메뉴 건너뛰기




Volumn 11, Issue 1, 2015, Pages

End of the Beginning: Elongation and Termination Features of Alternative Modes of Chromosomal Replication Initiation in Bacteria

Author keywords

[No Author keywords available]

Indexed keywords

DNA A; RECG HELICASE; RIBONUCLEASE; RNASE HI; UNCLASSIFIED DRUG; BACTERIAL DNA; DNA HELICASE;

EID: 84924388040     PISSN: 15537390     EISSN: 15537404     Source Type: Journal    
DOI: 10.1371/journal.pgen.1004909     Document Type: Review
Times cited : (26)

References (148)
  • 1
    • 84879750259 scopus 로고    scopus 로고
    • Principles and concepts of DNA replication in bacteria, archaea, and eukarya
    • O'Donnell M, Langston L, Stillman B, (2013) Principles and concepts of DNA replication in bacteria, archaea, and eukarya. Cold Spring Harb Perspect Biol 5: a010108.
    • (2013) Cold Spring Harb Perspect Biol , vol.5 , pp. a010108
    • O'Donnell, M.1    Langston, L.2    Stillman, B.3
  • 2
    • 84876566990 scopus 로고    scopus 로고
    • DoriC 5.0: an updated database of oriC regions in both bacterial and archaeal genomes
    • Gao F, Luo H, Zhang CT, (2013) DoriC 5.0: an updated database of oriC regions in both bacterial and archaeal genomes. Nucleic Acids Res 41: D90–93.
    • (2013) Nucleic Acids Res , vol.41 , pp. 90-93
    • Gao, F.1    Luo, H.2    Zhang, C.T.3
  • 3
    • 84924372034 scopus 로고    scopus 로고
    • Kornberg A, Baker TA (2005) DNA Replication, 2nd Edition: University Science Books.
  • 4
    • 34247271405 scopus 로고    scopus 로고
    • DNA replication initiation: mechanisms and regulation in bacteria
    • Mott ML, Berger JM, (2007) DNA replication initiation: mechanisms and regulation in bacteria. Nat Rev Microbiol 5: 343–354.
    • (2007) Nat Rev Microbiol , vol.5 , pp. 343-354
    • Mott, M.L.1    Berger, J.M.2
  • 5
  • 7
    • 0032715175 scopus 로고    scopus 로고
    • Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda
    • Kuzminov A, (1999) Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 63: 751–813.
    • (1999) Microbiol Mol Biol Rev , vol.63 , pp. 751-813
    • Kuzminov, A.1
  • 9
    • 33845330910 scopus 로고    scopus 로고
    • Replisome assembly and the direct restart of stalled replication forks
    • Heller RC, Marians KJ, (2006) Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol 7: 932–943.
    • (2006) Nat Rev Mol Cell Biol , vol.7 , pp. 932-943
    • Heller, R.C.1    Marians, K.J.2
  • 11
    • 12844265439 scopus 로고    scopus 로고
    • Mechanisms of transcription-replication collisions in bacteria
    • Mirkin EV, Mirkin SM, (2005) Mechanisms of transcription-replication collisions in bacteria. Mol Cell Biol 25: 888–895.
    • (2005) Mol Cell Biol , vol.25 , pp. 888-895
    • Mirkin, E.V.1    Mirkin, S.M.2
  • 12
    • 33947432388 scopus 로고    scopus 로고
    • Replication fork stalling at natural impediments
    • Mirkin EV, Mirkin SM, (2007) Replication fork stalling at natural impediments. Microbiol Mol Biol Rev 71: 13–35.
    • (2007) Microbiol Mol Biol Rev , vol.71 , pp. 13-35
    • Mirkin, E.V.1    Mirkin, S.M.2
  • 13
    • 34249941504 scopus 로고    scopus 로고
    • Avoiding and resolving conflicts between DNA replication and transcription
    • Rudolph CJ, Dhillon P, Moore T, Lloyd RG, (2007) Avoiding and resolving conflicts between DNA replication and transcription. DNA Repair 6: 981–993.
    • (2007) DNA Repair , vol.6 , pp. 981-993
    • Rudolph, C.J.1    Dhillon, P.2    Moore, T.3    Lloyd, R.G.4
  • 14
    • 84862763199 scopus 로고    scopus 로고
    • The conflict between DNA replication and transcription
    • McGlynn P, Savery NJ, Dillingham MS, (2012) The conflict between DNA replication and transcription. Mol Microbiol 85: 12–20.
    • (2012) Mol Microbiol , vol.85 , pp. 12-20
    • McGlynn, P.1    Savery, N.J.2    Dillingham, M.S.3
  • 16
    • 84876188716 scopus 로고    scopus 로고
    • Transcription-replication encounters, consequences and genomic instability
    • Helmrich A, Ballarino M, Nudler E, Tora L, (2013) Transcription-replication encounters, consequences and genomic instability. Nat Struct Mol Biol 20: 412–418.
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 412-418
    • Helmrich, A.1    Ballarino, M.2    Nudler, E.3    Tora, L.4
  • 17
    • 0026733965 scopus 로고
    • Consequences of replication fork movement through transcription units in vivo
    • French S, (1992) Consequences of replication fork movement through transcription units in vivo. Science 258: 1362–1365.
    • (1992) Science , vol.258 , pp. 1362-1365
    • French, S.1
  • 18
    • 75649142564 scopus 로고    scopus 로고
    • The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo
    • Boubakri H, de Septenville AL, Viguera E, Michel B, (2010) The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. EMBO J 29: 145–157.
    • (2010) EMBO J , vol.29 , pp. 145-157
    • Boubakri, H.1    de Septenville, A.L.2    Viguera, E.3    Michel, B.4
  • 19
    • 84860578766 scopus 로고    scopus 로고
    • Replication fork reversal after replication-transcription collision
    • De Septenville AL, Duigou S, Boubakri H, Michel B, (2012) Replication fork reversal after replication-transcription collision. PLoS Genet 8: e1002622.
    • (2012) PLoS Genet , vol.8 , pp. e1002622
    • De Septenville, A.L.1    Duigou, S.2    Boubakri, H.3    Michel, B.4
  • 20
    • 33749173326 scopus 로고    scopus 로고
    • The Escherichia coli UvrD helicase is essential for Tus removal during recombination-dependent replication restart from Ter sites
    • Bidnenko V, Lestini R, Michel B, (2006) The Escherichia coli UvrD helicase is essential for Tus removal during recombination-dependent replication restart from Ter sites. Mol Microbiol 62: 382–396.
    • (2006) Mol Microbiol , vol.62 , pp. 382-396
    • Bidnenko, V.1    Lestini, R.2    Michel, B.3
  • 21
    • 0037099681 scopus 로고    scopus 로고
    • Replication fork collapse at replication terminator sequences
    • Bidnenko V, Ehrlich SD, Michel B, (2002) Replication fork collapse at replication terminator sequences. EMBO J 21: 3898–3907.
    • (2002) EMBO J , vol.21 , pp. 3898-3907
    • Bidnenko, V.1    Ehrlich, S.D.2    Michel, B.3
  • 22
    • 0942290452 scopus 로고    scopus 로고
    • Hyperinitiation of DNA replication in Escherichia coli leads to replication fork collapse and inviability
    • Simmons LA, Breier AM, Cozzarelli NR, Kaguni JM, (2004) Hyperinitiation of DNA replication in Escherichia coli leads to replication fork collapse and inviability. Mol Microbiol 51: 349–358.
