메뉴 건너뛰기




Volumn 5, Issue 11, 2013, Pages

Archaeology of eukaryotic DNA replication

Author keywords

[No Author keywords available]

Indexed keywords

DNA BINDING PROTEIN; DNA DIRECTED DNA POLYMERASE; ORIGIN RECOGNITION COMPLEX;

EID: 84877122234     PISSN: None     EISSN: 19430264     Source Type: Journal    
DOI: 10.1101/cshperspect.a012963     Document Type: Article
Times cited : (65)

References (116)
  • 1
    • 0004253599 scopus 로고
    • MOLPHY: Programs for molecular phylogenetics
    • In, Institute of Statistical Mathematics, Tokyo
    • Adachi J, Hasegawa M. 1992. MOLPHY: Programs for molecular phylogenetics. In Computer science monographs 27. Institute of Statistical Mathematics, Tokyo.
    • (1992) Computer science monographs 27
    • Adachi, J.1    Hasegawa, M.2
  • 2
    • 78649635380 scopus 로고    scopus 로고
    • Cyclin-dependent kinase-dependent initiation of chromosomal DNA replication
    • Araki H. 2010. Cyclin-dependent kinase-dependent initiation of chromosomal DNA replication. Curr Opin Cell Biol 22: 766-771.
    • (2010) Curr Opin Cell Biol , vol.22 , pp. 766-771
    • Araki, H.1
  • 3
    • 0033828623 scopus 로고    scopus 로고
    • Guilt by association: Contextual information in genome analysis
    • Aravind L. 2000. Guilt by association: Contextual information in genome analysis. Genome Res 10: 1074-1077.
    • (2000) Genome Res , vol.10 , pp. 1074-1077
    • Aravind, L.1
  • 4
    • 0032529457 scopus 로고    scopus 로고
    • Phosphoesterase domains associated with DNA polymerases of diverse origins
    • Aravind L, Koonin EV. 1998. Phosphoesterase domains associated with DNA polymerases of diverse origins. Nucleic Acids Res 26: 3746-3752.
    • (1998) Nucleic Acids Res , vol.26 , pp. 3746-3752
    • Aravind, L.1    Koonin, E.V.2
  • 5
    • 0033105094 scopus 로고    scopus 로고
    • Conserved domains in DNA repair proteins and evolution of repair systems
    • Aravind L, Walker DR, Koonin EV. 1999. Conserved domains in DNA repair proteins and evolution of repair systems. Nucleic Acids Res 27: 1223-1242.
    • (1999) Nucleic Acids Res , vol.27 , pp. 1223-1242
    • Aravind, L.1    Walker, D.R.2    Koonin, E.V.3
  • 6
    • 67649803446 scopus 로고    scopus 로고
    • Functional analysis of an Orc6 mutant in Drosophila
    • Balasov M, Huijbregts RP, Chesnokov I. 2009. Functional analysis of an Orc6 mutant in Drosophila. Proc Natl Acad Sci 106: 10672-10677.
    • (2009) Proc Natl Acad Sci , vol.106 , pp. 10672-10677
    • Balasov, M.1    Huijbregts, R.P.2    Chesnokov, I.3
  • 7
    • 33845641827 scopus 로고    scopus 로고
    • DNA replication in the Archaea
    • Barry ER, Bell SD. 2006. DNA replication in the Archaea. Microbiol Mol Biol Rev 70: 15: 614-619.
    • (2006) Microbiol Mol Biol Rev , vol.70 , Issue.15 , pp. 614-619
    • Barry, E.R.1    Bell, S.D.2
  • 8
    • 80053562860 scopus 로고    scopus 로고
    • Molecular machines in archaeal DNA replication
    • Beattie TR, Bell SD. 2011a. Molecular machines in archaeal DNA replication. Curr Opin Chem Biol 15: 614-619.
    • (2011) Curr Opin Chem Biol , vol.15 , pp. 614-619
    • Beattie, T.R.1    Bell, S.D.2
  • 9
    • 79551472202 scopus 로고    scopus 로고
    • The role of the DNA sliding clamp in Okazaki fragment maturation in archaea and eukaryotes
    • Beattie TR, Bell SD. 2011b. The role of the DNA sliding clamp in Okazaki fragment maturation in archaea and eukaryotes. Biochem Soc Trans 39: 70-76.
    • (2011) Biochem Soc Trans , vol.39 , pp. 70-76
    • Beattie, T.R.1    Bell, S.D.2
  • 10
    • 79957639911 scopus 로고    scopus 로고
    • DNA replication: Archaeal oriGINS
    • Bell SD. 2011. DNA replication: Archaeal oriGINS. BMC Biol 9: 36.
    • (2011) BMC Biol , vol.9 , pp. 36
    • Bell, S.D.1
  • 11
    • 0035997368 scopus 로고    scopus 로고
    • DNA replication in eukaryotic cells
    • Bell SP, Dutta A. 2002. DNA replication in eukaryotic cells. Annu Rev Biochem 71: 333-374.
    • (2002) Annu Rev Biochem , vol.71 , pp. 333-374
    • Bell, S.P.1    Dutta, A.2
  • 12
    • 0026062407 scopus 로고
    • The E. coli cell cycle and the plasmid R1 replication cycle in the absence of the DnaA protein
    • Bernander R, Dasgupta S, Nordstrom K. 1991. The E. coli cell cycle and the plasmid R1 replication cycle in the absence of the DnaA protein. Cell 64: 1145-1153.
    • (1991) Cell , vol.64 , pp. 1145-1153
    • Bernander, R.1    Dasgupta, S.2    Nordstrom, K.3
  • 14
    • 34447319079 scopus 로고    scopus 로고
    • Essential and non-essential DNA replication genes in the model halophilic Archaeon, Halobacterium sp. NRC-1
    • Berquist BR, DasSarma P, DasSarma S. 2007. Essential and non-essential DNA replication genes in the model halophilic Archaeon, Halobacterium sp. NRC-1. BMC Genet 8: 31.
