메뉴 건너뛰기




Volumn 1849, Issue 7, 2015, Pages 898-907

Why should cancer biologists care about tRNAs? tRNA synthesis, mRNA translation and the control of growth

Author keywords

MRNA translation growth; Myc; Polymerase III; RNA; TOR; TRNA

Indexed keywords

AMINO ACID; DNA DIRECTED RNA POLYMERASE III; GENOMIC RNA; MITOGEN ACTIVATED PROTEIN KINASE; MYC PROTEIN; PHOSPHATIDYLINOSITOL 3 KINASE; PROTEIN KINASE B; PROTEIN P53; PROTEIN SERINE THREONINE KINASE; RAS PROTEIN; RETINOBLASTOMA PROTEIN; TARGET OF RAPAMYCIN COMPLEX 1; TRANSFER RNA; UNCLASSIFIED DRUG; MESSENGER RNA; ONCOPROTEIN; RNA;

EID: 84930820029     PISSN: 18749399     EISSN: 18764320     Source Type: Journal    
DOI: 10.1016/j.bbagrm.2014.12.005     Document Type: Review
Times cited : (81)

References (194)
  • 1
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: the next generation
    • Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 2
    • 33646353175 scopus 로고    scopus 로고
    • The challenges of gene expression microarrays for the study of human cancer
    • Tinker A.V., Boussioutas A., Bowtell D.D. The challenges of gene expression microarrays for the study of human cancer. Cancer Cell 2006, 9:333-339.
    • (2006) Cancer Cell , vol.9 , pp. 333-339
    • Tinker, A.V.1    Boussioutas, A.2    Bowtell, D.D.3
  • 3
    • 84655169981 scopus 로고    scopus 로고
    • Practical implications of gene-expression-based assays for breast oncologists
    • Prat A., Ellis M.J., Perou C.M. Practical implications of gene-expression-based assays for breast oncologists. Nat. Rev. Clin. Oncol. 2012, 9:48-57.
    • (2012) Nat. Rev. Clin. Oncol. , vol.9 , pp. 48-57
    • Prat, A.1    Ellis, M.J.2    Perou, C.M.3
  • 5
    • 84858439862 scopus 로고    scopus 로고
    • Insights into the regulation of protein abundance from proteomic and transcriptomic analyses
    • Vogel C., Marcotte E.M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 2012, 13:227-232.
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 227-232
    • Vogel, C.1    Marcotte, E.M.2
  • 6
    • 70449209123 scopus 로고
    • On protein synthesis
    • Crick F.H. On protein synthesis. Symp. Soc. Exp. Biol. 1958, 12:138-163.
    • (1958) Symp. Soc. Exp. Biol. , vol.12 , pp. 138-163
    • Crick, F.H.1
  • 8
    • 0034652838 scopus 로고    scopus 로고
    • Survey and summary: transcription by RNA polymerases I and III
    • Paule M.R., White R.J. Survey and summary: transcription by RNA polymerases I and III. Nucleic Acids Res. 2000, 28:1283-1298.
    • (2000) Nucleic Acids Res. , vol.28 , pp. 1283-1298
    • Paule, M.R.1    White, R.J.2
  • 9
    • 0035967858 scopus 로고    scopus 로고
    • The RNA polymerase III transcription apparatus
    • Geiduschek E.P., Kassavetis G.A. The RNA polymerase III transcription apparatus. J. Mol. Biol. 2001, 310:1-26.
    • (2001) J. Mol. Biol. , vol.310 , pp. 1-26
    • Geiduschek, E.P.1    Kassavetis, G.A.2
  • 10
    • 84875259499 scopus 로고    scopus 로고
    • Yeast RNA polymerase III transcription factors and effectors
    • Acker J., Conesa C., Lefebvre O. Yeast RNA polymerase III transcription factors and effectors. Biochim. Biophys. Acta 2013, 1829:283-295.
    • (2013) Biochim. Biophys. Acta , vol.1829 , pp. 283-295
    • Acker, J.1    Conesa, C.2    Lefebvre, O.3
  • 11
    • 84857423235 scopus 로고    scopus 로고
    • Conservation between the RNA polymerase I, II, and III transcription initiation machineries
    • Vannini A., Cramer P. Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol. Cell 2012, 45:439-446.
    • (2012) Mol. Cell , vol.45 , pp. 439-446
    • Vannini, A.1    Cramer, P.2
  • 12
    • 11244281646 scopus 로고    scopus 로고
    • RNA polymerases I and III, growth control and cancer
    • White R.J. RNA polymerases I and III, growth control and cancer. Nat. Rev. Mol. Cell Biol. 2005, 6:69-78.
    • (2005) Nat. Rev. Mol. Cell Biol. , vol.6 , pp. 69-78
    • White, R.J.1
  • 13
    • 56649105133 scopus 로고    scopus 로고
    • RNA polymerases I and III, non-coding RNAs and cancer
    • White R.J. RNA polymerases I and III, non-coding RNAs and cancer. Trends Genet. 2008, 24:622-629.
    • (2008) Trends Genet. , vol.24 , pp. 622-629
    • White, R.J.1
  • 14
    • 2342538484 scopus 로고    scopus 로고
    • RNA polymerase III transcription and cancer
    • White R.J. RNA polymerase III transcription and cancer. Oncogene 2004, 23:3208-3216.
    • (2004) Oncogene , vol.23 , pp. 3208-3216
    • White, R.J.1
  • 18
    • 67349116511 scopus 로고    scopus 로고
    • High levels of tRNA abundance and alteration of tRNA charging by bortezomib in multiple myeloma
    • Zhou Y., Goodenbour J.M., Godley L.A., Wickrema A., Pan T. High levels of tRNA abundance and alteration of tRNA charging by bortezomib in multiple myeloma. Biochem. Biophys. Res. Commun. 2009, 385:160-164.
    • (2009) Biochem. Biophys. Res. Commun. , vol.385 , pp. 160-164
    • Zhou, Y.1    Goodenbour, J.M.2    Godley, L.A.3    Wickrema, A.4    Pan, T.5
  • 20
    • 32044465506 scopus 로고    scopus 로고
    • TOR signaling in growth and metabolism
    • Wullschleger S., Loewith R., Hall M.N. TOR signaling in growth and metabolism. Cell 2006, 124:471-484.
    • (2006) Cell , vol.124 , pp. 471-484
    • Wullschleger, S.1    Loewith, R.2    Hall, M.N.3
  • 21
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • Laplante M., Sabatini D.M. mTOR signaling in growth control and disease. Cell 2012, 149:274-293.
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 22
    • 84878532557 scopus 로고    scopus 로고
    • Signal integration by mTORC1 coordinates nutrient input with biosynthetic output
    • Dibble C.C., Manning B.D. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat. Cell Biol. 2013, 15:555-564.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 555-564
    • Dibble, C.C.1    Manning, B.D.2
  • 23
    • 34347220473 scopus 로고    scopus 로고
    • Defining the role of mTOR in cancer
    • Guertin D.A., Sabatini D.M. Defining the role of mTOR in cancer. Cancer Cell 2007, 12:9-22.
    • (2007) Cancer Cell , vol.12 , pp. 9-22
    • Guertin, D.A.1    Sabatini, D.M.2
  • 29
    • 68149096799 scopus 로고    scopus 로고
    • The pharmacology of mTOR inhibition
    • Guertin D.A., Sabatini D.M. The pharmacology of mTOR inhibition. Sci. Signal. 2009, 2:e24.
