메뉴 건너뛰기




Volumn 10, Issue 7, 2012, Pages 449-458

Replication-transcription conflicts in bacteria

Author keywords

[No Author keywords available]

Indexed keywords

BACTERIAL DNA; BACTERIAL PROTEIN; BACTERIAL RNA; DING PROTEIN; DKSA PROTEIN; DNA HELICASE II; GREA PROTEIN; GREB PROTEIN; GUANOSINE 3' DIPHOSPHATE 5' DIPHOSPHATE; HELICASE; RIBONUCLEASE H; RIBOSOME RNA; RNA POLYMERASE; SMALL NUCLEOTIDE GUANOSINE TETRAPHOSPHATE; TRANSCRIPTION REPAIR COUPLING FACTOR; UNCLASSIFIED DRUG;

EID: 84862490443     PISSN: 17401526     EISSN: 17401534     Source Type: Journal    
DOI: 10.1038/nrmicro2800     Document Type: Review
Times cited : (165)

References (91)
  • 1
    • 79959431646 scopus 로고    scopus 로고
    • DNA replicases from a bacterial perspective
    • McHenry, C. S. DNA replicases from a bacterial perspective. Annu. Rev. Biochem. 80, 403-436 (2011).
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 403-436
    • McHenry, C.S.1
  • 3
    • 0029133544 scopus 로고
    • Transcription-induced deletions in Escherichia coli plasmids
    • Vilette, D., Ehrlich, S. D. & Michel, B. Transcription-induced deletions in Escherichia coli plasmids. Mol. Microbiol. 17, 493-504 (1995).
    • (1995) Mol. Microbiol. , vol.17 , pp. 493-504
    • Vilette, D.1    Ehrlich, S.D.2    Michel, B.3
  • 4
    • 80053645721 scopus 로고    scopus 로고
    • R-loop-mediated genomic instability is caused by impairment of replication fork progression
    • Gan, W. et al. R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev. 25, 2041-2056 (2011).
    • (2011) Genes Dev. , vol.25 , pp. 2041-2056
    • Gan, W.1
  • 5
    • 22544464455 scopus 로고    scopus 로고
    • RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription
    • Trautinger, B. W., Jaktaji, R. P., Rusakova, E. & Lloyd, R. G. RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription. Mol. Cell 19, 247-258 (2005).
    • (2005) Mol. Cell , vol.19 , pp. 247-258
    • Trautinger, B.W.1    Jaktaji, R.P.2    Rusakova, E.3    Lloyd, R.G.4
  • 6
    • 77952527102 scopus 로고    scopus 로고
    • The transcription factor DksA prevents conflicts between DNA replication and transcription machinery
    • Pioneering work providing evidence for the function of RNAP modulators and DNA repair proteins in preventing and/or resolving replication-transcription conflicts
    • Tehranchi, A. K. et al. The transcription factor DksA prevents conflicts between DNA replication and transcription machinery. Cell 141, 595-605 (2010). Pioneering work providing evidence for the function of RNAP modulators and DNA repair proteins in preventing and/or resolving replication-transcription conflicts.
    • (2010) Cell , vol.141 , pp. 595-605
    • Tehranchi, A.K.1
  • 7
    • 0024276903 scopus 로고
    • When polymerases collide: Replication and the transcriptional organization of the E. coli chromosome
    • Brewer, B. J. When polymerases collide: replication and the transcriptional organization of the E. coli chromosome. Cell 53, 679-686 (1988).
    • (1988) Cell , vol.53 , pp. 679-686
    • Brewer, B.J.1
  • 8
    • 76749094639 scopus 로고    scopus 로고
    • Co-orientation of replication and transcription preserves genome integrity
    • A report which shows that head-on transcription at rrn genes is more deleterious than at other genes in B. subtilis
    • Srivatsan, A., Tehranchi, A., MacAlpine, D. M. & Wang, J. D. Co-orientation of replication and transcription preserves genome integrity. PLoS Genet. 6, e1000810 (2010). A report which shows that head-on transcription at rrn genes is more deleterious than at other genes in B. subtilis.
    • (2010) PLoS Genet. , vol.6
    • Srivatsan, A.1    Tehranchi, A.2    MacAlpine, D.M.3    Wang, J.D.4
  • 9
    • 79952126098 scopus 로고    scopus 로고
    • Co-directional replication-transcription conflicts lead to replication restart
    • A study which finds that co-directional conflicts at highly transcribed rRNA genes can stall replication in vivo in B. subtilis
    • Merrikh, H., Machón, C., Grainger, W. H., Grossman, A. D. & Soultanas, P. Co-directional replication-transcription conflicts lead to replication restart. Nature 470, 554-557 (2011). A study which finds that co-directional conflicts at highly transcribed rRNA genes can stall replication in vivo in B. subtilis.
    • (2011) Nature , vol.470 , pp. 554-557
    • Merrikh, H.1    Machón, C.2    Grainger, W.H.3    Grossman, A.D.4    Soultanas, P.5
  • 10
    • 80052008241 scopus 로고    scopus 로고
    • Linking RNA polymerase backtracking to genome instability in E. coli
    • This work indicates that factors which influence RNAP backtracking on a plasmid can affect replication and cause breaks co-directionally
    • Dutta, D., Shatalin, K., Epshtein, V., Gottesman, M. E. & Nudler, E. Linking RNA polymerase backtracking to genome instability in E. coli. Cell 146, 533-543 (2011). This work indicates that factors which influence RNAP backtracking on a plasmid can affect replication and cause breaks co-directionally.
    • (2011) Cell , vol.146 , pp. 533-543
    • Dutta, D.1    Shatalin, K.2    Epshtein, V.3    Gottesman, M.E.4    Nudler, E.5