    • (2007) BMC Genet , vol.8 , pp. 31
    • Berquist, B.R.1    DasSarma, P.2    DasSarma, S.3
  • 15
    • 47149118187 scopus 로고    scopus 로고
    • Genomic context analysis in Archaea suggests previously unrecognized links between DNA replication and translation
    • Berthon J, Cortez D, Forterre P. 2008. Genomic context analysis in Archaea suggests previously unrecognized links between DNA replication and translation. Genome Biol 9: R71.
    • (2008) Genome Biol , vol.9
    • Berthon, J.1    Cortez, D.2    Forterre, P.3
  • 16
    • 63549113890 scopus 로고    scopus 로고
    • Loading clamps for DNA replication and repair
    • Bloom LB. 2009. Loading clamps for DNA replication and repair. DNA Repair (Amst) 8: 570-578.
    • (2009) DNA Repair (Amst) , vol.8 , pp. 570-578
    • Bloom, L.B.1
  • 17
    • 1342302794 scopus 로고    scopus 로고
    • From RPA to BRCA2: Lessons from single-stranded DNA binding by the OBfold
    • Bochkarev A, Bochkareva E. 2004. From RPA to BRCA2: Lessons from single-stranded DNA binding by the OBfold. Curr Opin Struct Biol 14: 36-42.
    • (2004) Curr Opin Struct Biol , vol.14 , pp. 36-42
    • Bochkarev, A.1    Bochkareva, E.2
  • 18
    • 71449107031 scopus 로고    scopus 로고
    • The Mcm complex: Unwinding the mechanism of a replicative helicase
    • Bochman ML, Schwacha A. 2009. The Mcm complex: Unwinding the mechanism of a replicative helicase. Microbiol Mol Biol Rev 73: 652-683.
    • (2009) Microbiol Mol Biol Rev , vol.73 , pp. 652-683
    • Bochman, M.L.1    Schwacha, A.2
  • 19
    • 0036482709 scopus 로고    scopus 로고
    • Archaeal DNA replication: Spotlight on a rapidly moving field
    • Bohlke K, Pisani FM, Rossi M, Antranikian G. 2002. Archaeal DNA replication: Spotlight on a rapidly moving field. Extremophiles 6: 1-14.
    • (2002) Extremophiles , vol.6 , pp. 1-14
    • Bohlke, K.1    Pisani, F.M.2    Rossi, M.3    Antranikian, G.4
  • 20
    • 0031046294 scopus 로고    scopus 로고
    • A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins
    • Bork P, Hofmann K, Bucher P, Neuwald AF, Altschul SF, Koonin EV. 1997. A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J 11: 68-76.
    • (1997) FASEB J , vol.11 , pp. 68-76
    • Bork, P.1    Hofmann, K.2    Bucher, P.3    Neuwald, A.F.4    Altschul, S.F.5    Koonin, E.V.6
  • 22
    • 0032564361 scopus 로고    scopus 로고
    • A heterodimeric DNA polymerase: Evidence that members of Euryarchaeota possess a distinct DNA polymerase
    • Cann IK, Komori K, Toh H, Kanai S, Ishino Y. 1998. A heterodimeric DNA polymerase: Evidence that members of Euryarchaeota possess a distinct DNA polymerase. Proc Natl Acad Sci 95: 14250-14255.
    • (1998) Proc Natl Acad Sci , vol.95 , pp. 14250-14255
    • Cann, I.K.1    Komori, K.2    Toh, H.3    Kanai, S.4    Ishino, Y.5
  • 24
    • 34948895494 scopus 로고    scopus 로고
    • Human Mcm10 regulates the catalytic subunit of DNA polymerase-a and prevents DNA damage during replication
    • Chattopadhyay S, Bielinsky AK. 2007. Human Mcm10 regulates the catalytic subunit of DNA polymerase-a and prevents DNA damage during replication. Mol Biol Cell 18: 4085-4095.
    • (2007) Mol Biol Cell , vol.18 , pp. 4085-4095
    • Chattopadhyay, S.1    Bielinsky, A.K.2
  • 25
    • 77956217627 scopus 로고    scopus 로고
    • Evolution of DNA replication protein complexes in eukaryotes and Archaea
    • Chia N, Cann I, Olsen GJ. 2010. Evolution of DNA replication protein complexes in eukaryotes and Archaea. PLoS ONE 5: e10866.
    • (2010) PLoS ONE , vol.5
    • Chia, N.1    Cann, I.2    Olsen, G.J.3
  • 29
    • 3042666256 scopus 로고    scopus 로고
    • MUSCLE: Multiple sequence alignment with high accuracy and high throughput
    • Edgar RC. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792-1797.
    • (2004) Nucleic Acids Res , vol.32 , pp. 1792-1797
    • Edgar, R.C.1
  • 30
    • 0031587829 scopus 로고    scopus 로고
    • Archaea and the origin (s) of DNA replication proteins
    • Edgell DR, Doolittle WF. 1997. Archaea and the origin (s) of DNA replication proteins. Cell 89: 995-998.
    • (1997) Cell , vol.89 , pp. 995-998
    • Edgell, D.R.1    Doolittle, W.F.2
  • 31
    • 0031822199 scopus 로고    scopus 로고
    • Evidence of independent gene duplications during the evolution of archaeal and eukaryotic family B DNA polymerases
    • Edgell DR, Malik SB, Doolittle WF. 1998. Evidence of independent gene duplications during the evolution of archaeal and eukaryotic family B DNA polymerases. Mol Biol Evol 15: 1207-1217.