    • (2009) Sci. Signal. , vol.2 , pp. e24
    • Guertin, D.A.1    Sabatini, D.M.2
  • 30
    • 67349217986 scopus 로고    scopus 로고
    • Molecular mechanisms of mTOR-mediated translational control
    • Ma X.M., Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 2009, 10:307-318.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 307-318
    • Ma, X.M.1    Blenis, J.2
  • 31
    • 0037097863 scopus 로고    scopus 로고
    • Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E
    • Fingar D.C., Salama S., Tsou C., Harlow E., Blenis J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 2002, 16:1472-1487.
    • (2002) Genes Dev. , vol.16 , pp. 1472-1487
    • Fingar, D.C.1    Salama, S.2    Tsou, C.3    Harlow, E.4    Blenis, J.5
  • 34
    • 0025314596 scopus 로고
    • Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5' cap
    • Lazaris-Karatzas A., Montine K.S., Sonenberg N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5' cap. Nature 1990, 345:544-547.
    • (1990) Nature , vol.345 , pp. 544-547
    • Lazaris-Karatzas, A.1    Montine, K.S.2    Sonenberg, N.3
  • 35
    • 0032915417 scopus 로고    scopus 로고
    • Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae
    • Powers T., Walter P. Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol. Biol. Cell 1999, 10:987-1000.
    • (1999) Mol. Biol. Cell , vol.10 , pp. 987-1000
    • Powers, T.1    Walter, P.2
  • 36
    • 0031596416 scopus 로고    scopus 로고
    • Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway
    • Zaragoza D., Ghavidel A., Heitman J., Schultz M.C. Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway. Mol. Cell. Biol. 1998, 18:4463-4470.
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 4463-4470
    • Zaragoza, D.1    Ghavidel, A.2    Heitman, J.3    Schultz, M.C.4
  • 39
    • 77952036652 scopus 로고    scopus 로고
    • Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells
    • Shor B., Wu J., Shakey Q., Toral-Barza L., Shi C., Follettie M., Yu K. Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells. J. Biol. Chem. 2010, 285:15380-15392.
    • (2010) J. Biol. Chem. , vol.285 , pp. 15380-15392
    • Shor, B.1    Wu, J.2    Shakey, Q.3    Toral-Barza, L.4    Shi, C.5    Follettie, M.6    Yu, K.7
  • 41
    • 77953512889 scopus 로고    scopus 로고
    • MTOR binds to the promoters of RNA polymerase I- and III-transcribed genes
    • Tsang C.K., Liu H., Zheng X.F. mTOR binds to the promoters of RNA polymerase I- and III-transcribed genes. Cell Cycle 2010, 9:953-957.
    • (2010) Cell Cycle , vol.9 , pp. 953-957
    • Tsang, C.K.1    Liu, H.2    Zheng, X.F.3
  • 42
    • 84859900304 scopus 로고    scopus 로고
    • Nutrient/TOR-dependent regulation of RNA polymerase III controls tissue and organismal growth in Drosophila
    • Marshall L., Rideout E.J., Grewal S.S. Nutrient/TOR-dependent regulation of RNA polymerase III controls tissue and organismal growth in Drosophila. EMBO J. 2012, 31:1916-1930.
    • (2012) EMBO J. , vol.31 , pp. 1916-1930
    • Marshall, L.1    Rideout, E.J.2    Grewal, S.S.3
  • 43
    • 84856405632 scopus 로고    scopus 로고
    • Drosophila RNA polymerase III repressor Maf1 controls body size and developmental timing by modulating tRNAiMet synthesis and systemic insulin signaling
    • Rideout E.J., Marshall L., Grewal S.S. Drosophila RNA polymerase III repressor Maf1 controls body size and developmental timing by modulating tRNAiMet synthesis and systemic insulin signaling. Proc. Natl. Acad. Sci. U. S. A. 2012, 109:1139-1144.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 1139-1144
    • Rideout, E.J.1    Marshall, L.2    Grewal, S.S.3
  • 44
    • 84875236968 scopus 로고    scopus 로고
    • Maf1, a general negative regulator of RNA polymerase III in yeast
    • Boguta M. Maf1, a general negative regulator of RNA polymerase III in yeast. Biochim. Biophys. Acta 2013, 1829:376-384.
    • (2013) Biochim. Biophys. Acta , vol.1829 , pp. 376-384
    • Boguta, M.1
  • 45
    • 84875238269 scopus 로고    scopus 로고
    • Regulation of pol III transcription by nutrient and stress signaling pathways
    • Moir R.D., Willis I.M. Regulation of pol III transcription by nutrient and stress signaling pathways. Biochim. Biophys. Acta 2013, 1829:361-375.
    • (2013) Biochim. Biophys. Acta , vol.1829 , pp. 361-375
    • Moir, R.D.1    Willis, I.M.2
  • 47
    • 33846659385 scopus 로고    scopus 로고
    • Integration of nutritional and stress signaling pathways by Maf1
    • Willis I.M., Moir R.D. Integration of nutritional and stress signaling pathways by Maf1. Trends Biochem. Sci. 2007, 32:51-53.
    • (2007) Trends Biochem. Sci. , vol.32 , pp. 51-53
    • Willis, I.M.1    Moir, R.D.2
  • 48
    • 54949143524 scopus 로고    scopus 로고
    • Maf1, a new player in the regulation of human RNA polymerase III transcription
    • Reina J.H., Azzouz T.N., Hernandez N. Maf1, a new player in the regulation of human RNA polymerase III transcription. PLoS One 2006, 1:e134.
    • (2006) PLoS One , vol.1 , pp. e134
    • Reina, J.H.1    Azzouz, T.N.2    Hernandez, N.3
  • 49
    • 14844318502 scopus 로고    scopus 로고
    • Two steps in Maf1-dependent repression of transcription by RNA polymerase III
    • Desai N., Lee J., Upadhya R., Chu Y., Moir R.D., Willis I.M. Two steps in Maf1-dependent repression of transcription by RNA polymerase III. J. Biol. Chem. 2005, 280:6455-6462.
    • (2005) J. Biol. Chem. , vol.280 , pp. 6455-6462
    • Desai, N.1    Lee, J.2    Upadhya, R.3    Chu, Y.4    Moir, R.D.5    Willis, I.M.6
  • 50
    • 33744515555 scopus 로고    scopus 로고
    • Dephosphorylation and genome-wide association of Maf1 with Pol III-transcribed genes during repression
    • Roberts D.N., Wilson B., Huff J.T., Stewart A.J., Cairns B.R. Dephosphorylation and genome-wide association of Maf1 with Pol III-transcribed genes during repression. Mol. Cell 2006, 22:633-644.
    • (2006) Mol. Cell , vol.22 , pp. 633-644
    • Roberts, D.N.1    Wilson, B.2    Huff, J.T.3    Stewart, A.J.4    Cairns, B.R.5
  • 51
    • 33744512096 scopus 로고    scopus 로고
    • General repression of RNA polymerase III transcription is triggered by protein phosphatase type 2A-mediated dephosphorylation of Maf1
    • Oficjalska-Pham D., Harismendy O., Smagowicz W.J., Gonzalez de Peredo A., Boguta M., Sentenac A., Lefebvre O. General repression of RNA polymerase III transcription is triggered by protein phosphatase type 2A-mediated dephosphorylation of Maf1. Mol. Cell 2006, 22:623-632.