    • (2004) Mol Microbiol , vol.51 , pp. 349-358
    • Simmons, L.A.1    Breier, A.M.2    Cozzarelli, N.R.3    Kaguni, J.M.4
  • 23
    • 24944550999 scopus 로고    scopus 로고
    • Replication termination in Escherichia coli: structure and antihelicase activity of the Tus-Ter complex
    • Neylon C, Kralicek AV, Hill TM, Dixon NE, (2005) Replication termination in Escherichia coli: structure and antihelicase activity of the Tus-Ter complex. Microbiol Mol Biol Rev 69: 501–526.
    • (2005) Microbiol Mol Biol Rev , vol.69 , pp. 501-526
    • Neylon, C.1    Kralicek, A.V.2    Hill, T.M.3    Dixon, N.E.4
  • 24
    • 56749098227 scopus 로고    scopus 로고
    • The replication fork trap and termination of chromosome replication
    • Duggin IG, Wake RG, Bell SD, Hill TM, (2008) The replication fork trap and termination of chromosome replication. Mol Microbiol 70: 1323–1333.
    • (2008) Mol Microbiol , vol.70 , pp. 1323-1333
    • Duggin, I.G.1    Wake, R.G.2    Bell, S.D.3    Hill, T.M.4
  • 25
    • 64149106045 scopus 로고    scopus 로고
    • Mechanisms of polar arrest of a replication fork
    • Kaplan DL, Bastia D, (2009) Mechanisms of polar arrest of a replication fork. Mol Microbiol 72: 279–285.
    • (2009) Mol Microbiol , vol.72 , pp. 279-285
    • Kaplan, D.L.1    Bastia, D.2
  • 26
    • 0023126267 scopus 로고
    • The terminus region of the Escherichia coli chromosome contains two separate loci that exhibit polar inhibition of replication
    • Hill TM, Henson JM, Kuempel PL, (1987) The terminus region of the Escherichia coli chromosome contains two separate loci that exhibit polar inhibition of replication. Proc Natl Acad Sci U S A 84: 1754–1758.
    • (1987) Proc Natl Acad Sci U S A , vol.84 , pp. 1754-1758
    • Hill, T.M.1    Henson, J.M.2    Kuempel, P.L.3
  • 27
    • 0023099783 scopus 로고
    • Inhibition of replication forks exiting the terminus region of the Escherichia coli chromosome occurs at two loci separated by 5 min
    • de Massy B, Bejar S, Louarn J, Louarn JM, Bouche JP, (1987) Inhibition of replication forks exiting the terminus region of the Escherichia coli chromosome occurs at two loci separated by 5 min. Proc Natl Acad Sci U S A 84: 1759–1763.
    • (1987) Proc Natl Acad Sci U S A , vol.84 , pp. 1759-1763
    • de Massy, B.1    Bejar, S.2    Louarn, J.3    Louarn, J.M.4    Bouche, J.P.5
  • 28
    • 37749029027 scopus 로고    scopus 로고
    • Chromosome structuring limits genome plasticity in Escherichia coli
    • Esnault E, Valens M, Espeli O, Boccard F, (2007) Chromosome structuring limits genome plasticity in Escherichia coli. PLoS Genet 3: e226.
    • (2007) PLoS Genet , vol.3 , pp. e226
    • Esnault, E.1    Valens, M.2    Espeli, O.3    Boccard, F.4
  • 29
    • 73649202380 scopus 로고
    • Sequential replication of Bacillus subtilis chromosome. I. Comparison of marker frequencies in exponential and stationary growth phases
    • Yoshikawa H, Sueoka N, (1963) Sequential replication of Bacillus subtilis chromosome. I. Comparison of marker frequencies in exponential and stationary growth phases. Proc Natl Acad Sci U S A 49: 559–566.
    • (1963) Proc Natl Acad Sci U S A , vol.49 , pp. 559-566
    • Yoshikawa, H.1    Sueoka, N.2
  • 30
    • 0008368332 scopus 로고
    • The chromosome of Bacillus subtilis. I. Theory of marker frequency analysis
    • Sueoka N, Yoshikawa H, (1965) The chromosome of Bacillus subtilis. I. Theory of marker frequency analysis. Genetics 52: 747–757.
    • (1965) Genetics , vol.52 , pp. 747-757
    • Sueoka, N.1    Yoshikawa, H.2
  • 31
    • 0015210459 scopus 로고
    • Evidence for the bidirectional replication of the Escherichia coli chromosome
    • Masters M, Broda P, (1971) Evidence for the bidirectional replication of the Escherichia coli chromosome. Nat New Biol 232: 137–140.
    • (1971) Nat New Biol , vol.232 , pp. 137-140
    • Masters, M.1    Broda, P.2
  • 32
    • 0015506453 scopus 로고
    • Origin and sequence of chromosome replication in Escherichia coli
    • Bird RE, Louarn J, Martuscelli J, Caro L, (1972) Origin and sequence of chromosome replication in Escherichia coli. J Mol Biol 70: 549–566.
    • (1972) J Mol Biol , vol.70 , pp. 549-566
    • Bird, R.E.1    Louarn, J.2    Martuscelli, J.3    Caro, L.4
  • 33
    • 0017716649 scopus 로고
    • Evidence for a fixed termination site of chromosome replication in Escherichia coli K12
    • Louarn J, Patte J, Louarn JM, (1977) Evidence for a fixed termination site of chromosome replication in Escherichia coli K12. J Mol Biol 115: 295–314.
    • (1977) J Mol Biol , vol.115 , pp. 295-314
    • Louarn, J.1    Patte, J.2    Louarn, J.M.3
  • 34
    • 0017522393 scopus 로고
    • Suppression of an Escherichia coli dnaA mutation by the integrated R factor R100.1: origin of chromosome replication during exponential growth
    • Chandler M, Silver L, Caro L, (1977) Suppression of an Escherichia coli dnaA mutation by the integrated R factor R100.1: origin of chromosome replication during exponential growth. J Bacteriol 131: 421–430.
    • (1977) J Bacteriol , vol.131 , pp. 421-430
    • Chandler, M.1    Silver, L.2    Caro, L.3
  • 35
    • 0018150752 scopus 로고
    • Chromosome replication in an Escherichia coli dnaA mutant integratively suppressed by prophage P2
    • Kuempel PL, Duerr SA, Maglothin PD, (1978) Chromosome replication in an Escherichia coli dnaA mutant integratively suppressed by prophage P2. J Bacteriol 134: 902–912.
    • (1978) J Bacteriol , vol.134 , pp. 902-912
    • Kuempel, P.L.1    Duerr, S.A.2    Maglothin, P.D.3
  • 36
    • 0031769860 scopus 로고    scopus 로고
    • Conversion to bidirectional replication after unidirectional initiation from R1 plasmid origin integrated at oriC in Escherichia coli
    • Maisnier-Patin S, Dasgupta S, Krabbe M, Nordstrom K, (1998) Conversion to bidirectional replication after unidirectional initiation from R1 plasmid origin integrated at oriC in Escherichia coli. Mol Microbiol 30: 1067–1079.
    • (1998) Mol Microbiol , vol.30 , pp. 1067-1079
    • Maisnier-Patin, S.1    Dasgupta, S.2    Krabbe, M.3    Nordstrom, K.4
  • 37
    • 80051563593 scopus 로고    scopus 로고
    • Genome-wide detection of chromosomal rearrangements, indels, and mutations in circular chromosomes by short read sequencing
    • Skovgaard O, Bak M, Lobner-Olesen A, Tommerup N, (2011) Genome-wide detection of chromosomal rearrangements, indels, and mutations in circular chromosomes by short read sequencing. Genome Res 21: 1388–1393.