    • (1998) Mol Biol Evol , vol.15 , pp. 1207-1217
    • Edgell, D.R.1    Malik, S.B.2    Doolittle, W.F.3
  • 32
    • 50649116450 scopus 로고    scopus 로고
    • Eukaryotic DNA ligases: Structural and functional insights
    • Ellenberger T, Tomkinson AE. 2008. Eukaryotic DNA ligases: Structural and functional insights. Annu Rev Biochem 77: 313-338.
    • (2008) Annu Rev Biochem , vol.77 , pp. 313-338
    • Ellenberger, T.1    Tomkinson, A.E.2
  • 33
    • 33746817874 scopus 로고    scopus 로고
    • Fission yeast Mcm10p contains primase activity
    • Fien K, Hurwitz J. 2006. Fission yeast Mcm10p contains primase activity. J Biol Chem 281: 22248-22260.
    • (2006) J Biol Chem , vol.281 , pp. 22248-22260
    • Fien, K.1    Hurwitz, J.2
  • 34
    • 1942501704 scopus 로고    scopus 로고
    • Primer utilization by DNA polymerase a-primase is influenced by its interaction with Mcm10p
    • Fien K, Cho YS, Lee JK, Raychaudhuri S, Tappin I, Hurwitz J. 2004. Primer utilization by DNA polymerase a-primase is influenced by its interaction with Mcm10p. J Biol Chem 279: 16144-16153.
    • (2004) J Biol Chem , vol.279 , pp. 16144-16153
    • Fien, K.1    Cho, Y.S.2    Lee, J.K.3    Raychaudhuri, S.4    Tappin, I.5    Hurwitz, J.6
  • 35
    • 0014211361 scopus 로고
    • Construction of phylogenetic trees
    • Fitch WM, Margoliash E. 1967. Construction of phylogenetic trees. Science 155: 279-284.
    • (1967) Science , vol.155 , pp. 279-284
    • Fitch, W.M.1    Margoliash, E.2
  • 36
    • 0036790008 scopus 로고    scopus 로고
    • The orgin of DNA genomes and DNA replication proteins
    • Forterre P. 2002. The orgin of DNA genomes and DNA replication proteins. Curr Opin Microbiol 5: 525-532.
    • (2002) Curr Opin Microbiol , vol.5 , pp. 525-532
    • Forterre, P.1
  • 37
    • 33644859575 scopus 로고    scopus 로고
    • Three RNA cells for ribosomal lineages and three DNAviruses to replicate their genomes: A hypothesis for the origin of cellular domain
    • Forterre P. 2006. Three RNA cells for ribosomal lineages and three DNAviruses to replicate their genomes: A hypothesis for the origin of cellular domain. Proc Natl Acad Sci 103: 3669-3674.
    • (2006) Proc Natl Acad Sci , vol.103 , pp. 3669-3674
    • Forterre, P.1
  • 38
    • 0034084865 scopus 로고    scopus 로고
    • Who's your neighbor? New computational approaches for functional genomics
    • Galperin MY, Koonin EV. 2000. Who's your neighbor? New computational approaches for functional genomics. Nat Biotechnol 18: 609-613.
    • (2000) Nat Biotechnol , vol.18 , pp. 609-613
    • Galperin, M.Y.1    Koonin, E.V.2
  • 39
    • 27544460716 scopus 로고    scopus 로고
    • Identification and functional analysis of TopBP1 and its homologs
    • Garcia V, Furuya K, Carr AM. 2005. Identification and functional analysis of TopBP1 and its homologs. DNA Repair (Amst) 4: 1227-1239.
    • (2005) DNA Repair (Amst) , vol.4 , pp. 1227-1239
    • Garcia, V.1    Furuya, K.2    Carr, A.M.3
  • 40
    • 48249124600 scopus 로고    scopus 로고
    • The last universal common ancestor: Emergence, constitution and genetic legacy of an elusive forerunner
    • Glansdorff N, Xu Y, Labedan B. 2008. The last universal common ancestor: Emergence, constitution and genetic legacy of an elusive forerunner. Biol Direct 3: 29.
    • (2008) Biol Direct , vol.3 , pp. 29
    • Glansdorff, N.1    Xu, Y.2    Labedan, B.3
  • 41
    • 67650741773 scopus 로고    scopus 로고
    • Motors, switches, and contacts in the replisome
    • Hamdan SM, Richardson CC. 2009. Motors, switches, and contacts in the replisome. Annu Rev Biochem 78: 205-243.
    • (2009) Annu Rev Biochem , vol.78 , pp. 205-243
    • Hamdan, S.M.1    Richardson, C.C.2
  • 42
    • 77953489802 scopus 로고    scopus 로고
    • Timing, coordination, and rhythm: Acrobatics at the DNA replication fork
    • Hamdan SM, van Oijen AM. 2010. Timing, coordination, and rhythm: Acrobatics at the DNA replication fork. J Biol Chem 285: 18979-18983.
    • (2010) J Biol Chem , vol.285 , pp. 18979-18983
    • Hamdan, S.M.1    van Oijen, A.M.2
  • 43
    • 20444377771 scopus 로고    scopus 로고
    • The hyperthermophilic euryarchaeota Pyrococcus abyssi likely requires the two DNA polymerases D and B for DNA replication
    • Henneke G, Flament D, Hubscher U, Querellou J, Raffin JP. 2005. The hyperthermophilic euryarchaeota Pyrococcus abyssi likely requires the two DNA polymerases D and B for DNA replication. J Mol Biol 350: 53-64.
    • (2005) J Mol Biol , vol.350 , pp. 53-64
    • Henneke, G.1    Flament, D.2    Hubscher, U.3    Querellou, J.4    Raffin, J.P.5
  • 45
    • 27844542206 scopus 로고    scopus 로고
    • Archaeal DNA replication and repair
    • Kelman Z, White MF. 2005. Archaeal DNA replication and repair. Curr Opin Microbiol 8: 669-676.