    • (2006) Mol. Cell , vol.22 , pp. 623-632
    • Oficjalska-Pham, D.1    Harismendy, O.2    Smagowicz, W.J.3    Gonzalez de Peredo, A.4    Boguta, M.5    Sentenac, A.6    Lefebvre, O.7
  • 53
    • 0036923835 scopus 로고    scopus 로고
    • Maf1 is an essential mediator of diverse signals that repress RNA polymerase III transcription
    • Upadhya R., Lee J., Willis I.M. Maf1 is an essential mediator of diverse signals that repress RNA polymerase III transcription. Mol. Cell 2002, 10:1489-1494.
    • (2002) Mol. Cell , vol.10 , pp. 1489-1494
    • Upadhya, R.1    Lee, J.2    Willis, I.M.3
  • 54
    • 68249159982 scopus 로고    scopus 로고
    • Mechanisms of regulation of RNA polymerase III-dependent transcription by TORC1
    • Wei Y., Tsang C.K., Zheng X.F. Mechanisms of regulation of RNA polymerase III-dependent transcription by TORC1. EMBO J. 2009, 28:2220-2230.
    • (2009) EMBO J. , vol.28 , pp. 2220-2230
    • Wei, Y.1    Tsang, C.K.2    Zheng, X.F.3
  • 55
    • 67649827419 scopus 로고    scopus 로고
    • Regulation of RNA polymerase III transcription involves SCH9-dependent and SCH9-independent branches of the target of rapamycin (TOR) pathway
    • Lee J., Moir R.D., Willis I.M. Regulation of RNA polymerase III transcription involves SCH9-dependent and SCH9-independent branches of the target of rapamycin (TOR) pathway. J. Biol. Chem. 2009, 284:12604-12608.
    • (2009) J. Biol. Chem. , vol.284 , pp. 12604-12608
    • Lee, J.1    Moir, R.D.2    Willis, I.M.3
  • 56
    • 69249240179 scopus 로고    scopus 로고
    • Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis
    • Huber A., Bodenmiller B., Uotila A., Stahl M., Wanka S., Gerrits B., Aebersold R., Loewith R. Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev. 2009, 23:1929-1943.
    • (2009) Genes Dev. , vol.23 , pp. 1929-1943
    • Huber, A.1    Bodenmiller, B.2    Uotila, A.3    Stahl, M.4    Wanka, S.5    Gerrits, B.6    Aebersold, R.7    Loewith, R.8
  • 57
    • 74849135206 scopus 로고    scopus 로고
    • Sch9 partially mediates TORC1 signaling to control ribosomal RNA synthesis
    • Wei Y., Zheng X.F. Sch9 partially mediates TORC1 signaling to control ribosomal RNA synthesis. Cell Cycle 2009, 8:4085-4090.
    • (2009) Cell Cycle , vol.8 , pp. 4085-4090
    • Wei, Y.1    Zheng, X.F.2
  • 59
    • 84862789978 scopus 로고    scopus 로고
    • TOR signaling regulates ribosome and tRNA synthesis via LAMMER/Clk and GSK-3 family kinases
    • Lee J., Moir R.D., McIntosh K.B., Willis I.M. TOR signaling regulates ribosome and tRNA synthesis via LAMMER/Clk and GSK-3 family kinases. Mol. Cell 2012, 45:836-843.
    • (2012) Mol. Cell , vol.45 , pp. 836-843
    • Lee, J.1    Moir, R.D.2    McIntosh, K.B.3    Willis, I.M.4
  • 60
    • 84875909085 scopus 로고    scopus 로고
    • Molecular and genetic crosstalks between mTOR and ERRalpha are key determinants of rapamycin-induced nonalcoholic fatty liver
    • Chaveroux C., Eichner L.J., Dufour C.R., Shatnawi A., Khoutorsky A., Bourque G., Sonenberg N., Giguere V. Molecular and genetic crosstalks between mTOR and ERRalpha are key determinants of rapamycin-induced nonalcoholic fatty liver. Cell Metab. 2013, 17:586-598.
    • (2013) Cell Metab. , vol.17 , pp. 586-598
    • Chaveroux, C.1    Eichner, L.J.2    Dufour, C.R.3    Shatnawi, A.4    Khoutorsky, A.5    Bourque, G.6    Sonenberg, N.7    Giguere, V.8
  • 61
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak Y., Bar-Peled L., Zoncu R., Markhard A.L., Nada S., Sabatini D.M. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010, 141:290-303.
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1    Bar-Peled, L.2    Zoncu, R.3    Markhard, A.L.4    Nada, S.5    Sabatini, D.M.6
  • 63
    • 84894212463 scopus 로고    scopus 로고
    • Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2
    • Demetriades C., Doumpas N., Teleman A.A. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 2014, 156:786-799.
    • (2014) Cell , vol.156 , pp. 786-799
    • Demetriades, C.1    Doumpas, N.2    Teleman, A.A.3
  • 64
    • 0031860687 scopus 로고    scopus 로고
    • Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms
    • Britton J.S., Edgar B.A. Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms. Development 1998, 125:2149-2158.
    • (1998) Development , vol.125 , pp. 2149-2158
    • Britton, J.S.1    Edgar, B.A.2
  • 65
    • 0036484062 scopus 로고    scopus 로고
    • Drosophila's insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions
    • Britton J.S., Lockwood W.K., Li L., Cohen S.M., Edgar B.A. Drosophila's insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Dev. Cell 2002, 2:239-249.
    • (2002) Dev. Cell , vol.2 , pp. 239-249
    • Britton, J.S.1    Lockwood, W.K.2    Li, L.3    Cohen, S.M.4    Edgar, B.A.5
  • 66
    • 0034312279 scopus 로고    scopus 로고
    • Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin
    • Oldham S., Montagne J., Radimerski T., Thomas G., Hafen E. Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev. 2000, 14:2689-2694.
    • (2000) Genes Dev. , vol.14 , pp. 2689-2694
    • Oldham, S.1    Montagne, J.2    Radimerski, T.3    Thomas, G.4    Hafen, E.5
  • 67
    • 0034312315 scopus 로고    scopus 로고
    • Regulation of cellular growth by the Drosophila target of rapamycin dTOR
    • Zhang H., Stallock J.P., Ng J.C., Reinhard C., Neufeld T.P. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev. 2000, 14:2712-2724.
    • (2000) Genes Dev. , vol.14 , pp. 2712-2724
    • Zhang, H.1    Stallock, J.P.2    Ng, J.C.3    Reinhard, C.4    Neufeld, T.P.5
  • 68
    • 0038643484 scopus 로고    scopus 로고
    • Rheb promotes cell growth as a component of the insulin/TOR signalling network
    • Saucedo L.J., Gao X., Chiarelli D.A., Li L., Pan D., Edgar B.A. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat. Cell Biol. 2003, 5:566-571.
    • (2003) Nat. Cell Biol. , vol.5 , pp. 566-571
    • Saucedo, L.J.1    Gao, X.2    Chiarelli, D.A.3    Li, L.4    Pan, D.5    Edgar, B.A.6
  • 70
    • 84859171807 scopus 로고    scopus 로고
    • MYC on the path to cancer
    • Dang C.V. MYC on the path to cancer. Cell 2012, 149:22-35.
    • (2012) Cell , vol.149 , pp. 22-35
    • Dang, C.V.1
  • 72
    • 84930818360 scopus 로고    scopus 로고
    • Drosophila Myc: a master regulator of cellular performance
    • Grifoni D., Bellosta P. Drosophila Myc: a master regulator of cellular performance. Biochim. Biophys. Acta 2015, 1849:570-581.
