hyperspectral data
    • in, Vancouver, BC, Canada, Apr
    • M. E. Winter, "Fast autonomous spectral endmember determination in hyperspectral data, " in Proc. 13th Int. Conf. Appl. Geologic Remote Sens., Vancouver, BC, Canada, Apr. 1999, vol. 2, pp. 337-344.
    • (1999) Proc. 13th Int. Conf. Appl. Geologic Remote Sens. , vol.2 , pp. 337-344
    • Winter, M.E.1
  • 3
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • Apr
    • J. M. Nascimento and J. M. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data, " IEEE Trans. Geosci. and Remote Sensing, vol. 43, no. 4, pp. 898-910, Apr. 2005.
    • (2005) IEEE Trans. Geosci. and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.1    Bioucas-Dias, J.M.2
  • 5
    • 0030189048 scopus 로고    scopus 로고
    • On the relationship between spectral unmixing and subspace projection
    • Jul
    • J. Settle, "On the relationship between spectral unmixing and subspace projection, " IEEE Trans. Geosci. Remote Sens., vol. 34, no. 4, pp. 1045-1046, Jul. 1996.
    • (1996) IEEE Trans. Geosci. Remote Sens. , vol.34 , Issue.4 , pp. 1045-1046
    • Settle, J.1
  • 6
    • 0035392132 scopus 로고    scopus 로고
    • Hyperspectral subpixel target detection using the linear mixing model
    • Jul
    • D. Manolakis, C. Siracusa, and G. Shaw, "Hyperspectral subpixel target detection using the linear mixing model, " IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1392-1409, Jul. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.7 , pp. 1392-1409
    • Manolakis, D.1    Siracusa, C.2    Shaw, G.3
  • 7
    • 46749145829 scopus 로고    scopus 로고
    • Semi-supervised linear spectral using a hierarchical Bayesian model for hyperspectral imagery
    • Jul
    • N. Dobigeon, J.-Y. Tourneret, and C.-I. Chang, "Semi-supervised linear spectral using a hierarchical Bayesian model for hyperspectral imagery, " IEEE Trans. Signal Process., vol. 56, no. 7, pp. 2684-2696, Jul. 2008.
    • (2008) IEEE Trans. Signal Process. , vol.56 , Issue.7 , pp. 2684-2696
    • Dobigeon, N.1    Tourneret, J.-Y.2    Chang, C.-I.3
  • 9
    • 84945308844 scopus 로고    scopus 로고
    • Application of the normal compositional model to the analaysis of hyperspectral imagery
    • in, Oct
    • D. Stein, "Application of the normal compositional model to the analaysis of hyperspectral imagery, " in Proc. IEEE Workshop Adv. Tech. for Anal. of Remotely Sens. Data, Oct. 2003, pp. 44-51.
    • (2003) Proc. IEEE Workshop Adv. Tech. for Anal. of Remotely Sens. Data , pp. 44-51
    • Stein, D.1
  • 10
    • 0002241603 scopus 로고    scopus 로고
    • Stochastic EM: Method and application
    • in, W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Eds. London, U. K.: Chapman & Hall
    • J. Diebolt and E. H. S. Ip, "Stochastic EM: Method and application, " in Markov Chain Monte Carlo in Practice, W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Eds. London, U. K.: Chapman & Hall, 1996.
    • (1996) Markov Chain Monte Carlo in Practice
    • Diebolt, J.1    Ip, E.H.S.2
  • 12
    • 39549088344 scopus 로고    scopus 로고
    • Bayesian approach with hidden Markov modeling and mean field approximation for hyperspectral data analysis
    • Feb
    • N. Bali and A. Mohammad-Djafari, "Bayesian approach with hidden Markov modeling and mean field approximation for hyperspectral data analysis, " IEEE Trans. Image Process., vol. 17, no. 2, pp. 217-225, Feb. 2008.
    • (2008) IEEE Trans. Image Process. , vol.17 , Issue.2 , pp. 217-225
    • Bali, N.1    Mohammad-Djafari, A.2
  • 13
    • 77952605889 scopus 로고    scopus 로고
    • Efficient bayesian spectral matching separation in noisy mixtures
    • to Be Published
    • H. Snoussi, "Efficient Bayesian spectral matching separation in noisy mixtures, " IEEE Trans. Image Process., to be published.
    • IEEE Trans. Image Process
    • Snoussi, H.1
  • 14
    • 0036504268 scopus 로고    scopus 로고
    • Bayesian curve fitting using MCMC with applications to signal segmentation
    • Mar
    • E. Punskaya, C. Andrieu, A. Doucet, and W. Fitzgerald, "Bayesian curve fitting using MCMC with applications to signal segmentation, " IEEE Trans. Signal Process., vol. 50, no. 3, pp. 747-758, Mar. 2002.
    • (2002) IEEE Trans. Signal Process. , vol.50 , Issue.3 , pp. 747-758
    • Punskaya, E.1    Andrieu, C.2    Doucet, A.3    Fitzgerald, W.4
  • 15
    • 34147145294 scopus 로고    scopus 로고
    • Joint segmentation of piecewise constant autoregressive processes by using a hierarchical model and a Bayesian sampling approach
    • Apr
    • N. Dobigeon, J.-Y. Tourneret, and M. Davy, "Joint segmentation of piecewise constant autoregressive processes by using a hierarchical model and a Bayesian sampling approach, " IEEE Trans. Signal Process., vol. 55, no. 4, pp. 1251-1263, Apr. 2007.
    • (2007) IEEE Trans. Signal Process. , vol.55 , Issue.4 , pp. 1251-1263
    • Dobigeon, N.1    Tourneret, J.-Y.2    Davy, M.3
  • 16
    • 77952639484 scopus 로고    scopus 로고
    • ENVI user's guide version 4.0
    • Research Systems Inc, Boulder, CO
    • "ENVI User's Guide Version 4.0, " RSI (Research Systems Inc), Boulder, CO, 2003.
    • (2003) RSI
  • 17
    • 0032157956 scopus 로고    scopus 로고
    • Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)
    • Sep
    • R. O. Green et al., "Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS), " Remote Sens. Environ., vol. 65, no. 3, pp. 227-248, Sep. 1998.
    • (1998) Remote Sens. Environ. , vol.65 , Issue.3 , pp. 227-248
    • Green, R.O.1
  • 18
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • Mar
    • D. C. Heinz and C.-I. Chang, "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery, " IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 19
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • Mar
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization, " IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-776, Mar. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.3 , pp. 765-776
    • Miao, L.1    Qi, H.2
  • 20
    • 1242331294 scopus 로고    scopus 로고
    • A nonnegative-PCA algorithm for independent component analysis
    • Jan
    • M. D. Plumbley and E. Oja, "A nonnegative-PCA algorithm for independent component analysis, " IEEE Trans. Neural Netw., vol. 15, no. 1, pp. 66-76, Jan. 2004.
    • (2004) IEEE Trans. Neural Netw. , vol.15 , Issue.1 , pp. 66-76
    • Plumbley, M.D.1    Oja, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.