    • (2005) Curr Opin Microbiol , vol.8 , pp. 669-676
    • Kelman, Z.1    White, M.F.2
  • 46
    • 67650409702 scopus 로고    scopus 로고
    • 3D architecture of DNA Pol a reveals the functional core of multi-subunit replicative polymerases
    • Klinge S, Nunez-Ramirez R, Llorca O, Pellegrini L. 2009. 3D architecture of DNA Pol a reveals the functional core of multi-subunit replicative polymerases. EMBO J 28: 1978-1987.
    • (2009) EMBO J , vol.28 , pp. 1978-1987
    • Klinge, S.1    Nunez-Ramirez, R.2    Llorca, O.3    Pellegrini, L.4
  • 47
    • 0035854709 scopus 로고    scopus 로고
    • Replication protein A in Pyrococcus furiosus is involved in homologous DNA recombination
    • Komori K, Ishino Y. 2001. Replication protein A in Pyrococcus furiosus is involved in homologous DNA recombination. J Biol Chem 276: 25654-25660.
    • (2001) J Biol Chem , vol.276 , pp. 25654-25660
    • Komori, K.1    Ishino, Y.2
  • 48
    • 34248220998 scopus 로고    scopus 로고
    • Temporal order of evolution of DNA replication systems inferred by comparision of cellular and viral DNA polymerases
    • Koonin EV. 2006. Temporal order of evolution of DNA replication systems inferred by comparision of cellular and viral DNA polymerases. Biol Direct 1: 39.
    • (2006) Biol Direct , vol.1 , pp. 39
    • Koonin, E.V.1
  • 49
    • 62549121819 scopus 로고    scopus 로고
    • On the origin of cells and viruses: Primordial virus world scenario
    • Koonin EV. 2009. On the origin of cells and viruses: primordial virus world scenario. Ann NYAcad Sci 1178: 47-64.
    • (2009) Ann NYAcad Sci , vol.1178 , pp. 47-64
    • Koonin, E.V.1
  • 50
    • 27744591844 scopus 로고    scopus 로고
    • On the origin of genomes and cells within inorganic compartments
    • Koonin EV, Martin W. 2005. On the origin of genomes and cells within inorganic compartments. Trends Genet 21: 647-654.
    • (2005) Trends Genet , vol.21 , pp. 647-654
    • Koonin, E.V.1    Martin, W.2
  • 51
    • 0026589162 scopus 로고
    • Nonrandom F-plasmid replication in Escherichia coli K-12
    • Koppes LJ. 1992. Nonrandom F-plasmid replication in Escherichia coli K-12. J Bacteriol 174: 2121-2123.
    • (1992) J Bacteriol , vol.174 , pp. 2121-2123
    • Koppes, L.J.1
  • 52
    • 0003890119 scopus 로고    scopus 로고
    • 2nd ed. University Science Books, Sausalito, CA
    • Kornberg A, Baker TA. 2005. DNA replication, 2nd ed. University Science Books, Sausalito, CA.
    • (2005) DNA replication
    • Kornberg, A.1    Baker, T.A.2
  • 53
    • 78649370567 scopus 로고    scopus 로고
    • The evolutionary history of archaeal MCM helicases: A case study of vertical evolution combined with hitchhiking of mobile genetic elements
    • Krupovic M, Gribaldo S, Bamford DH, Forterre P. 2010. The evolutionary history of archaeal MCM helicases: A case study of vertical evolution combined with hitchhiking of mobile genetic elements. Mol Biol Evol 27: 2716-2732.
    • (2010) Mol Biol Evol , vol.27 , pp. 2716-2732
    • Krupovic, M.1    Gribaldo, S.2    Bamford, D.H.3    Forterre, P.4
  • 54
    • 77949570959 scopus 로고    scopus 로고
    • Mechanism and evolution of DNA primases
    • Kuchta RD, Stengel G. 2010. Mechanism and evolution of DNA primases. Biochim Biophys Acta 1804: 1180-1189.
    • (2010) Biochim Biophys Acta , vol.1804 , pp. 1180-1189
    • Kuchta, R.D.1    Stengel, G.2
  • 55
    • 54249092768 scopus 로고    scopus 로고
    • Dividing the workload at a eukaryotic replication fork
    • Kunkel TA, Burgers PM. 2008. Dividing the workload at a eukaryotic replication fork. Trends Cell Biol 18: 521-527.
    • (2008) Trends Cell Biol , vol.18 , pp. 521-527
    • Kunkel, T.A.1    Burgers, P.M.2
  • 56
    • 34249710254 scopus 로고    scopus 로고
    • A key role for the GINS complex at DNA replication forks
    • Labib K, Gambus A. 2007. A key role for the GINS complex at DNA replication forks. Trends Cell Biol 17: 271-278.
    • (2007) Trends Cell Biol , vol.17 , pp. 271-278
    • Labib, K.1    Gambus, A.2
  • 58
    • 0033199713 scopus 로고    scopus 로고
    • Did DNA replication evolve twice independently?
    • Leipe DD, Aravind L, Koonin EV. 1999. Did DNA replication evolve twice independently? Nucleic Acids Res 27: 3389-3401.
    • (1999) Nucleic Acids Res , vol.27 , pp. 3389-3401
    • Leipe, D.D.1    Aravind, L.2    Koonin, E.V.3
  • 59
    • 79952125243 scopus 로고    scopus 로고
    • Affinity purification of an archaeal DNA replication protein network
    • Li Z, Santangelo TJ, Cubonova L, Reeve JN, Kelman Z. 2010. Affinity purification of an archaeal DNA replication protein network. MBio 1: e00221-10.