    • (2015) Biochim. Biophys. Acta , vol.1849 , pp. 570-581
    • Grifoni, D.1    Bellosta, P.2
  • 73
    • 33748163462 scopus 로고    scopus 로고
    • Myc in model organisms: a view from the flyroom
    • de la Cova C., Johnston L.A. Myc in model organisms: a view from the flyroom. Semin. Cancer Biol. 2006, 16:303-312.
    • (2006) Semin. Cancer Biol. , vol.16 , pp. 303-312
    • de la Cova, C.1    Johnston, L.A.2
  • 74
    • 0032905924 scopus 로고    scopus 로고
    • C-Myc target genes involved in cell growth, apoptosis, and metabolism
    • Dang C.V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell. Biol. 1999, 19:1-11.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 1-11
    • Dang, C.V.1
  • 80
    • 77949920493 scopus 로고    scopus 로고
    • MYC as a regulator of ribosome biogenesis and protein synthesis
    • van Riggelen J., Yetil A., Felsher D.W. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat. Rev. Cancer 2010, 10:301-309.
    • (2010) Nat. Rev. Cancer , vol.10 , pp. 301-309
    • van Riggelen, J.1    Yetil, A.2    Felsher, D.W.3
  • 81
    • 14744297005 scopus 로고    scopus 로고
    • Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development
    • Grewal S.S., Li L., Orian A., Eisenman R.N., Edgar B.A. Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nat. Cell Biol. 2005, 7:295-302.
    • (2005) Nat. Cell Biol. , vol.7 , pp. 295-302
    • Grewal, S.S.1    Li, L.2    Orian, A.3    Eisenman, R.N.4    Edgar, B.A.5
  • 86
    • 0026316096 scopus 로고
    • Growth factors and cancer
    • Aaronson S.A. Growth factors and cancer. Science 1991, 254:1146-1152.
    • (1991) Science , vol.254 , pp. 1146-1152
    • Aaronson, S.A.1
  • 87
    • 50349091830 scopus 로고    scopus 로고
    • Enhanced RNA polymerase III-dependent transcription is required for oncogenic transformation
    • Johnson S.A., Dubeau L., Johnson D.L. Enhanced RNA polymerase III-dependent transcription is required for oncogenic transformation. J. Biol. Chem. 2008, 283:19184-19191.
    • (2008) J. Biol. Chem. , vol.283 , pp. 19184-19191
    • Johnson, S.A.1    Dubeau, L.2    Johnson, D.L.3
  • 88
    • 50449096026 scopus 로고    scopus 로고
    • Max-independent functions of Myc in Drosophila melanogaster
    • Steiger D., Furrer M., Schwinkendorf D., Gallant P. Max-independent functions of Myc in Drosophila melanogaster. Nat. Genet. 2008, 40:1084-1091.
    • (2008) Nat. Genet. , vol.40 , pp. 1084-1091
    • Steiger, D.1    Furrer, M.2    Schwinkendorf, D.3    Gallant, P.4
  • 89
    • 0347721764 scopus 로고    scopus 로고
    • Direct activation of RNA polymerase III transcription by c-Myc
    • Gomez-Roman N., Grandori C., Eisenman R.N., White R.J. Direct activation of RNA polymerase III transcription by c-Myc. Nature 2003, 421:290-294.
    • (2003) Nature , vol.421 , pp. 290-294
    • Gomez-Roman, N.1    Grandori, C.2    Eisenman, R.N.3    White, R.J.4
  • 91
    • 77951235652 scopus 로고    scopus 로고
    • Ribosomal protein L11 associates with c-Myc at 5S rRNA and tRNA genes and regulates their expression
    • Dai M.S., Sun X.X., Lu H. Ribosomal protein L11 associates with c-Myc at 5S rRNA and tRNA genes and regulates their expression. J. Biol. Chem. 2010, 285:12587-12594.
    • (2010) J. Biol. Chem. , vol.285 , pp. 12587-12594
    • Dai, M.S.1    Sun, X.X.2    Lu, H.3
  • 93
    • 33947594129 scopus 로고    scopus 로고
    • Hyperactive Ras in developmental disorders and cancer
    • Schubbert S., Shannon K., Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat. Rev. Cancer 2007, 7:295-308.
    • (2007) Nat. Rev. Cancer , vol.7 , pp. 295-308
    • Schubbert, S.1    Shannon, K.2    Bollag, G.3
  • 94
    • 0033118791 scopus 로고    scopus 로고
    • Signaling specificity: the RTK/RAS/MAP kinase pathway in metazoans
    • Tan P.B., Kim S.K. Signaling specificity: the RTK/RAS/MAP kinase pathway in metazoans. Trends Genet. 1999, 15:145-149.
    • (1999) Trends Genet. , vol.15 , pp. 145-149
    • Tan, P.B.1    Kim, S.K.2
  • 95
    • 0026910548 scopus 로고
    • Ras proteins in developmental pattern formation in Caenorhabditis elegans and Drosophila
    • Han M. Ras proteins in developmental pattern formation in Caenorhabditis elegans and Drosophila. Semin. Cancer Biol. 1992, 3:219-228.
    • (1992) Semin. Cancer Biol. , vol.3 , pp. 219-228
    • Han, M.1
  • 96
    • 33745307617 scopus 로고    scopus 로고
    • Ras, PI(3)K and mTOR signalling controls tumour cell growth
    • Shaw R.J., Cantley L.C. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 2006, 441:424-430.
    • (2006) Nature , vol.441 , pp. 424-430
    • Shaw, R.J.1    Cantley, L.C.2
  • 98
    • 0034681265 scopus 로고    scopus 로고
    • Ras1 promotes cellular growth in the Drosophila wing
    • Prober D.A., Edgar B.A. Ras1 promotes cellular growth in the Drosophila wing. Cell 2000, 100:435-446.
    • (2000) Cell , vol.100 , pp. 435-446
    • Prober, D.A.1    Edgar, B.A.2
  • 99
    • 0032981328 scopus 로고    scopus 로고
    • Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo
    • Waskiewicz A.J., Johnson J.C., Penn B., Mahalingam M., Kimball S.R., Cooper J.A. Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol. Cell. Biol. 1999, 19:1871-1880.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 1871-1880
    • Waskiewicz, A.J.1    Johnson, J.C.2    Penn, B.3    Mahalingam, M.4    Kimball, S.R.5    Cooper, J.A.6
  • 100
    • 0037904836 scopus 로고    scopus 로고
    • The mitogen-activated protein (MAP) kinase ERK induces tRNA synthesis by phosphorylating TFIIIB
    • Felton-Edkins Z.A., Fairley J.A., Graham E.L., Johnston I.M., White R.J., Scott P.H. The mitogen-activated protein (MAP) kinase ERK induces tRNA synthesis by phosphorylating TFIIIB. EMBO J. 2003, 22:2422-2432.
    • (2003) EMBO J. , vol.22 , pp. 2422-2432
    • Felton-Edkins, Z.A.1    Fairley, J.A.2    Graham, E.L.3    Johnston, I.M.4    White, R.J.5    Scott, P.H.6
  • 102
    • 2942568540 scopus 로고    scopus 로고
    • Epidermal growth factor enhances cellular TATA binding protein levels and induces RNA polymerase I- and III-dependent gene activity
    • Zhong S., Zhang C., Johnson D.L. Epidermal growth factor enhances cellular TATA binding protein levels and induces RNA polymerase I- and III-dependent gene activity. Mol. Cell. Biol. 2004, 24:5119-5129.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 5119-5129
    • Zhong, S.1    Zhang, C.2    Johnson, D.L.3
  • 106
    • 0030941458 scopus 로고    scopus 로고
    • P53, the cellular gatekeeper for growth and division
    • Levine A.J. p53, the cellular gatekeeper for growth and division. Cell 1997, 88:323-331.