    • (2011) Genome Res , vol.21 , pp. 1388-1393
    • Skovgaard, O.1    Bak, M.2    Lobner-Olesen, A.3    Tommerup, N.4
  • 39
    • 77949389907 scopus 로고    scopus 로고
    • Thymineless death is associated with loss of essential genetic information from the replication origin
    • Sangurdekar DP, Hamann BL, Smirnov D, Srienc F, Hanawalt PC, et al. (2010) Thymineless death is associated with loss of essential genetic information from the replication origin. Mol Microbiol 75: 1455–1467.
    • (2010) Mol Microbiol , vol.75 , pp. 1455-1467
    • Sangurdekar, D.P.1    Hamann, B.L.2    Smirnov, D.3    Srienc, F.4    Hanawalt, P.C.5
  • 40
    • 84863618430 scopus 로고    scopus 로고
    • Disintegration of nascent replication bubbles during thymine starvation triggers RecA- and RecBCD-dependent replication origin destruction
    • Kuong KJ, Kuzminov A, (2012) Disintegration of nascent replication bubbles during thymine starvation triggers RecA- and RecBCD-dependent replication origin destruction. J Biol Chem 287: 23958–23970.
    • (2012) J Biol Chem , vol.287 , pp. 23958-23970
    • Kuong, K.J.1    Kuzminov, A.2
  • 43
    • 0033710452 scopus 로고    scopus 로고
    • RuvABC-dependent double-strand breaks in dnaBts mutants require RecA
    • Seigneur M, Ehrlich SD, Michel B, (2000) RuvABC-dependent double-strand breaks in dnaBts mutants require RecA. Mol Microbiol 38: 565–574.
    • (2000) Mol Microbiol , vol.38 , pp. 565-574
    • Seigneur, M.1    Ehrlich, S.D.2    Michel, B.3
  • 44
    • 0034737294 scopus 로고    scopus 로고
    • Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression
    • McGlynn P, Lloyd RG, (2000) Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression. Cell 101: 35–45.
    • (2000) Cell , vol.101 , pp. 35-45
    • McGlynn, P.1    Lloyd, R.G.2
  • 45
    • 84857497122 scopus 로고    scopus 로고
    • Replication forks stalled at ultraviolet lesions are rescued via RecA and RuvABC protein-catalyzed disintegration in Escherichia coli
    • Khan SR, Kuzminov A, (2012) Replication forks stalled at ultraviolet lesions are rescued via RecA and RuvABC protein-catalyzed disintegration in Escherichia coli. J Biol Chem 287: 6250–6265.
    • (2012) J Biol Chem , vol.287 , pp. 6250-6265
    • Khan, S.R.1    Kuzminov, A.2
  • 47
    • 77956003710 scopus 로고    scopus 로고
    • Termination at sTop2
    • Alver RC, Bielinsky AK, (2010) Termination at sTop2. Mol Cell 39: 487–489.
    • (2010) Mol Cell , vol.39 , pp. 487-489
    • Alver, R.C.1    Bielinsky, A.K.2
  • 48
    • 77955997707 scopus 로고    scopus 로고
    • Replication termination at eukaryotic chromosomes is mediated by Top2 and occurs at genomic loci containing pausing elements
    • Fachinetti D, Bermejo R, Cocito A, Minardi S, Katou Y, et al. (2010) Replication termination at eukaryotic chromosomes is mediated by Top2 and occurs at genomic loci containing pausing elements. Mol Cell 39: 595–605.
    • (2010) Mol Cell , vol.39 , pp. 595-605
    • Fachinetti, D.1    Bermejo, R.2    Cocito, A.3    Minardi, S.4    Katou, Y.5
  • 49
    • 84858330322 scopus 로고    scopus 로고
    • The DNA helicase Pfh1 promotes fork merging at replication termination sites to ensure genome stability
    • Steinacher R, Osman F, Dalgaard JZ, Lorenz A, Whitby MC, (2012) The DNA helicase Pfh1 promotes fork merging at replication termination sites to ensure genome stability. Genes Dev 26: 594–602.
    • (2012) Genes Dev , vol.26 , pp. 594-602
    • Steinacher, R.1    Osman, F.2    Dalgaard, J.Z.3    Lorenz, A.4    Whitby, M.C.5
  • 50
    • 0015222645 scopus 로고
    • Chromosome replication in Escherichia coli. IV. Control of chromosome replication and cell division by an integrated episome
    • Nishimura Y, Caro L, Berg CM, Hirota Y, (1971) Chromosome replication in Escherichia coli. IV. Control of chromosome replication and cell division by an integrated episome. J Mol Biol 55: 441–456.
    • (1971) J Mol Biol , vol.55 , pp. 441-456
    • Nishimura, Y.1    Caro, L.2    Berg, C.M.3    Hirota, Y.4
  • 51
    • 0015138059 scopus 로고
    • On the process of cellular division in Escherichia coli: replication of the bacterial chromosome under control of prophage P2
    • Lindahl G, Hirota Y, Jacob F, (1971) On the process of cellular division in Escherichia coli: replication of the bacterial chromosome under control of prophage P2. Proc Natl Acad Sci U S A 68: 2407–2411.
    • (1971) Proc Natl Acad Sci U S A , vol.68 , pp. 2407-2411
    • Lindahl, G.1    Hirota, Y.2    Jacob, F.3
  • 52
    • 0020450676 scopus 로고
    • Suppression of Escherichia coli dnaA46 mutations by integration of plasmid R100.1. derivatives: constraints imposed by the replication terminus
    • Louarn J, Patte J, Louarn JM, (1982) Suppression of Escherichia coli dnaA46 mutations by integration of plasmid R100.1. derivatives: constraints imposed by the replication terminus. J Bacteriol 151: 657–667.
    • (1982) J Bacteriol , vol.151 , pp. 657-667
    • Louarn, J.1    Patte, J.2    Louarn, J.M.3
  • 53
    • 0034811161 scopus 로고    scopus 로고
    • RecA-mediated rescue of Escherichia coli strains with replication forks arrested at the terminus
    • Maisnier-Patin S, Nordstrom K, Dasgupta S, (2001) RecA-mediated rescue of Escherichia coli strains with replication forks arrested at the terminus. J Bacteriol 183: 6065–6073.
    • (2001) J Bacteriol , vol.183 , pp. 6065-6073
    • Maisnier-Patin, S.1    Nordstrom, K.2    Dasgupta, S.3
  • 54
    • 40549129679 scopus 로고    scopus 로고
    • Patterns of chromosomal fragmentation due to uracil-DNA incorporation reveal a novel mechanism of replication-dependent double-stranded breaks
    • Kouzminova EA, Kuzminov A, (2008) Patterns of chromosomal fragmentation due to uracil-DNA incorporation reveal a novel mechanism of replication-dependent double-stranded breaks. Mol Microbiol 68: 202–215.
    • (2008) Mol Microbiol , vol.68 , pp. 202-215
    • Kouzminova, E.A.1    Kuzminov, A.2
  • 55
    • 0030737725 scopus 로고    scopus 로고
    • Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription
    • Kogoma T, (1997) Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev 61: 212–238.
    • (1997) Microbiol Mol Biol Rev , vol.61 , pp. 212-238
    • Kogoma, T.1
  • 56
    • 18844374834 scopus 로고    scopus 로고
    • Requirements for replication restart proteins during constitutive stable DNA replication in Escherichia coli K-12
    • Sandler SJ, (2005) Requirements for replication restart proteins during constitutive stable DNA replication in Escherichia coli K-12. Genetics 169: 1799–1806.