    • (2010) MBio , vol.1
    • Li, Z.1    Santangelo, T.J.2    Cubonova, L.3    Reeve, J.N.4    Kelman, Z.5
  • 61
    • 79956310088 scopus 로고    scopus 로고
    • Structural analysis of human Orc6 protein reveals a homology with transcription factor TFIIB
    • Liu S, Balasov M, Wang H, Wu L, Chesnokov IN, Liu Y. 2011. Structural analysis of human Orc6 protein reveals a homology with transcription factor TFIIB. Proc Natl Acad Sci 108: 7373-7378.
    • (2011) Proc Natl Acad Sci , vol.108 , pp. 7373-7378
    • Liu, S.1    Balasov, M.2    Wang, H.3    Wu, L.4    Chesnokov, I.N.5    Liu, Y.6
  • 62
    • 0033972072 scopus 로고    scopus 로고
    • The probability of duplicate gene preservation by subfunctionalization
    • Lynch M, Force A. 2000. The probability of duplicate gene preservation by subfunctionalization. Genetics 154: 459-473.
    • (2000) Genetics , vol.154 , pp. 459-473
    • Lynch, M.1    Force, A.2
  • 63
    • 74349122718 scopus 로고    scopus 로고
    • Structure and function of the GINS complex, a key component of the eukaryotic replisome
    • MacNeill SA. 2010. Structure and function of the GINS complex, a key component of the eukaryotic replisome. Biochem J 425: 489-500.
    • (2010) Biochem J , vol.425 , pp. 489-500
    • McNeill, S.A.1
  • 64
    • 79551501146 scopus 로고    scopus 로고
    • Protein-protein interactions in the archaeal core replisome
    • MacNeill SA. 2011. Protein-protein interactions in the archaeal core replisome. Biochem Soc Trans 39: 163-168.
    • (2011) Biochem Soc Trans , vol.39 , pp. 163-168
    • McNeill, S.A.1
  • 65
    • 11144266855 scopus 로고    scopus 로고
    • The PCNA-RFC families of DNA clamps and clamp loaders
    • Majka J, Burgers PM. 2004. The PCNA-RFC families of DNA clamps and clamp loaders. Prog Nucleic Acid Res Mol Biol 78: 227-260.
    • (2004) Prog Nucleic Acid Res Mol Biol , vol.78 , pp. 227-260
    • Majka, J.1    Burgers, P.M.2
  • 66
    • 77951957095 scopus 로고    scopus 로고
    • Two new families of the FtsZ-tubulin protein superfamily implicated in membrane remodeling in diverse bacteria and archaea
    • Makarova KS, Koonin EV. 2010. Two new families of the FtsZ-tubulin protein superfamily implicated in membrane remodeling in diverse bacteria and archaea. Biol Direct 5: 33.
    • (2010) Biol Direct , vol.5 , pp. 33
    • Makarova, K.S.1    Koonin, E.V.2
  • 67
    • 0032766490 scopus 로고    scopus 로고
    • Comparative genomics of the Archaea (Euryarchaeota): Evolution of conserved protein families, the stable core, and the variable shell
    • Makarova KS, Aravind L, Galperin MY, Grishin NV, Tatusov RL, Wolf YI, Koonin EV. 1999. Comparative genomics of the Archaea (Euryarchaeota): Evolution of conserved protein families, the stable core, and the variable shell. Genome Res 9: 608-628.
    • (1999) Genome Res , vol.9 , pp. 608-628
    • Makarova, K.S.1    Aravind, L.2    Galperin, M.Y.3    Grishin, N.V.4    Tatusov, R.L.5    Wolf, Y.I.6    Koonin, E.V.7
  • 68
    • 23844497214 scopus 로고    scopus 로고
    • Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell
    • Makarova KS, Wolf YI, Mekhedov SL, Mirkin BG, Koonin EV. 2005. Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell. Nucleic Acids Res 33: 4626-4638.
    • (2005) Nucleic Acids Res , vol.33 , pp. 4626-4638
    • Makarova, K.S.1    Wolf, Y.I.2    Mekhedov, S.L.3    Mirkin, B.G.4    Koonin, E.V.5
  • 69
    • 77957130448 scopus 로고    scopus 로고
    • Evolution of diverse cell division and vesicle formation systems in archaea
    • Makarova KS, Yutin N, Bell SD, Koonin EV. 2010. Evolution of diverse cell division and vesicle formation systems in archaea. Nat Rev Microbiol 8: 731-741.
    • (2010) Nat Rev Microbiol , vol.8 , pp. 731-741
    • Makarova, K.S.1    Yutin, N.2    Bell, S.D.3    Koonin, E.V.4
  • 70
    • 84856768293 scopus 로고    scopus 로고
    • The archaeal CMG (CDC45/Rec J, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes
    • Makarova KS, Koonin EV, Kelman Z. 2012. The archaeal CMG (CDC45/Rec J, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes. Biol Direct 7: 7.
    • (2012) Biol Direct , vol.7 , pp. 7
    • Makarova, K.S.1    Koonin, E.V.2    Kelman, Z.3
  • 72
    • 0036231641 scopus 로고    scopus 로고
    • ATP-dependent DNA ligases
    • REVIEWS3005
    • Martin IV, MacNeill SA. 2002. ATP-dependent DNA ligases. Genome Biol 3: REVIEWS3005.
    • (2002) Genome Biol , vol.3
    • Martin, I.V.1    McNeill, S.A.2
  • 73
    • 79551469840 scopus 로고    scopus 로고
    • Novel structure of an N-terminal domain that is crucial for the dimeric assembly and DNA-binding of an archaeal DNA polymerase D large subunit from Pyrococcus horikoshii
    • Matsui I, Urushibata Y, Shen Y, Matsui E, Yokoyama H. 2011. Novel structure of an N-terminal domain that is crucial for the dimeric assembly and DNA-binding of an archaeal DNA polymerase D large subunit from Pyrococcus horikoshii. FEBS Lett 585: 452-458.