    • (1997) Cell , vol.88 , pp. 323-331
    • Levine, A.J.1
  • 108
    • 84904792761 scopus 로고    scopus 로고
    • MicroRNA-mediated regulation of Dp53 in the Drosophila fat body contributes to metabolic adaptation to nutrient deprivation
    • Barrio L., Dekanty A., Milan M. MicroRNA-mediated regulation of Dp53 in the Drosophila fat body contributes to metabolic adaptation to nutrient deprivation. Cell Rep. 2014, 8:528-541.
    • (2014) Cell Rep. , vol.8 , pp. 528-541
    • Barrio, L.1    Dekanty, A.2    Milan, M.3
  • 109
    • 0033611568 scopus 로고    scopus 로고
    • P53 represses ribosomal gene transcription
    • Budde A., Grummt I. p53 represses ribosomal gene transcription. Oncogene 1999, 18:1119-1124.
    • (1999) Oncogene , vol.18 , pp. 1119-1124
    • Budde, A.1    Grummt, I.2
  • 110
    • 0032100624 scopus 로고    scopus 로고
    • P53 is a general repressor of RNA polymerase III transcription
    • Cairns C.A., White R.J. p53 is a general repressor of RNA polymerase III transcription. EMBO J. 1998, 17:3112-3123.
    • (1998) EMBO J. , vol.17 , pp. 3112-3123
    • Cairns, C.A.1    White, R.J.2
  • 111
    • 0033867975 scopus 로고    scopus 로고
    • Repression of RNA polymerase I transcription by the tumor suppressor p53
    • Zhai W., Comai L. Repression of RNA polymerase I transcription by the tumor suppressor p53. Mol. Cell. Biol. 2000, 20:5930-5938.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 5930-5938
    • Zhai, W.1    Comai, L.2
  • 112
    • 0029910713 scopus 로고    scopus 로고
    • P53 inhibits RNA polymerase III-directed transcription in a promoter-dependent manner
    • Chesnokov I., Chu W.M., Botchan M.R., Schmid C.W. p53 inhibits RNA polymerase III-directed transcription in a promoter-dependent manner. Mol. Cell. Biol. 1996, 16:7084-7088.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 7084-7088
    • Chesnokov, I.1    Chu, W.M.2    Botchan, M.R.3    Schmid, C.W.4
  • 114
    • 34250655379 scopus 로고    scopus 로고
    • RNA polymerase III transcription is repressed in response to the tumour suppressor ARF
    • Morton J.P., Kantidakis T., White R.J. RNA polymerase III transcription is repressed in response to the tumour suppressor ARF. Nucleic Acids Res. 2007, 35:3046-3052.
    • (2007) Nucleic Acids Res. , vol.35 , pp. 3046-3052
    • Morton, J.P.1    Kantidakis, T.2    White, R.J.3
  • 116
    • 0001510491 scopus 로고    scopus 로고
    • The RB and p53 pathways in cancer
    • Sherr C.J., McCormick F. The RB and p53 pathways in cancer. Cancer Cell 2002, 2:103-112.
    • (2002) Cancer Cell , vol.2 , pp. 103-112
    • Sherr, C.J.1    McCormick, F.2
  • 117
    • 0032146274 scopus 로고    scopus 로고
    • The regulation of E2F by pRB-family proteins
    • Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev. 1998, 12:2245-2262.
    • (1998) Genes Dev. , vol.12 , pp. 2245-2262
    • Dyson, N.1
  • 118
    • 0036884829 scopus 로고    scopus 로고
    • The retinoblastoma tumour suppressor in development and cancer
    • Classon M., Harlow E. The retinoblastoma tumour suppressor in development and cancer. Nat. Rev. Cancer 2002, 2:910-917.
    • (2002) Nat. Rev. Cancer , vol.2 , pp. 910-917
    • Classon, M.1    Harlow, E.2
  • 119
    • 74149083175 scopus 로고    scopus 로고
    • PRb, a local chromatin organizer with global possibilities
    • Longworth M.S., Dyson N.J. pRb, a local chromatin organizer with global possibilities. Chromosoma 2010, 119:1-11.
    • (2010) Chromosoma , vol.119 , pp. 1-11
    • Longworth, M.S.1    Dyson, N.J.2
  • 120
    • 0029901988 scopus 로고    scopus 로고
    • Repression of RNA polymerase III transcription by the retinoblastoma protein
    • White R.J., Trouche D., Martin K., Jackson S.P., Kouzarides T. Repression of RNA polymerase III transcription by the retinoblastoma protein. Nature 1996, 382:88-90.
    • (1996) Nature , vol.382 , pp. 88-90
    • White, R.J.1    Trouche, D.2    Martin, K.3    Jackson, S.P.4    Kouzarides, T.5
  • 121
    • 0034459686 scopus 로고    scopus 로고
    • Retinoblastoma protein disrupts interactions required for RNA polymerase III transcription
    • Sutcliffe J.E., Brown T.R., Allison S.J., Scott P.H., White R.J. Retinoblastoma protein disrupts interactions required for RNA polymerase III transcription. Mol. Cell. Biol. 2000, 20:9192-9202.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 9192-9202
    • Sutcliffe, J.E.1    Brown, T.R.2    Allison, S.J.3    Scott, P.H.4    White, R.J.5
  • 123
    • 0034460413 scopus 로고    scopus 로고
    • The retinoblastoma tumor suppressor protein targets distinct general transcription factors to regulate RNA polymerase III gene expression
    • Hirsch H.A., Gu L., Henry R.W. The retinoblastoma tumor suppressor protein targets distinct general transcription factors to regulate RNA polymerase III gene expression. Mol. Cell. Biol. 2000, 20:9182-9191.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 9182-9191
    • Hirsch, H.A.1    Gu, L.2    Henry, R.W.3
  • 124
    • 0030992490 scopus 로고    scopus 로고
    • RNA polymerase III transcription repressed by Rb through its interactions with TFIIIB and TFIIIC2
    • Chu W.M., Wang Z., Roeder R.G., Schmid C.W. RNA polymerase III transcription repressed by Rb through its interactions with TFIIIB and TFIIIC2. J. Biol. Chem. 1997, 272:14755-14761.
    • (1997) J. Biol. Chem. , vol.272 , pp. 14755-14761
    • Chu, W.M.1    Wang, Z.2    Roeder, R.G.3    Schmid, C.W.4
  • 125
    • 84875246124 scopus 로고    scopus 로고
    • RNA polymerase III repression by the retinoblastoma tumor suppressor protein
    • Gjidoda A., Henry R.W. RNA polymerase III repression by the retinoblastoma tumor suppressor protein. Biochim. Biophys. Acta 2013, 1829:385-392.
    • (2013) Biochim. Biophys. Acta , vol.1829 , pp. 385-392
    • Gjidoda, A.1    Henry, R.W.2
  • 126
    • 0032973316 scopus 로고    scopus 로고
    • RNA polymerase III transcription factor IIIB is a target for repression by pocket proteins p107 and p130
    • Sutcliffe J.E., Cairns C.A., McLees A., Allison S.J., Tosh K., White R.J. RNA polymerase III transcription factor IIIB is a target for repression by pocket proteins p107 and p130. Mol. Cell. Biol. 1999, 19:4255-4261.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 4255-4261
    • Sutcliffe, J.E.1    Cairns, C.A.2    McLees, A.3    Allison, S.J.4    Tosh, K.5    White, R.J.6
  • 128
    • 84887621106 scopus 로고    scopus 로고
    • The multiple connections between pRB and cell metabolism
    • Nicolay B.N., Dyson N.J. The multiple connections between pRB and cell metabolism. Curr. Opin. Cell Biol. 2013, 25:735-740.