    • (2005) Genetics , vol.169 , pp. 1799-1806
    • Sandler, S.J.1
  • 57
    • 1842391776 scopus 로고
    • Formation of an RNA primer for initiation of replication of ColE1 DNA by ribonuclease H
    • Itoh T, Tomizawa J, (1980) Formation of an RNA primer for initiation of replication of ColE1 DNA by ribonuclease H. Proc Natl Acad Sci U S A 77: 2450–2454.
    • (1980) Proc Natl Acad Sci U S A , vol.77 , pp. 2450-2454
    • Itoh, T.1    Tomizawa, J.2
  • 58
    • 0024355490 scopus 로고
    • Replication of plasmids in Gram-negative bacteria
    • Kues U, Stahl U, (1989) Replication of plasmids in Gram-negative bacteria. Microbiol Rev 53: 491–516.
    • (1989) Microbiol Rev , vol.53 , pp. 491-516
    • Kues, U.1    Stahl, U.2
  • 59
    • 84881342072 scopus 로고    scopus 로고
    • R-loops and nicks initiate DNA breakage and genome instability in non-growing Escherichia coli
    • Wimberly H, Shee C, Thornton PC, Sivaramakrishnan P, Rosenberg SM, et al. (2013) R-loops and nicks initiate DNA breakage and genome instability in non-growing Escherichia coli. Nat Commun 4: 2115.
    • (2013) Nat Commun , vol.4 , pp. 2115
    • Wimberly, H.1    Shee, C.2    Thornton, P.C.3    Sivaramakrishnan, P.4    Rosenberg, S.M.5
  • 60
    • 84891145437 scopus 로고    scopus 로고
    • Replication of the Escherichia coli chromosome in RNase HI-deficient cells: multiple initiation regions and fork dynamics
    • Maduike NZ, Tehranchi AK, Wang JD, Kreuzer KN, (2014) Replication of the Escherichia coli chromosome in RNase HI-deficient cells: multiple initiation regions and fork dynamics. Mol Microbiol 91: 39–56.
    • (2014) Mol Microbiol , vol.91 , pp. 39-56
    • Maduike, N.Z.1    Tehranchi, A.K.2    Wang, J.D.3    Kreuzer, K.N.4
  • 61
    • 0027368333 scopus 로고
    • Specific chromosomal sites enhancing homologous recombination in Escherichia coli mutants defective in RNase H
    • Nishitani H, Hidaka M, Horiuchi T, (1993) Specific chromosomal sites enhancing homologous recombination in Escherichia coli mutants defective in RNase H. Mol Gen Genet 240: 307–314.
    • (1993) Mol Gen Genet , vol.240 , pp. 307-314
    • Nishitani, H.1    Hidaka, M.2    Horiuchi, T.3
  • 62
    • 0025977222 scopus 로고
    • Transcription and initiation of ColE1 DNA replication in Escherichia coli K-12
    • Inoue N, Uchida H, (1991) Transcription and initiation of ColE1 DNA replication in Escherichia coli K-12. J Bacteriol 173: 1208–1214.
    • (1991) J Bacteriol , vol.173 , pp. 1208-1214
    • Inoue, N.1    Uchida, H.2
  • 63
    • 84871946865 scopus 로고    scopus 로고
    • Rho-dependent transcription termination is essential to prevent excessive genome-wide R-loops in Escherichia coli
    • Leela JK, Syeda AH, Anupama K, Gowrishankar J, (2013) Rho-dependent transcription termination is essential to prevent excessive genome-wide R-loops in Escherichia coli. Proc Natl Acad Sci U S A 110: 258–263.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 258-263
    • Leela, J.K.1    Syeda, A.H.2    Anupama, K.3    Gowrishankar, J.4
  • 64
    • 0043237757 scopus 로고    scopus 로고
    • Host factor titration by chromosomal R-loops as a mechanism for runaway plasmid replication in transcription termination-defective mutants of Escherichia coli
    • Harinarayanan R, Gowrishankar J, (2003) Host factor titration by chromosomal R-loops as a mechanism for runaway plasmid replication in transcription termination-defective mutants of Escherichia coli. J Mol Biol 332: 31–46.
    • (2003) J Mol Biol , vol.332 , pp. 31-46
    • Harinarayanan, R.1    Gowrishankar, J.2
  • 65
    • 83355169557 scopus 로고    scopus 로고
    • Two pathways for RNase E action in Escherichia coli in vivo and bypass of its essentiality in mutants defective for Rho-dependent transcription termination
    • Anupama K, Leela JK, Gowrishankar J, (2011) Two pathways for RNase E action in Escherichia coli in vivo and bypass of its essentiality in mutants defective for Rho-dependent transcription termination. Mol Microbiol 82: 1330–1348.
    • (2011) Mol Microbiol , vol.82 , pp. 1330-1348
    • Anupama, K.1    Leela, J.K.2    Gowrishankar, J.3
  • 66
    • 7644223774 scopus 로고    scopus 로고
    • Why is transcription coupled to translation in bacteria?
    • Gowrishankar J, Harinarayanan R, (2004) Why is transcription coupled to translation in bacteria? Mol Microbiol 54: 598–603.
    • (2004) Mol Microbiol , vol.54 , pp. 598-603
    • Gowrishankar, J.1    Harinarayanan, R.2
  • 67
    • 84879908070 scopus 로고    scopus 로고
    • R-loops in bacterial transcription: their causes and consequences
    • Gowrishankar J, Leela JK, Anupama K, (2013) R-loops in bacterial transcription: their causes and consequences. Transcription 4: 153–157.
    • (2013) Transcription , vol.4 , pp. 153-157
    • Gowrishankar, J.1    Leela, J.K.2    Anupama, K.3
  • 68
    • 80052008241 scopus 로고    scopus 로고
    • Linking RNA polymerase backtracking to genome instability in E. coli
    • Dutta D, Shatalin K, Epshtein V, Gottesman ME, Nudler E, (2011) Linking RNA polymerase backtracking to genome instability in E. coli. Cell 146: 533–543.
    • (2011) Cell , vol.146 , pp. 533-543
    • Dutta, D.1    Shatalin, K.2    Epshtein, V.3    Gottesman, M.E.4    Nudler, E.5
  • 69
    • 84862673628 scopus 로고    scopus 로고
    • RNA polymerase backtracking in gene regulation and genome instability
    • Nudler E, (2012) RNA polymerase backtracking in gene regulation and genome instability. Cell 149: 1438–1445.
    • (2012) Cell , vol.149 , pp. 1438-1445
    • Nudler, E.1
  • 70
    • 84870497149 scopus 로고    scopus 로고
    • Rho and NusG suppress pervasive antisense transcription in Escherichia coli
    • Peters JM, Mooney RA, Grass JA, Jessen ED, Tran F, et al. (2012) Rho and NusG suppress pervasive antisense transcription in Escherichia coli. Genes Dev 26: 2621–2633.
    • (2012) Genes Dev , vol.26 , pp. 2621-2633
    • Peters, J.M.1    Mooney, R.A.2    Grass, J.A.3    Jessen, E.D.4    Tran, F.5
  • 71
    • 84906316682 scopus 로고    scopus 로고
    • Pervasive transcription: illuminating the dark matter of bacterial transcriptomes
    • Wade JT, Grainger DC, (2014) Pervasive transcription: illuminating the dark matter of bacterial transcriptomes. Nat Rev Microbiol 12: 647–653.
    • (2014) Nat Rev Microbiol , vol.12 , pp. 647-653
    • Wade, J.T.1    Grainger, D.C.2
  • 73
    • 78951475725 scopus 로고    scopus 로고
    • RecG protein and single-strand DNA exonucleases avoid cell lethality associated with PriA helicase activity in Escherichia coli
    • Rudolph CJ, Mahdi AA, Upton AL, Lloyd RG, (2010) RecG protein and single-strand DNA exonucleases avoid cell lethality associated with PriA helicase activity in Escherichia coli. Genetics 186: 473–492.