    • (2011) FEBS Lett , vol.585 , pp. 452-458
    • Matsui, I.1    Urushibata, Y.2    Shen, Y.3    Matsui, E.4    Yokoyama, H.5
  • 74
    • 45849087612 scopus 로고    scopus 로고
    • Extra-chromosomal elements and the evolution of cellular DNA replication machineries
    • McGeoch AT, Bell SD. 2008. Extra-chromosomal elements and the evolution of cellular DNA replication machineries. Nat Rev Mol Cell Biol 9: 569-574.
    • (2008) Nat Rev Mol Cell Biol , vol.9 , pp. 569-574
    • McGeoch, A.T.1    Bell, S.D.2
  • 76
    • 33745925880 scopus 로고    scopus 로고
    • Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase
    • Moyer SE, Lewis PW, Botchan MR. 2006. Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci 103: 10236-10241.
    • (2006) Proc Natl Acad Sci , vol.103 , pp. 10236-10241
    • Moyer, S.E.1    Lewis, P.W.2    Botchan, M.R.3
  • 77
    • 0027479161 scopus 로고
    • OB (oligonucleotide/oligosaccharide binding)-fold: Common structural and functional solution for non-homologous sequences
    • Murzin AG. 1993. OB (oligonucleotide/oligosaccharide binding)-fold: Common structural and functional solution for non-homologous sequences. EMBO J 12: 861-867.
    • (1993) EMBO J , vol.12 , pp. 861-867
    • Murzin, A.G.1
  • 78
    • 0030915681 scopus 로고    scopus 로고
    • Positionally cloned human disease genes: Patterns of evolutionary conservation and functional motifs
    • Mushegian AR, Bassett DE Jr, Boguski MS, Bork P, Koonin EV. 1997. Positionally cloned human disease genes: Patterns of evolutionary conservation and functional motifs. Proc Natl Acad Sci 94: 5831-5836.
    • (1997) Proc Natl Acad Sci , vol.94 , pp. 5831-5836
    • Mushegian, A.R.1    Bassett Jr., D.E.2    Boguski, M.S.3    Bork, P.4    Koonin, E.V.5
  • 80
    • 0027323849 scopus 로고
    • Minimal replication origin of the 200-kilobase Halobacterium plasmid pNRC100
    • Ng WL, DasSarma S. 1993. Minimal replication origin of the 200-kilobase Halobacterium plasmid pNRC100. J Bacteriol 175: 4584-4596.
    • (1993) J Bacteriol , vol.175 , pp. 4584-4596
    • Ng, W.L.1    DasSarma, S.2
  • 83
    • 32444450705 scopus 로고    scopus 로고
    • Localization ofMCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication
    • Pacek M, Tutter AV, Kubota Y, Takisawa H, Walter JC. 2006. Localization ofMCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell 21: 581-587.
    • (2006) Mol Cell , vol.21 , pp. 581-587
    • Pacek, M.1    Tutter, A.V.2    Kubota, Y.3    Takisawa, H.4    Walter, J.C.5
  • 85
    • 82355188414 scopus 로고    scopus 로고
    • Thermococcus kodakarensis encodes three MCM homologs but only one is essential
    • Pan M, Santangelo TJ, Li Z, Reeve JN, Kelman Z. 2011b. Thermococcus kodakarensis encodes three MCM homologs but only one is essential. Nucleic Acids Res 39: 9671-9680.
    • (2011) Nucleic Acids Res , vol.39 , pp. 9671-9680
    • Pan, M.1    Santangelo, T.J.2    Li, Z.3    Reeve, J.N.4    Kelman, Z.5
  • 87
    • 77953006795 scopus 로고    scopus 로고
    • The initiation step of eukaryoticDNA replication
    • Pospiech H, Grosse F, Pisani FM. 2010. The initiation step of eukaryoticDNA replication. Subcell Biochem 50: 79-104.
    • (2010) Subcell Biochem , vol.50 , pp. 79-104
    • Pospiech, H.1    Grosse, F.2    Pisani, F.M.3
  • 88
    • 77949718257 scopus 로고    scopus 로고
    • FastTree 2-Approximately maximum-likelihood trees for large alignments
    • Price MN, Dehal PS, Arkin AP. 2010. FastTree 2-Approximately maximum-likelihood trees for large alignments. PLoS ONE 5: e9490.
    • (2010) PLoS ONE , vol.5
    • Price, M.N.1    Dehal, P.S.2    Arkin, A.P.3
  • 90
    • 77954950421 scopus 로고    scopus 로고
    • Solution NMR structure of the C-terminal DNA binding domain ofMcm10 reveals a conservedMCMmotif
    • Robertson PD, Chagot B, Chazin WJ, Eichman BF. 2010. Solution NMR structure of the C-terminal DNA binding domain ofMcm10 reveals a conservedMCMmotif. J Biol Chem 285: 22942-22949.
    • (2010) J Biol Chem , vol.285 , pp. 22942-22949
    • Robertson, P.D.1    Chagot, B.2    Chazin, W.J.3    Eichman, B.F.4
  • 91
    • 23644448872 scopus 로고    scopus 로고
    • Origins of DNA replication in the three domains of life
    • Robinson NP, Bell SD. 2005. Origins of DNA replication in the three domains of life. FEBS J 272: 3757-3766.
    • (2005) FEBS J , vol.272 , pp. 3757-3766
    • Robinson, N.P.1    Bell, S.D.2
  • 92
    • 34347219007 scopus 로고    scopus 로고
    • Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes
    • Robinson NP, Bell SD. 2007. Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes. Proc Natl Acad Sci 104: 5806-5811.