    • (2013) Curr. Opin. Cell Biol. , vol.25 , pp. 735-740
    • Nicolay, B.N.1    Dyson, N.J.2
  • 129
    • 84878584543 scopus 로고    scopus 로고
    • The tumor suppressor Rb critically regulates starvation-induced stress response in C. elegans
    • Cui M., Cohen M.L., Teng C., Han M. The tumor suppressor Rb critically regulates starvation-induced stress response in C. elegans. Curr. Biol. 2013, 23:975-980.
    • (2013) Curr. Biol. , vol.23 , pp. 975-980
    • Cui, M.1    Cohen, M.L.2    Teng, C.3    Han, M.4
  • 131
    • 84896692006 scopus 로고    scopus 로고
    • A comprehensive tRNA deletion library unravels the genetic architecture of the tRNA pool
    • Bloom-Ackermann Z., Navon S., Gingold H., Towers R., Pilpel Y., Dahan O. A comprehensive tRNA deletion library unravels the genetic architecture of the tRNA pool. PLoS Genet. 2014, 10:e1004084.
    • (2014) PLoS Genet. , vol.10 , pp. e1004084
    • Bloom-Ackermann, Z.1    Navon, S.2    Gingold, H.3    Towers, R.4    Pilpel, Y.5    Dahan, O.6
  • 133
    • 37249019494 scopus 로고    scopus 로고
    • Mutation of RNA Pol III subunit rpc2/polr3b leads to deficiency of subunit Rpc11 and disrupts zebrafish digestive development
    • Yee N.S., Gong W., Huang Y., Lorent K., Dolan A.C., Maraia R.J., Pack M. Mutation of RNA Pol III subunit rpc2/polr3b leads to deficiency of subunit Rpc11 and disrupts zebrafish digestive development. PLoS Biol. 2007, 5:e312.
    • (2007) PLoS Biol. , vol.5 , pp. e312
    • Yee, N.S.1    Gong, W.2    Huang, Y.3    Lorent, K.4    Dolan, A.C.5    Maraia, R.J.6    Pack, M.7
  • 136
    • 59649094753 scopus 로고    scopus 로고
    • Insulin/TOR signaling in growth and homeostasis: a view from the fly world
    • Grewal S.S. Insulin/TOR signaling in growth and homeostasis: a view from the fly world. Int. J. Biochem. Cell Biol. 2009, 41:1006-1010.
    • (2009) Int. J. Biochem. Cell Biol. , vol.41 , pp. 1006-1010
    • Grewal, S.S.1
  • 137
    • 84862233328 scopus 로고    scopus 로고
    • Controlling animal growth and body size - does fruit fly physiology point the way?
    • Grewal S.S. Controlling animal growth and body size - does fruit fly physiology point the way?. F1000 Biol. Rep. 2012, 4:12.
    • (2012) F1000 Biol. Rep. , vol.4 , pp. 12
    • Grewal, S.S.1
  • 138
    • 84875465521 scopus 로고    scopus 로고
    • Overexpression of initiator methionine tRNA leads to global reprogramming of tRNA expression and increased proliferation in human epithelial cells
    • Pavon-Eternod M., Gomes S., Rosner M.R., Pan T. Overexpression of initiator methionine tRNA leads to global reprogramming of tRNA expression and increased proliferation in human epithelial cells. RNA 2013, 19:461-466.
    • (2013) RNA , vol.19 , pp. 461-466
    • Pavon-Eternod, M.1    Gomes, S.2    Rosner, M.R.3    Pan, T.4
  • 139
    • 0014472538 scopus 로고
    • The effect of tRNA concentration on the rate of protein synthesis
    • Anderson W.F. The effect of tRNA concentration on the rate of protein synthesis. Proc. Natl. Acad. Sci. U. S. A. 1969, 62:566-573.
    • (1969) Proc. Natl. Acad. Sci. U. S. A. , vol.62 , pp. 566-573
    • Anderson, W.F.1
  • 140
    • 80055093840 scopus 로고    scopus 로고
    • The dynamics of supply and demand in mRNA translation
    • Brackley C.A., Romano M.C., Thiel M. The dynamics of supply and demand in mRNA translation. PLoS Comput. Biol. 2011, 7:e1002203.
    • (2011) PLoS Comput. Biol. , vol.7 , pp. e1002203
    • Brackley, C.A.1    Romano, M.C.2    Thiel, M.3
  • 141
    • 34948856961 scopus 로고    scopus 로고
    • Ribosome kinetics and aa-tRNA competition determine rate and fidelity of peptide synthesis
    • Fluitt A., Pienaar E., Viljoen H. Ribosome kinetics and aa-tRNA competition determine rate and fidelity of peptide synthesis. Comput. Biol. Chem. 2007, 31:335-346.
    • (2007) Comput. Biol. Chem. , vol.31 , pp. 335-346
    • Fluitt, A.1    Pienaar, E.2    Viljoen, H.3
  • 143
    • 0021764898 scopus 로고
    • Translation is a non-uniform process. Effect of tRNA availability on the rate of elongation of nascent polypeptide chains
    • Varenne S., Buc J., Lloubes R., Lazdunski C. Translation is a non-uniform process. Effect of tRNA availability on the rate of elongation of nascent polypeptide chains. J. Mol. Biol. 1984, 180:549-576.
    • (1984) J. Mol. Biol. , vol.180 , pp. 549-576
    • Varenne, S.1    Buc, J.2    Lloubes, R.3    Lazdunski, C.4
  • 144
    • 36748999400 scopus 로고    scopus 로고
    • New modes of translational control in development, behavior, and disease
    • Sonenberg N., Hinnebusch A.G. New modes of translational control in development, behavior, and disease. Mol. Cell 2007, 28:721-729.
    • (2007) Mol. Cell , vol.28 , pp. 721-729
    • Sonenberg, N.1    Hinnebusch, A.G.2
  • 145
    • 27144510561 scopus 로고    scopus 로고
    • Translational regulation of GCN4 and the general amino acid control of yeast
    • Hinnebusch A.G. Translational regulation of GCN4 and the general amino acid control of yeast. Annu. Rev. Microbiol. 2005, 59:407-450.
    • (2005) Annu. Rev. Microbiol. , vol.59 , pp. 407-450
    • Hinnebusch, A.G.1
  • 146
    • 79954456859 scopus 로고    scopus 로고
    • Determinants of translation efficiency and accuracy
    • Gingold H., Pilpel Y. Determinants of translation efficiency and accuracy. Mol. Syst. Biol. 2011, 7:481.
    • (2011) Mol. Syst. Biol. , vol.7 , pp. 481
    • Gingold, H.1    Pilpel, Y.2
  • 147
    • 79952308837 scopus 로고    scopus 로고
    • The role of codon selection in regulation of translation efficiency deduced from synthetic libraries
    • Navon S., Pilpel Y. The role of codon selection in regulation of translation efficiency deduced from synthetic libraries. Genome Biol. 2011, 12:R12.