    • (2010) Genetics , vol.186 , pp. 473-492
    • Rudolph, C.J.1    Mahdi, A.A.2    Upton, A.L.3    Lloyd, R.G.4
  • 74
    • 22544464455 scopus 로고    scopus 로고
    • RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription
    • Trautinger BW, Jaktaji RP, Rusakova E, Lloyd RG, (2005) RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription. Mol Cell 19: 247–258.
    • (2005) Mol Cell , vol.19 , pp. 247-258
    • Trautinger, B.W.1    Jaktaji, R.P.2    Rusakova, E.3    Lloyd, R.G.4
  • 79
    • 84900016689 scopus 로고    scopus 로고
    • Chromosome replication origins: do we really need them?
    • Michel B, Bernander R, (2014) Chromosome replication origins: do we really need them? BioEssays 36: 585–590.
    • (2014) BioEssays , vol.36 , pp. 585-590
    • Michel, B.1    Bernander, R.2
  • 80
    • 84255198334 scopus 로고    scopus 로고
    • Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes
    • Helmrich A, Ballarino M, Tora L, (2011) Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol Cell 44: 966–977.
    • (2011) Mol Cell , vol.44 , pp. 966-977
    • Helmrich, A.1    Ballarino, M.2    Tora, L.3
  • 81
    • 84255177502 scopus 로고    scopus 로고
    • RNase H and multiple RNA biogenesis factors cooperate to prevent RNA: DNA hybrids from generating genome instability
    • Wahba L, Amon JD, Koshland D, Vuica-Ross M, (2011) RNase H and multiple RNA biogenesis factors cooperate to prevent RNA: DNA hybrids from generating genome instability. Mol Cell 44: 978–988.
    • (2011) Mol Cell , vol.44 , pp. 978-988
    • Wahba, L.1    Amon, J.D.2    Koshland, D.3    Vuica-Ross, M.4
  • 82
    • 78650727733 scopus 로고    scopus 로고
    • Yeast Sen1 helicase protects the genome from transcription-associated instability
    • Mischo HE, Gomez-Gonzalez B, Grzechnik P, Rondon AG, Wei W, et al. (2011) Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol Cell 41: 21–32.
    • (2011) Mol Cell , vol.41 , pp. 21-32
    • Mischo, H.E.1    Gomez-Gonzalez, B.2    Grzechnik, P.3    Rondon, A.G.4    Wei, W.5
  • 83
    • 84859087611 scopus 로고    scopus 로고
    • R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters
    • Ginno PA, Lott PL, Christensen HC, Korf I, Chedin F, (2012) R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell 45: 814–825.
    • (2012) Mol Cell , vol.45 , pp. 814-825
    • Ginno, P.A.1    Lott, P.L.2    Christensen, H.C.3    Korf, I.4    Chedin, F.5
  • 84
    • 84904459138 scopus 로고    scopus 로고
    • BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2
    • Bhatia V, Barroso SI, Garcia-Rubio ML, Tumini E, Herrera-Moyano E, et al. (2014) BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. Nature 511: 362–365.
    • (2014) Nature , vol.511 , pp. 362-365
    • Bhatia, V.1    Barroso, S.I.2    Garcia-Rubio, M.L.3    Tumini, E.4    Herrera-Moyano, E.5
  • 85
    • 77953634888 scopus 로고    scopus 로고
    • Does interference between replication and transcription contribute to genomic instability in cancer cells?
    • Tuduri S, Crabbe L, Tourriere H, Coquelle A, Pasero P, (2010) Does interference between replication and transcription contribute to genomic instability in cancer cells? Cell Cycle 9: 1886–1892.
    • (2010) Cell Cycle , vol.9 , pp. 1886-1892
    • Tuduri, S.1    Crabbe, L.2    Tourriere, H.3    Coquelle, A.4    Pasero, P.5
  • 86
    • 84859042868 scopus 로고    scopus 로고
    • Preventing replication stress to maintain genome stability: resolving conflicts between replication and transcription
    • Bermejo R, Lai MS, Foiani M, (2012) Preventing replication stress to maintain genome stability: resolving conflicts between replication and transcription. Mol Cell 45: 710–718.
    • (2012) Mol Cell , vol.45 , pp. 710-718
    • Bermejo, R.1    Lai, M.S.2    Foiani, M.3
  • 87
    • 84860338675 scopus 로고    scopus 로고
    • R loops: from transcription byproducts to threats to genome stability
    • Aguilera A, Garcia-Muse T, (2012) R loops: from transcription byproducts to threats to genome stability. Mol Cell 46: 115–124.
    • (2012) Mol Cell , vol.46 , pp. 115-124
    • Aguilera, A.1    Garcia-Muse, T.2
  • 88
    • 84887151305 scopus 로고    scopus 로고
    • The intertwined roles of transcription and repair proteins
    • Fong YW, Cattoglio C, Tjian R, (2013) The intertwined roles of transcription and repair proteins. Mol Cell 52: 291–302.
    • (2013) Mol Cell , vol.52 , pp. 291-302
    • Fong, Y.W.1    Cattoglio, C.2    Tjian, R.3
  • 89
    • 84883523016 scopus 로고    scopus 로고
    • Pre-mRNA processing factors meet the DNA damage response
    • Montecucco A, Biamonti G, (2013) Pre-mRNA processing factors meet the DNA damage response. Front Genet 4: 102.
    • (2013) Front Genet , vol.4 , pp. 102
    • Montecucco, A.1    Biamonti, G.2
  • 90
    • 84901474570 scopus 로고    scopus 로고
    • Mechanisms of genome instability induced by RNA-processing defects
    • Chan YA, Hieter P, Stirling PC, (2014) Mechanisms of genome instability induced by RNA-processing defects. Trends Genet 30: 245–253.
    • (2014) Trends Genet , vol.30 , pp. 245-253
    • Chan, Y.A.1    Hieter, P.2    Stirling, P.C.3
  • 91
    • 84902081933 scopus 로고    scopus 로고
    • The contribution of co-transcriptional RNA: DNA hybrid structures to DNA damage and genome instability
    • Hamperl S, Cimprich KA, (2014) The contribution of co-transcriptional RNA: DNA hybrid structures to DNA damage and genome instability. DNA Repair 19: 84–94.
    • (2014) DNA Repair , vol.19 , pp. 84-94
    • Hamperl, S.1    Cimprich, K.A.2
  • 92
    • 84903795949 scopus 로고    scopus 로고
    • A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression
    • Skourti-Stathaki K, Proudfoot NJ, (2014) A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev 28: 1384–1396.
    • (2014) Genes Dev , vol.28 , pp. 1384-1396
    • Skourti-Stathaki, K.1    Proudfoot, N.J.2
  • 93
    • 84905457143 scopus 로고    scopus 로고
    • Transcription and recombination: when RNA meets DNA
    • Aguilera A, Gaillard H, (2014) Transcription and recombination: when RNA meets DNA. Cold Spring Harb Perspect Biol 6: a016543.
    • (2014) Cold Spring Harb Perspect Biol , vol.6 , pp. a016543
    • Aguilera, A.1    Gaillard, H.2
  • 94
    • 84907587725 scopus 로고    scopus 로고
    • Out of balance: R-loops in human disease
    • Groh M, Gromak N, (2014) Out of balance: R-loops in human disease. PLoS Genet 10: e1004630.