    • (2007) Proc Natl Acad Sci , vol.104 , pp. 5806-5811
    • Robinson, N.P.1    Bell, S.D.2
  • 93
    • 0742269690 scopus 로고    scopus 로고
    • Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus
    • Robinson NP, Dionne I, Lundgren M, Marsh VL, Bernander R, Bell SD. 2004. Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus. Cell 116: 25-38.
    • (2004) Cell , vol.116 , pp. 25-38
    • Robinson, N.P.1    Dionne, I.2    Lundgren, M.3    Marsh, V.L.4    Bernander, R.5    Bell, S.D.6
  • 95
    • 51249094314 scopus 로고    scopus 로고
    • A highly conserved family of inactivated archaeal B family DNA polymerases
    • Rogozin IB, Makarova KS, Pavlov YI, Koonin EV. 2008. A highly conserved family of inactivated archaeal B family DNA polymerases. Biol Direct 3: 32.
    • (2008) Biol Direct , vol.3 , pp. 32
    • Rogozin, I.B.1    Makarova, K.S.2    Pavlov, Y.I.3    Koonin, E.V.4
  • 96
    • 64149093563 scopus 로고    scopus 로고
    • Unwinding the structure and function of the archaeal MCM helicase
    • Sakakibara N, Kelman LM, Kelman Z. 2009. Unwinding the structure and function of the archaeal MCM helicase. Mol Microbiol 72: 286-296.
    • (2009) Mol Microbiol , vol.72 , pp. 286-296
    • Sakakibara, N.1    Kelman, L.M.2    Kelman, Z.3
  • 97
    • 79960129821 scopus 로고    scopus 로고
    • Cdc45: The missing RecJ ortholog in eukaryotes?
    • Sanchez-Pulido L, Ponting CP. 2011. Cdc45: The missing RecJ ortholog in eukaryotes? Bioinformatics 27: 1885-1888.
    • (2011) Bioinformatics , vol.27 , pp. 1885-1888
    • Sanchez-Pulido, L.1    Ponting, C.P.2
  • 98
    • 77955699526 scopus 로고    scopus 로고
    • Homology explains the functional similarities of Treslin/Ticrr and Sld3
    • Sanchez-Pulido L, Diffley JF, Ponting CP. 2010. Homology explains the functional similarities of Treslin/Ticrr and Sld3. Curr Biol 20: R509-R510.
    • (2010) Curr Biol , vol.20
    • Sanchez-Pulido, L.1    Diffley, J.F.2    Ponting, C.P.3
  • 99
    • 40549108563 scopus 로고    scopus 로고
    • Cell cycle regulation of DNA replication
    • Sclafani RA, Holzen TM. 2007. Cell cycle regulation of DNA replication. Annu Rev Genet 41: 237-280.
    • (2007) Annu Rev Genet , vol.41 , pp. 237-280
    • Sclafani, R.A.1    Holzen, T.M.2
  • 100
    • 0035920137 scopus 로고    scopus 로고
    • Invariant Asp-1122 and Asp-1124 are essential residues for polymerization catalysis of family D DNA polymerase from Pyrococcus horikoshii
    • Shen Y, Musti K, Hiramoto M, Kikuchi H, Kawarabayashi Y, Matsui I. 2001. Invariant Asp-1122 and Asp-1124 are essential residues for polymerization catalysis of family D DNA polymerase from Pyrococcus horikoshii. J Biol Chem 276: 27376-27383.
    • (2001) J Biol Chem , vol.276 , pp. 27376-27383
    • Shen, Y.1    Musti, K.2    Hiramoto, M.3    Kikuchi, H.4    Kawarabayashi, Y.5    Matsui, I.6
  • 101
    • 73849129578 scopus 로고    scopus 로고
    • The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4
    • Sheu YJ, Stillman B. 2010. The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature 463: 113-117.
    • (2010) Nature , vol.463 , pp. 113-117
    • Sheu, Y.J.1    Stillman, B.2
  • 102
    • 33745637944 scopus 로고    scopus 로고
    • Twinkle, the mitochondrial replicative DNA helicase, is widespread in the eukaryotic radiation and may also be the mitochondrial DNA primase in most eukaryotes
    • Shutt TE, Gray MW. 2006. Twinkle, the mitochondrial replicative DNA helicase, is widespread in the eukaryotic radiation and may also be the mitochondrial DNA primase in most eukaryotes. J Mol Evol 62: 588-599.
    • (2006) J Mol Evol , vol.62 , pp. 588-599
    • Shutt, T.E.1    Gray, M.W.2
  • 103
    • 0142187126 scopus 로고    scopus 로고
    • Complementary functions of the Saccharomyces cerevisiae Rad2 family nucleases in Okazaki fragment maturation, mutation avoidance, and chromosome stability
    • Sun X, Thrower D, Qiu J, Wu P, Zheng L, Zhou M, Bachant J, Wilson DM 3rd, Shen B. 2003. Complementary functions of the Saccharomyces cerevisiae Rad2 family nucleases in Okazaki fragment maturation, mutation avoidance, and chromosome stability. DNA Repair (Amst) 2: 925-940.
    • (2003) DNA Repair (Amst) , vol.2 , pp. 925-940
    • Sun, X.1    Thrower, D.2    Qiu, J.3    Wu, P.4    Zheng, L.5    Zhou, M.6    Bachant, J.7    Wilson III, D.M.8    Shen, B.9
  • 105
    • 85027917185 scopus 로고    scopus 로고
    • Structural bases of dimerization of yeast telomere protein Cdc13 and its interaction with the catalytic subunit of DNA polymerase alpha
    • Sun J, Yang Y, Wan K, Mao N, Yu TY, Lin YC, DeZwaan DC, Freeman BC, Lin JJ, Lue NF, et al. 2011. Structural bases of dimerization of yeast telomere protein Cdc13 and its interaction with the catalytic subunit of DNA polymerase alpha. Cell Res 21: 258-274.