    • (2011) Genome Biol. , vol.12 , pp. R12
    • Navon, S.1    Pilpel, Y.2
  • 149
    • 0034237669 scopus 로고    scopus 로고
    • TRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes
    • Duret L. tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes. Trends Genet. 2000, 16:287-289.
    • (2000) Trends Genet. , vol.16 , pp. 287-289
    • Duret, L.1
  • 150
    • 33846021292 scopus 로고    scopus 로고
    • Tissue-specific differences in human transfer RNA expression
    • Dittmar K.A., Goodenbour J.M., Pan T. Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2006, 2:e221.
    • (2006) PLoS Genet. , vol.2 , pp. e221
    • Dittmar, K.A.1    Goodenbour, J.M.2    Pan, T.3
  • 153
    • 84874722535 scopus 로고    scopus 로고
    • Non-optimal codon usage is a mechanism to achieve circadian clock conditionality
    • Xu Y., Ma P., Shah P., Rokas A., Liu Y., Johnson C.H. Non-optimal codon usage is a mechanism to achieve circadian clock conditionality. Nature 2013, 495:116-120.
    • (2013) Nature , vol.495 , pp. 116-120
    • Xu, Y.1    Ma, P.2    Shah, P.3    Rokas, A.4    Liu, Y.5    Johnson, C.H.6
  • 154
    • 84874683740 scopus 로고    scopus 로고
    • Non-optimal codon usage affects expression, structure and function of clock protein FRQ
    • Zhou M., Guo J., Cha J., Chae M., Chen S., Barral J.M., Sachs M.S., Liu Y. Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature 2013, 495:111-115.
    • (2013) Nature , vol.495 , pp. 111-115
    • Zhou, M.1    Guo, J.2    Cha, J.3    Chae, M.4    Chen, S.5    Barral, J.M.6    Sachs, M.S.7    Liu, Y.8
  • 156
    • 84869047677 scopus 로고    scopus 로고
    • Dynamic changes in translational efficiency are deduced from codon usage of the transcriptome
    • Gingold H., Dahan O., Pilpel Y. Dynamic changes in translational efficiency are deduced from codon usage of the transcriptome. Nucleic Acids Res. 2012, 40:10053-10063.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 10053-10063
    • Gingold, H.1    Dahan, O.2    Pilpel, Y.3
  • 158
    • 84894646451 scopus 로고    scopus 로고
    • Translation elongation can control translation initiation on eukaryotic mRNAs
    • Chu D., Kazana E., Bellanger N., Singh T., Tuite M.F., von der Haar T. Translation elongation can control translation initiation on eukaryotic mRNAs. EMBO J. 2014, 33:21-34.
    • (2014) EMBO J. , vol.33 , pp. 21-34
    • Chu, D.1    Kazana, E.2    Bellanger, N.3    Singh, T.4    Tuite, M.F.5    von der Haar, T.6
  • 161
    • 70349545940 scopus 로고    scopus 로고
    • Aminoacyl-tRNA synthesis and translational quality control
    • Ling J., Reynolds N., Ibba M. Aminoacyl-tRNA synthesis and translational quality control. Annu. Rev. Microbiol. 2009, 63:61-78.
    • (2009) Annu. Rev. Microbiol. , vol.63 , pp. 61-78
    • Ling, J.1    Reynolds, N.2    Ibba, M.3
  • 162
    • 68549085526 scopus 로고    scopus 로고
    • A novel epigenetic mechanism in Drosophila somatic cells mediated by Piwi and piRNAs
    • Lin H., Yin H. A novel epigenetic mechanism in Drosophila somatic cells mediated by Piwi and piRNAs. Cold Spring Harb. Symp. Quant. Biol. 2008, 73:273-281.
    • (2008) Cold Spring Harb. Symp. Quant. Biol. , vol.73 , pp. 273-281
    • Lin, H.1    Yin, H.2
  • 163
    • 37449029143 scopus 로고    scopus 로고
    • Nutritional control of protein biosynthetic capacity by insulin via Myc in Drosophila
    • Teleman A.A., Hietakangas V., Sayadian A.C., Cohen S.M. Nutritional control of protein biosynthetic capacity by insulin via Myc in Drosophila. Cell Metab. 2008, 7:21-32.
    • (2008) Cell Metab. , vol.7 , pp. 21-32
    • Teleman, A.A.1    Hietakangas, V.2    Sayadian, A.C.3    Cohen, S.M.4
  • 164
    • 59149097747 scopus 로고    scopus 로고
    • Survival from hypoxia in C. elegans by inactivation of aminoacyl-tRNA synthetases
    • Anderson L.L., Mao X., Scott B.A., Crowder C.M. Survival from hypoxia in C. elegans by inactivation of aminoacyl-tRNA synthetases. Science 2009, 323:630-633.
    • (2009) Science , vol.323 , pp. 630-633
    • Anderson, L.L.1    Mao, X.2    Scott, B.A.3    Crowder, C.M.4
  • 167
    • 84888601034 scopus 로고    scopus 로고
    • Adaptive translation as a mechanism of stress response and adaptation
    • Pan T. Adaptive translation as a mechanism of stress response and adaptation. Annu. Rev. Genet. 2013, 47:121-137.
    • (2013) Annu. Rev. Genet. , vol.47 , pp. 121-137
    • Pan, T.1
  • 168
    • 84869054437 scopus 로고    scopus 로고
    • Misacylation of tRNA with methionine in Saccharomyces cerevisiae
    • Wiltrout E., Goodenbour J.M., Frechin M., Pan T. Misacylation of tRNA with methionine in Saccharomyces cerevisiae. Nucleic Acids Res. 2012, 40:10494-10506.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 10494-10506
    • Wiltrout, E.1    Goodenbour, J.M.2    Frechin, M.3    Pan, T.4
  • 170
    • 84862777407 scopus 로고    scopus 로고
    • Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway
    • Han J.M., Jeong S.J., Park M.C., Kim G., Kwon N.H., Kim H.K., Ha S.H., Ryu S.H., Kim S. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 2012, 149:410-424.
    • (2012) Cell , vol.149 , pp. 410-424
    • Han, J.M.1    Jeong, S.J.2    Park, M.C.3    Kim, G.4    Kwon, N.H.5    Kim, H.K.6    Ha, S.H.7    Ryu, S.H.8    Kim, S.9
  • 171
    • 77956276464 scopus 로고    scopus 로고
    • TRNA biology charges to the front
    • Phizicky E.M., Hopper A.K. tRNA biology charges to the front. Genes Dev. 2010, 24:1832-1860.
    • (2010) Genes Dev. , vol.24 , pp. 1832-1860
    • Phizicky, E.M.1    Hopper, A.K.2
  • 172
    • 78650683942 scopus 로고    scopus 로고
    • A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress
    • Chan C.T., Dyavaiah M., DeMott M.S., Taghizadeh K., Dedon P.C., Begley T.J. A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet. 2010, 6:e1001247.
    • (2010) PLoS Genet. , vol.6 , pp. e1001247
    • Chan, C.T.1    Dyavaiah, M.2    DeMott, M.S.3    Taghizadeh, K.4    Dedon, P.C.5    Begley, T.J.6
  • 173
    • 84864828979 scopus 로고    scopus 로고
    • Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins
    • Chan C.T., Pang Y.L., Deng W., Babu I.R., Dyavaiah M., Begley T.J., Dedon P.C. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat. Commun. 2012, 3:937.