    • (2014) PLoS Genet , vol.10 , pp. e1004630
    • Groh, M.1    Gromak, N.2
  • 95
    • 77957168933 scopus 로고    scopus 로고
    • Eukaryotic DNA replication origins: many choices for appropriate answers
    • Mechali M, (2010) Eukaryotic DNA replication origins: many choices for appropriate answers. Nat Rev Mol Cell Biol 11: 728–738.
    • (2010) Nat Rev Mol Cell Biol , vol.11 , pp. 728-738
    • Mechali, M.1
  • 97
    • 77649231570 scopus 로고    scopus 로고
    • Defining replication origin efficiency using DNA fiber assays
    • Tuduri S, Tourriere H, Pasero P, (2010) Defining replication origin efficiency using DNA fiber assays. Chromosome Res 18: 91–102.
    • (2010) Chromosome Res , vol.18 , pp. 91-102
    • Tuduri, S.1    Tourriere, H.2    Pasero, P.3
  • 98
    • 79961170861 scopus 로고    scopus 로고
    • How dormant origins promote complete genome replication
    • Blow JJ, Ge XQ, Jackson DA, (2011) How dormant origins promote complete genome replication. Trends Biochem Sci 36: 405–414.
    • (2011) Trends Biochem Sci , vol.36 , pp. 405-414
    • Blow, J.J.1    Ge, X.Q.2    Jackson, D.A.3
  • 99
    • 79952609005 scopus 로고    scopus 로고
    • The effect of the intra-S-phase checkpoint on origins of replication in human cells
    • Karnani N, Dutta A, (2011) The effect of the intra-S-phase checkpoint on origins of replication in human cells. Genes Dev 25: 621–633.
    • (2011) Genes Dev , vol.25 , pp. 621-633
    • Karnani, N.1    Dutta, A.2
  • 100
    • 84898863608 scopus 로고    scopus 로고
    • βTRCP collaborate to degrade ASF1a and thus repress genes overlapping with clusters of stalled replication forks
    • Im JS, Keaton M, Lee KY, Kumar P, Park J, et al. (2014) ATR checkpoint kinase and CRL1βTRCP collaborate to degrade ASF1a and thus repress genes overlapping with clusters of stalled replication forks. Genes Dev 28: 875–887.
    • (2014) Genes Dev , vol.28 , pp. 875-887
    • Im, J.S.1    Keaton, M.2    Lee, K.Y.3    Kumar, P.4    Park, J.5
  • 101
    • 84857191660 scopus 로고    scopus 로고
    • Transcription as a source of genome instability
    • Kim N, Jinks-Robertson S, (2012) Transcription as a source of genome instability. Nat Rev Genet 13: 204–214.
    • (2012) Nat Rev Genet , vol.13 , pp. 204-214
    • Kim, N.1    Jinks-Robertson, S.2
  • 102
    • 84896940791 scopus 로고    scopus 로고
    • Cancer suppression by the chromosome custodians, BRCA1 and BRCA2
    • Venkitaraman AR, (2014) Cancer suppression by the chromosome custodians, BRCA1 and BRCA2. Science 343: 1470–1475.
    • (2014) Science , vol.343 , pp. 1470-1475
    • Venkitaraman, A.R.1
  • 103
    • 0033607485 scopus 로고    scopus 로고
    • R-loop-dependent hypernegative supercoiling in Escherichia coli topA mutants preferentially occurs at low temperatures and correlates with growth inhibition
    • Masse E, Drolet M, (1999) R-loop-dependent hypernegative supercoiling in Escherichia coli topA mutants preferentially occurs at low temperatures and correlates with growth inhibition. J Mol Biol 294: 321–332.
    • (1999) J Mol Biol , vol.294 , pp. 321-332
    • Masse, E.1    Drolet, M.2
  • 104
    • 0033522905 scopus 로고    scopus 로고
    • Escherichia coli DNA topoisomerase I inhibits R-loop formation by relaxing transcription-induced negative supercoiling
    • Masse E, Drolet M, (1999) Escherichia coli DNA topoisomerase I inhibits R-loop formation by relaxing transcription-induced negative supercoiling. J Biol Chem 274: 16659–16664.
    • (1999) J Biol Chem , vol.274 , pp. 16659-16664
    • Masse, E.1    Drolet, M.2
  • 105
    • 84924372033 scopus 로고    scopus 로고
    • Roles of type 1A topoisomerases in genome maintenance in Escherichia coli
    • Usongo V, Drolet M, (2014) Roles of type 1A topoisomerases in genome maintenance in Escherichia coli. PLoS Genet 10: e1004543.
    • (2014) PLoS Genet , vol.10 , pp. e1004543
    • Usongo, V.1    Drolet, M.2
  • 106
    • 21244473094 scopus 로고    scopus 로고
    • Spatial arrangement and macrodomain organization of bacterial chromosomes
    • Boccard F, Esnault E, Valens M, (2005) Spatial arrangement and macrodomain organization of bacterial chromosomes. Mol Microbiol 57: 9–16.
    • (2005) Mol Microbiol , vol.57 , pp. 9-16
    • Boccard, F.1    Esnault, E.2    Valens, M.3
  • 107
    • 58449118337 scopus 로고    scopus 로고
    • The organization of the bacterial genome
    • Rocha EP, (2008) The organization of the bacterial genome. Annu Rev Genet 42: 211–233.
    • (2008) Annu Rev Genet , vol.42 , pp. 211-233
    • Rocha, E.P.1
  • 108
    • 54949146519 scopus 로고    scopus 로고
    • The MatP/matS site-specific system organizes the terminus region of the E. coli chromosome into a macrodomain
    • Mercier R, Petit MA, Schbath S, Robin S, El Karoui M, et al. (2008) The MatP/matS site-specific system organizes the terminus region of the E. coli chromosome into a macrodomain. Cell 135: 475–485.
    • (2008) Cell , vol.135 , pp. 475-485
    • Mercier, R.1    Petit, M.A.2    Schbath, S.3    Robin, S.4    El Karoui, M.5
  • 109
    • 79959843457 scopus 로고    scopus 로고
    • Chromosomal macrodomains and associated proteins: implications for DNA organization and replication in Gram negative bacteria
    • Dame RT, Kalmykowa OJ, Grainger DC, (2011) Chromosomal macrodomains and associated proteins: implications for DNA organization and replication in Gram negative bacteria. PLoS Genet 7: e1002123.
    • (2011) PLoS Genet , vol.7 , pp. e1002123
    • Dame, R.T.1    Kalmykowa, O.J.2    Grainger, D.C.3
  • 110
    • 84885371027 scopus 로고    scopus 로고
    • The chromosome cycle of prokaryotes
    • Kuzminov A, (2013) The chromosome cycle of prokaryotes. Mol Microbiol 90: 214–227.
    • (2013) Mol Microbiol , vol.90 , pp. 214-227
    • Kuzminov, A.1
  • 111
    • 84891670778 scopus 로고    scopus 로고
    • The multifork Escherichia coli chromosome is a self-duplicating and self-segregating thermodynamic ring polymer
    • Youngren B, Nielsen HJ, Jun S, Austin S, (2014) The multifork Escherichia coli chromosome is a self-duplicating and self-segregating thermodynamic ring polymer. Genes Dev 28: 71–84.
    • (2014) Genes Dev , vol.28 , pp. 71-84
    • Youngren, B.1    Nielsen, H.J.2    Jun, S.3    Austin, S.4
  • 113
    • 76949086750 scopus 로고    scopus 로고
    • Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC
    • Katayama T, Ozaki S, Keyamura K, Fujimitsu K, (2010) Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC. Nat Rev Microbiol 8: 163–170.