    • (2011) Cell Res , vol.21 , pp. 258-274
    • Sun, J.1    Yang, Y.2    Wan, K.3    Mao, N.4    Yu, T.Y.5    Lin, Y.C.6    DeZwaan, D.C.7    Freeman, B.C.8    Lin, J.J.9    Lue, N.F.10
  • 106
    • 65349186567 scopus 로고    scopus 로고
    • Evolution of DNA polymerases: An inactivated polymerase-exonuclease module in Pol 1 and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors
    • Tahirov TH, Makarova KS, Rogozin IB, Pavlov YI, Koonin EV. 2009. Evolution of DNA polymerases: An inactivated polymerase-exonuclease module in Pol 1 and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors. Biol Direct 4: 11.
    • (2009) Biol Direct , vol.4 , pp. 11
    • Tahirov, T.H.1    Makarova, K.S.2    Rogozin, I.B.3    Pavlov, Y.I.4    Koonin, E.V.5
  • 107
    • 33846330909 scopus 로고    scopus 로고
    • CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast
    • Tanaka S, Umemori T, Hirai K, Muramatsu S, Kamimura Y, Araki H. 2007. CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature 445: 328-332.
    • (2007) Nature , vol.445 , pp. 328-332
    • Tanaka, S.1    Umemori, T.2    Hirai, K.3    Muramatsu, S.4    Kamimura, Y.5    Araki, H.6
  • 108
    • 0035865799 scopus 로고    scopus 로고
    • Identification and properties of the Crenarchaeal single-stranded DNA binding protein from Sulfolobus solfataricus
    • Wadsworth RI, White MF. 2001. Identification and properties of the Crenarchaeal single-stranded DNA binding protein from Sulfolobus solfataricus. Nucleic Acids Res 29: 914-920.
    • (2001) Nucleic Acids Res , vol.29 , pp. 914-920
    • Wadsworth, R.I.1    White, M.F.2
  • 109
    • 77952406070 scopus 로고    scopus 로고
    • An archaeal order with multiple minichromosome maintenance genes
    • Walters AD, Chong JP. 2010. An archaeal order with multiple minichromosome maintenance genes. Microbiology 156: 1405-1414.
    • (2010) Microbiology , vol.156 , pp. 1405-1414
    • Walters, A.D.1    Chong, J.P.2
  • 110
    • 4143058332 scopus 로고    scopus 로고
    • Subfunctionalization: How often does it occur? How long does it take?
    • Ward R, Durrett R. 2004. Subfunctionalization: How often does it occur? How long does it take? Theor Popul Biol 66: 93-100.
    • (2004) Theor Popul Biol , vol.66 , pp. 93-100
    • Ward, R.1    Durrett, R.2
  • 112
    • 77951249114 scopus 로고    scopus 로고
    • Characterization and structure determination of the Cdt1 binding domain of human minichromosome maintenance (Mcm) 6
    • Wei Z, Liu C, Wu X, Xu N, Zhou B, Liang C, Zhu G. 2010. Characterization and structure determination of the Cdt1 binding domain of human minichromosome maintenance (Mcm) 6. J Biol Chem 285: 12469-12473.
    • (2010) J Biol Chem , vol.285 , pp. 12469-12473
    • Wei, Z.1    Liu, C.2    Wu, X.3    Xu, N.4    Zhou, B.5    Liang, C.6    Zhu, G.7
  • 113
    • 0036190356 scopus 로고    scopus 로고
    • Xenopus Mcm10 binds to origins of DNA replication after Mcm2-7 and stimulates origin binding of Cdc45
    • Wohlschlegel JA, Dhar SK, Prokhorova TA, Dutta A, Walter JC. 2002. Xenopus Mcm10 binds to origins of DNA replication after Mcm2-7 and stimulates origin binding of Cdc45. Mol Cell 9: 233-240.
    • (2002) Mol Cell , vol.9 , pp. 233-240
    • Wohlschlegel, J.A.1    Dhar, S.K.2    Prokhorova, T.A.3    Dutta, A.4    Walter, J.C.5
  • 114
    • 74549213613 scopus 로고    scopus 로고
    • Evolution of DNA ligases of nucleo-cytoplasmic large DNA viruses of eukaryotes: A case of hidden complexity
    • Yutin N, Koonin EV. 2009. Evolution of DNA ligases of nucleo-cytoplasmic large DNA viruses of eukaryotes: A case of hidden complexity. Biol Direct 4: 51.
    • (2009) Biol Direct , vol.4 , pp. 51
    • Yutin, N.1    Koonin, E.V.2
  • 115
    • 20144380867 scopus 로고    scopus 로고
    • Identification of replication origins in archaeal genomes based on the Z-curve method
    • Zhang R, Zhang CT. 2005. Identification of replication origins in archaeal genomes based on the Z-curve method. Archaea 1: 335-346.
    • (2005) Archaea , vol.1 , pp. 335-346
    • Zhang, R.1    Zhang, C.T.2
  • 116
    • 77649339525 scopus 로고    scopus 로고
    • Characterization of a functional DnaG-type primase in Archaea: Implications for a dual-primase system
    • Zuo Z, Rodgers CJ, Mikheikin AL, Trakselis MA. 2010. Characterization of a functional DnaG-type primase in Archaea: Implications for a dual-primase system. J Mol Biol 397: 664-676.
    • (2010) J Mol Biol , vol.397 , pp. 664-676
    • Zuo, Z.1    Rodgers, C.J.2    Mikheikin, A.L.3    Trakselis, M.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.