    • (2012) Nat. Commun. , vol.3 , pp. 937
    • Chan, C.T.1    Pang, Y.L.2    Deng, W.3    Babu, I.R.4    Dyavaiah, M.5    Begley, T.J.6    Dedon, P.C.7
  • 174
    • 84867259656 scopus 로고    scopus 로고
    • Increased tRNA modification and gene-specific codon usage regulate cell cycle progression during the DNA damage response
    • Patil A., Dyavaiah M., Joseph F., Rooney J.P., Chan C.T., Dedon P.C., Begley T.J. Increased tRNA modification and gene-specific codon usage regulate cell cycle progression during the DNA damage response. Cell Cycle 2012, 11:3656-3665.
    • (2012) Cell Cycle , vol.11 , pp. 3656-3665
    • Patil, A.1    Dyavaiah, M.2    Joseph, F.3    Rooney, J.P.4    Chan, C.T.5    Dedon, P.C.6    Begley, T.J.7
  • 176
    • 0028695223 scopus 로고
    • The eIF-2 alpha kinases: regulators of protein synthesis in starvation and stress
    • Hinnebusch A.G. The eIF-2 alpha kinases: regulators of protein synthesis in starvation and stress. Semin. Cell Biol. 1994, 5:417-426.
    • (1994) Semin. Cell Biol. , vol.5 , pp. 417-426
    • Hinnebusch, A.G.1
  • 177
    • 84880536607 scopus 로고    scopus 로고
    • Sulfur amino acids regulate translational capacity and metabolic homeostasis through modulation of tRNA thiolation
    • Laxman S., Sutter B.M., Wu X., Kumar S., Guo X., Trudgian D.C., Mirzaei H., Tu B.P. Sulfur amino acids regulate translational capacity and metabolic homeostasis through modulation of tRNA thiolation. Cell 2013, 154:416-429.
    • (2013) Cell , vol.154 , pp. 416-429
    • Laxman, S.1    Sutter, B.M.2    Wu, X.3    Kumar, S.4    Guo, X.5    Trudgian, D.C.6    Mirzaei, H.7    Tu, B.P.8
  • 178
    • 21744453148 scopus 로고    scopus 로고
    • TRNA actively shuttles between the nucleus and cytosol in yeast
    • Takano A., Endo T., Yoshihisa T. tRNA actively shuttles between the nucleus and cytosol in yeast. Science 2005, 309:140-142.
    • (2005) Science , vol.309 , pp. 140-142
    • Takano, A.1    Endo, T.2    Yoshihisa, T.3
  • 179
    • 23844508130 scopus 로고    scopus 로고
    • Retrograde movement of tRNAs from the cytoplasm to the nucleus in Saccharomyces cerevisiae
    • Shaheen H.H., Hopper A.K. Retrograde movement of tRNAs from the cytoplasm to the nucleus in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:11290-11295.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 11290-11295
    • Shaheen, H.H.1    Hopper, A.K.2
  • 181
    • 34250789855 scopus 로고    scopus 로고
    • Rapid and reversible nuclear accumulation of cytoplasmic tRNA in response to nutrient availability
    • Whitney M.L., Hurto R.L., Shaheen H.H., Hopper A.K. Rapid and reversible nuclear accumulation of cytoplasmic tRNA in response to nutrient availability. Mol. Biol. Cell 2007, 18:2678-2686.
    • (2007) Mol. Biol. Cell , vol.18 , pp. 2678-2686
    • Whitney, M.L.1    Hurto, R.L.2    Shaheen, H.H.3    Hopper, A.K.4
  • 182
    • 84886937862 scopus 로고    scopus 로고
    • Genome-wide investigation of the role of the tRNA nuclear-cytoplasmic trafficking pathway in regulation of the yeast Saccharomyces cerevisiae transcriptome and proteome
    • Chu H.Y., Hopper A.K. Genome-wide investigation of the role of the tRNA nuclear-cytoplasmic trafficking pathway in regulation of the yeast Saccharomyces cerevisiae transcriptome and proteome. Mol. Cell. Biol. 2013, 33:4241-4254.
    • (2013) Mol. Cell. Biol. , vol.33 , pp. 4241-4254
    • Chu, H.Y.1    Hopper, A.K.2
  • 184
    • 67650604265 scopus 로고    scopus 로고
    • Stressing out over tRNA cleavage
    • Thompson D.M., Parker R. Stressing out over tRNA cleavage. Cell 2009, 138:215-219.
    • (2009) Cell , vol.138 , pp. 215-219
    • Thompson, D.M.1    Parker, R.2
  • 185
    • 72749089855 scopus 로고    scopus 로고
    • A novel class of small RNAs: tRNA-derived RNA fragments (tRFs)
    • Lee Y.S., Shibata Y., Malhotra A., Dutta A. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev. 2009, 23:2639-2649.
    • (2009) Genes Dev. , vol.23 , pp. 2639-2649
    • Lee, Y.S.1    Shibata, Y.2    Malhotra, A.3    Dutta, A.4
  • 186
    • 80053210307 scopus 로고    scopus 로고
    • Age-associated changes in expression of small, noncoding RNAs, including microRNAs, in C. elegans
    • Kato M., Chen X., Inukai S., Zhao H., Slack F.J. Age-associated changes in expression of small, noncoding RNAs, including microRNAs, in C. elegans. RNA 2011, 17:1804-1820.
    • (2011) RNA , vol.17 , pp. 1804-1820
    • Kato, M.1    Chen, X.2    Inukai, S.3    Zhao, H.4    Slack, F.J.5
  • 187
    • 84887610943 scopus 로고    scopus 로고
    • Beyond microRNA - novel RNAs derived from small non-coding RNA and their implication in cancer
    • Martens-Uzunova E.S., Olvedy M., Jenster G. Beyond microRNA - novel RNAs derived from small non-coding RNA and their implication in cancer. Cancer Lett. 2013, 340:201-211.
    • (2013) Cancer Lett. , vol.340 , pp. 201-211
    • Martens-Uzunova, E.S.1    Olvedy, M.2    Jenster, G.3
  • 188
    • 52949145277 scopus 로고    scopus 로고
    • TRNA cleavage is a conserved response to oxidative stress in eukaryotes
    • Thompson D.M., Lu C., Green P.J., Parker R. tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 2008, 14:2095-2103.
    • (2008) RNA , vol.14 , pp. 2095-2103
    • Thompson, D.M.1    Lu, C.2    Green, P.J.3    Parker, R.4
  • 189
    • 65249152479 scopus 로고    scopus 로고
    • The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae
    • Thompson D.M., Parker R. The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J. Cell Biol. 2009, 185:43-50.
    • (2009) J. Cell Biol. , vol.185 , pp. 43-50
    • Thompson, D.M.1    Parker, R.2
  • 190
    • 65249129859 scopus 로고    scopus 로고
    • Angiogenin cleaves tRNA and promotes stress-induced translational repression
    • Yamasaki S., Ivanov P., Hu G.F., Anderson P. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J. Cell Biol. 2009, 185:35-42.
    • (2009) J. Cell Biol. , vol.185 , pp. 35-42
    • Yamasaki, S.1    Ivanov, P.2    Hu, G.F.3    Anderson, P.4
  • 192
    • 80051713296 scopus 로고    scopus 로고
    • Angiogenin-induced tRNA fragments inhibit translation initiation
    • Ivanov P., Emara M.M., Villen J., Gygi S.P., Anderson P. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol. Cell 2011, 43:613-623.
    • (2011) Mol. Cell , vol.43 , pp. 613-623
    • Ivanov, P.1    Emara, M.M.2    Villen, J.3    Gygi, S.P.4    Anderson, P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.