    • (2010) Nat Rev Microbiol , vol.8 , pp. 163-170
    • Katayama, T.1    Ozaki, S.2    Keyamura, K.3    Fujimitsu, K.4
  • 114
    • 0030892106 scopus 로고    scopus 로고
    • Suppression of initiation defects of chromosome replication in Bacillus subtilis dnaA and oriC-deleted mutants by integration of a plasmid replicon into the chromosomes
    • Hassan AK, Moriya S, Ogura M, Tanaka T, Kawamura F, et al. (1997) Suppression of initiation defects of chromosome replication in Bacillus subtilis dnaA and oriC-deleted mutants by integration of a plasmid replicon into the chromosomes. J Bacteriol 179: 2494–2502.
    • (1997) J Bacteriol , vol.179 , pp. 2494-2502
    • Hassan, A.K.1    Moriya, S.2    Ogura, M.3    Tanaka, T.4    Kawamura, F.5
  • 115
    • 0031589049 scopus 로고    scopus 로고
    • Mechanism of anucleate cell production in the oriC-deleted mutants of Bacillus subtilis
    • Moriya S, Hassan AK, Kadoya R, Ogasawara N, (1997) Mechanism of anucleate cell production in the oriC-deleted mutants of Bacillus subtilis. DNA Res 4: 115–126.
    • (1997) DNA Res , vol.4 , pp. 115-126
    • Moriya, S.1    Hassan, A.K.2    Kadoya, R.3    Ogasawara, N.4
  • 116
    • 0031854048 scopus 로고    scopus 로고
    • PcrA is an essential DNA helicase of Bacillus subtilis fulfilling functions both in repair and rolling-circle replication
    • Petit MA, Dervyn E, Rose M, Entian KD, McGovern S, et al. (1998) PcrA is an essential DNA helicase of Bacillus subtilis fulfilling functions both in repair and rolling-circle replication. Mol Microbiol 29: 261–273.
    • (1998) Mol Microbiol , vol.29 , pp. 261-273
    • Petit, M.A.1    Dervyn, E.2    Rose, M.3    Entian, K.D.4    McGovern, S.5
  • 117
    • 0037124327 scopus 로고    scopus 로고
    • Essential bacterial helicases that counteract the toxicity of recombination proteins
    • Petit MA, Ehrlich D, (2002) Essential bacterial helicases that counteract the toxicity of recombination proteins. EMBO J 21: 3137–3147.
    • (2002) EMBO J , vol.21 , pp. 3137-3147
    • Petit, M.A.1    Ehrlich, D.2
  • 118
    • 84924372032 scopus 로고    scopus 로고
    • The B. subtilis accessory helicase PcrA facilitates replication through transcription units genome-wide
    • Merrikh C, Merrikh H, (2014) The B. subtilis accessory helicase PcrA facilitates replication through transcription units genome-wide. FASEB J 28 Supp. LB126
    • (2014) FASEB J , vol.28
    • Merrikh, C.1    Merrikh, H.2
  • 119
    • 76749101865 scopus 로고    scopus 로고
    • Recruitment to stalled replication forks of the PriA DNA helicase and replisome-loading activities is essential for survival
    • Gabbai CB, Marians KJ, (2010) Recruitment to stalled replication forks of the PriA DNA helicase and replisome-loading activities is essential for survival. DNA Repair 9: 202–209.
    • (2010) DNA Repair , vol.9 , pp. 202-209
    • Gabbai, C.B.1    Marians, K.J.2
  • 120
    • 79952126098 scopus 로고    scopus 로고
    • Co-directional replication-transcription conflicts lead to replication restart
    • Merrikh H, Machon C, Grainger WH, Grossman AD, Soultanas P, (2011) Co-directional replication-transcription conflicts lead to replication restart. Nature 470: 554–557.
    • (2011) Nature , vol.470 , pp. 554-557
    • Merrikh, H.1    Machon, C.2    Grainger, W.H.3    Grossman, A.D.4    Soultanas, P.5
  • 121
  • 122
    • 84887402750 scopus 로고    scopus 로고
    • Replication stress-induced genome instability: the dark side of replication maintenance by homologous recombination
    • Carr AM, Lambert S, (2013) Replication stress-induced genome instability: the dark side of replication maintenance by homologous recombination. J Mol Biol 425: 4733–4744.
    • (2013) J Mol Biol , vol.425 , pp. 4733-4744
    • Carr, A.M.1    Lambert, S.2
  • 123
    • 84870766296 scopus 로고    scopus 로고
    • Repair of strand breaks by homologous recombination
    • Jasin M, Rothstein R, (2013) Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 5: a012740.
    • (2013) Cold Spring Harb Perspect Biol , vol.5 , pp. a012740
    • Jasin, M.1    Rothstein, R.2
  • 124
    • 84891122354 scopus 로고    scopus 로고
    • Investigations of homologous recombination pathways and their regulation
    • Daley JM, Kwon Y, Niu H, Sung P, (2013) Investigations of homologous recombination pathways and their regulation. Yale J Biol Med 86: 453–461.
    • (2013) Yale J Biol Med , vol.86 , pp. 453-461
    • Daley, J.M.1    Kwon, Y.2    Niu, H.3    Sung, P.4
  • 125
    • 84885844201 scopus 로고    scopus 로고
    • DNA replication and homologous recombination factors: acting together to maintain genome stability
    • Aze A, Zhou JC, Costa A, Costanzo V, (2013) DNA replication and homologous recombination factors: acting together to maintain genome stability. Chromosoma 122: 401–413.
    • (2013) Chromosoma , vol.122 , pp. 401-413
    • Aze, A.1    Zhou, J.C.2    Costa, A.3    Costanzo, V.4
  • 126
    • 84903542170 scopus 로고    scopus 로고
    • BRCA1 controls homologous recombination at Tus/Ter-stalled mammalian replication forks
    • Willis NA, Chandramouly G, Huang B, Kwok A, Follonier C, et al. (2014) BRCA1 controls homologous recombination at Tus/Ter-stalled mammalian replication forks. Nature 510: 556–559.
    • (2014) Nature , vol.510 , pp. 556-559
    • Willis, N.A.1    Chandramouly, G.2    Huang, B.3    Kwok, A.4    Follonier, C.5
  • 127
    • 76749090482 scopus 로고    scopus 로고
    • The processing of double-stranded DNA breaks for recombinational repair by helicase-nuclease complexes
    • Yeeles JT, Dillingham MS, (2010) The processing of double-stranded DNA breaks for recombinational repair by helicase-nuclease complexes. DNA Repair 9: 276–285.
    • (2010) DNA Repair , vol.9 , pp. 276-285
    • Yeeles, J.T.1    Dillingham, M.S.2
  • 128
    • 84871340015 scopus 로고    scopus 로고
    • Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB
    • Wigley DB, (2013) Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB. Nat Rev Microbiol 11: 9–13.
    • (2013) Nat Rev Microbiol , vol.11 , pp. 9-13
    • Wigley, D.B.1
  • 130
    • 79951857925 scopus 로고    scopus 로고
    • DNA end resection–unraveling the tail
    • Mimitou EP, Symington LS, (2011) DNA end resection–unraveling the tail. DNA Repair 10: 344–348.
    • (2011) DNA Repair , vol.10 , pp. 344-348
    • Mimitou, E.P.1    Symington, L.S.2
  • 131
    • 84905493192 scopus 로고    scopus 로고
    • End resection at double-strand breaks: mechanism and regulation
    • Symington LS, (2014) End resection at double-strand breaks: mechanism and regulation. Cold Spring Harb Perspect Biol 6: a016436.
    • (2014) Cold Spring Harb Perspect Biol , vol.6 , pp. a016436
    • Symington, L.S.1
  • 132
    • 0032873606 scopus 로고    scopus 로고
    • Holliday junction processing in bacteria: insights from the evolutionary conservation of RuvABC, RecG, and RusA
    • Sharples GJ, Ingleston SM, Lloyd RG, (1999) Holliday junction processing in bacteria: insights from the evolutionary conservation of RuvABC, RecG, and RusA. J Bacteriol 181: 5543–5550.
    • (1999) J Bacteriol , vol.181 , pp. 5543-5550
    • Sharples, G.J.1    Ingleston, S.M.2    Lloyd, R.G.3
  • 134
    • 84868312980 scopus 로고    scopus 로고
    • Characterization of the Holliday junction resolving enzyme encoded by the Bacillus subtilis bacteriophage SPP1
    • Zecchi L, Lo Piano A, Suzuki Y, Canas C, Takeyasu K, et al. (2012) Characterization of the Holliday junction resolving enzyme encoded by the Bacillus subtilis bacteriophage SPP1. PLoS One 7: e48440.
    • (2012) PLoS One , vol.7 , pp. e48440
    • Zecchi, L.1    Lo Piano, A.2    Suzuki, Y.3    Canas, C.4    Takeyasu, K.5
  • 135
    • 84908248970 scopus 로고    scopus 로고
    • Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication
    • Maric M, Maculins T, De Piccoli G, Labib K, (2014) Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication. Science 346: 440.
    • (2014) Science , vol.346 , pp. 440
    • Maric, M.1    Maculins, T.2    De Piccoli, G.3    Labib, K.4
  • 136
    • 84908257634 scopus 로고    scopus 로고
    • Polyubiquitylation drives replisome disassembly at the termination of DNA replication
    • Moreno SP, Bailey R, Campion N, Herron S, Gambus A, (2014) Polyubiquitylation drives replisome disassembly at the termination of DNA replication. Science 346: 477–481.
    • (2014) Science , vol.346 , pp. 477-481
    • Moreno, S.P.1    Bailey, R.2    Campion, N.3    Herron, S.4    Gambus, A.5
  • 137
    • 34248394295 scopus 로고    scopus 로고
    • Genome-wide coorientation of replication and transcription reduces adverse effects on replication in Bacillus subtilis
    • Wang JD, Berkmen MB, Grossman AD, (2007) Genome-wide coorientation of replication and transcription reduces adverse effects on replication in Bacillus subtilis. Proc Natl Acad Sci U S A 104: 5608–5613.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 5608-5613
    • Wang, J.D.1    Berkmen, M.B.2    Grossman, A.D.3
  • 138
    • 76749094639 scopus 로고    scopus 로고
    • Co-orientation of replication and transcription preserves genome integrity
    • Srivatsan A, Tehranchi A, MacAlpine DM, Wang JD, (2010) Co-orientation of replication and transcription preserves genome integrity. PLoS Genet 6: e1000810.
    • (2010) PLoS Genet , vol.6 , pp. e1000810
    • Srivatsan, A.1    Tehranchi, A.2    MacAlpine, D.M.3    Wang, J.D.4
  • 139
    • 34548396264 scopus 로고    scopus 로고
    • Human gene organization driven by the coordination of replication and transcription
    • Huvet M, Nicolay S, Touchon M, Audit B, d'Aubenton-Carafa Y, et al. (2007) Human gene organization driven by the coordination of replication and transcription. Genome Res 17: 1278–1285.
    • (2007) Genome Res , vol.17 , pp. 1278-1285
    • Huvet, M.1    Nicolay, S.2    Touchon, M.3    Audit, B.4    d'Aubenton-Carafa, Y.5
  • 140
    • 84857683425 scopus 로고    scopus 로고
    • Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis
    • Nicolas P, Mader U, Dervyn E, Rochat T, Leduc A, et al. (2012) Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335: 1103–1106.
    • (2012) Science , vol.335 , pp. 1103-1106
    • Nicolas, P.1    Mader, U.2    Dervyn, E.3    Rochat, T.4    Leduc, A.5
  • 141
    • 84901360066 scopus 로고    scopus 로고
    • Genome-wide profiling of yeast DNA: RNA hybrid prone sites with DRIP-Chip
    • Chan YA, Aristizabal MJ, Lu PYT, Luo Z, Hamza A, et al. (2014) Genome-wide profiling of yeast DNA: RNA hybrid prone sites with DRIP-Chip. PLoS Genet 10: e1004288.
    • (2014) PLoS Genet , vol.10 , pp. e1004288
    • Chan, Y.A.1    Aristizabal, M.J.2    Lu, P.Y.T.3    Luo, Z.4    Hamza, A.5
  • 142
    • 84908343019 scopus 로고    scopus 로고
    • Genome-wide distribution of RNA-DNA hybrids identifies RNase H targets in tRNA genes, retrotransposons and mitochondria
    • El Hage A, Webb S, Kerr A, Tollervey D, (2014) Genome-wide distribution of RNA-DNA hybrids identifies RNase H targets in tRNA genes, retrotransposons and mitochondria. PLoS Genet 10: e1004716.
    • (2014) PLoS Genet , vol.10 , pp. e1004716
    • El Hage, A.1    Webb, S.2    Kerr, A.3    Tollervey, D.4
  • 143
    • 77954841539 scopus 로고    scopus 로고
    • Loss of topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis
    • El Hage A, French SL, Beyer AL, Tollervey D, (2010) Loss of topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev 24: 1546–1558.
    • (2010) Genes Dev , vol.24 , pp. 1546-1558
    • El Hage, A.1    French, S.L.2    Beyer, A.L.3    Tollervey, D.4
  • 144
    • 36749062371 scopus 로고    scopus 로고
    • Reassessment of the in vivo functions of DNA polymerase I and RNase H in bacterial cell growth
    • Fukushima S, Itaya M, Kato H, Ogasawara N, Yoshikawa H, (2007) Reassessment of the in vivo functions of DNA polymerase I and RNase H in bacterial cell growth. J Bacteriol 189: 8575–8583.
    • (2007) J Bacteriol , vol.189 , pp. 8575-8583
    • Fukushima, S.1    Itaya, M.2    Kato, H.3    Ogasawara, N.4    Yoshikawa, H.5
  • 145
    • 61349178533 scopus 로고    scopus 로고
    • Ribonuclease H: molecular diversities, substrate binding domains, and catalytic mechanism of the prokaryotic enzymes
    • Tadokoro T, Kanaya S, (2009) Ribonuclease H: molecular diversities, substrate binding domains, and catalytic mechanism of the prokaryotic enzymes. FEBS J 276: 1482–1493.
    • (2009) FEBS J , vol.276 , pp. 1482-1493
    • Tadokoro, T.1    Kanaya, S.2
  • 146
    • 61349102407 scopus 로고    scopus 로고
    • Ribonuclease H: the enzymes in eukaryotes
    • Cerritelli SM, Crouch RJ, (2009) Ribonuclease H: the enzymes in eukaryotes. FEBS J 276: 1494–1505.
    • (2009) FEBS J , vol.276 , pp. 1494-1505
    • Cerritelli, S.M.1    Crouch, R.J.2
  • 148
    • 34547676741 scopus 로고    scopus 로고
    • Bacillus subtilis RecG branch migration translocase is required for DNA repair and chromosomal segregation
    • Sanchez H, Carrasco B, Cozar MC, Alonso JC, (2007) Bacillus subtilis RecG branch migration translocase is required for DNA repair and chromosomal segregation. Mol Microbiol 65: 920–935.
    • (2007) Mol Microbiol , vol.65 , pp. 920-935
    • Sanchez, H.1    Carrasco, B.2    Cozar, M.C.3    Alonso, J.C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.