  • 11
    • 70349932060 scopus 로고    scopus 로고
    • YabA of Bacillus subtilis controls DnaA-mediated replication initiation but not the transcriptional response to replication stress
    • Goranov, A. I., Breier, A. M., Merrikh, H. & Grossman, A. D. YabA of Bacillus subtilis controls DnaA-mediated replication initiation but not the transcriptional response to replication stress. Mol. Microbiol. 74, 454-466 (2009).
    • (2009) Mol. Microbiol. , vol.74 , pp. 454-466
    • Goranov, A.I.1    Breier, A.M.2    Merrikh, H.3    Grossman, A.D.4
  • 12
    • 79952682341 scopus 로고    scopus 로고
    • The replicase sliding clamp dynamically accumulates behind progressing replication forks in Bacillus subtilis cells
    • Su'etsugu, M. & Errington, J. The replicase sliding clamp dynamically accumulates behind progressing replication forks in Bacillus subtilis cells. Mol. Cell 41, 720-732 (2011).
    • (2011) Mol. Cell , vol.41 , pp. 720-732
    • Su'Etsugu, M.1    Errington, J.2
  • 13
    • 0026733965 scopus 로고
    • Consequences of replication fork movement through transcription units in vivo
    • The first report to show that replication-transcription conflicts occur in vivo. This study uses electron microscopy to find that RNAPs are dislodged during the conflicts and that replication is slowed during head-on conflicts
    • French, S. Consequences of replication fork movement through transcription units in vivo. Science 258, 1362-1365 (1992). The first report to show that replication-transcription conflicts occur in vivo. This study uses electron microscopy to find that RNAPs are dislodged during the conflicts and that replication is slowed during head-on conflicts.
    • (1992) Science , vol.258 , pp. 1362-1365
    • French, S.1
  • 14
    • 0028908039 scopus 로고
    • Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex
    • Liu, B. & Alberts, B. M. Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex. Science 267, 1131-1137 (1995).
    • (1995) Science , vol.267 , pp. 1131-1137
    • Liu, B.1    Alberts, B.M.2
  • 15
    • 12844265439 scopus 로고    scopus 로고
    • Mechanisms of transcription-replication collisions in bacteria
    • Using an in vivo plasmid system combined with two-dimensional gels, this work demonstrates that replication stalling in E. coli can be induced by strong head-on transcription
    • Mirkin, E. V. & Mirkin, S. M. Mechanisms of transcription-replication collisions in bacteria. Mol. Cell. Biol. 25, 888-895 (2005). Using an in vivo plasmid system combined with two-dimensional gels, this work demonstrates that replication stalling in E. coli can be induced by strong head-on transcription.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 888-895
    • Mirkin, E.V.1    Mirkin, S.M.2
  • 16
    • 34248394295 scopus 로고    scopus 로고
    • Genome-wide coorientation of replication and transcription reduces adverse effects on replication in Bacillus subtilis
    • An investigation which shows that transcription slows replication elongation within an inverted large genomic segment in B. subtilis
    • Wang, J. D., Berkmen, M. B. & Grossman, A. D. Genome-wide coorientation of replication and transcription reduces adverse effects on replication in Bacillus subtilis. Proc. Natl Acad. Sci. USA 104, 5608-5613 (2007). An investigation which shows that transcription slows replication elongation within an inverted large genomic segment in B. subtilis.
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 5608-5613
    • Wang, J.D.1    Berkmen, M.B.2    Grossman, A.D.3
  • 17
    • 75649142564 scopus 로고    scopus 로고
    • The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo
    • This report demonstrates that the accessory helicases UvrD, Rep and DinG are crucial for the movement of replication forks through highly transcribed transcription units
    • Boubakri, H., de Septenville, A. L., Viguera, E. & Michel, B. The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. EMBO J. 29, 145-157 (2010). This report demonstrates that the accessory helicases UvrD, Rep and DinG are crucial for the movement of replication forks through highly transcribed transcription units.
    • (2010) EMBO J. , vol.29 , pp. 145-157
    • Boubakri, H.1    De Septenville, A.L.2    Viguera, E.3    Michel, B.4
  • 18
    • 77955448694 scopus 로고    scopus 로고
    • What happens when replication and transcription complexes collide?
    • Pomerantz, R. T. & O'Donnell, M. What happens when replication and transcription complexes collide? Cell Cycle 9, 2537-2543 (2010).
    • (2010) Cell Cycle , vol.9 , pp. 2537-2543
    • Pomerantz, R.T.1    O'Donnell, M.2
  • 19
    • 0024060034 scopus 로고
    • Effects of chromosomal inversion on cell fitness in Escherichia coli K-12
    • An early experimental indication that gene orientation on the chromosome contributes to fitness
    • Hill, C. W. & Gray, J. A. Effects of chromosomal inversion on cell fitness in Escherichia coli K-12. Genetics 119, 771-778 (1988). An early experimental indication that gene orientation on the chromosome contributes to fitness.
    • (1988) Genetics , vol.119 , pp. 771-778
    • Hill, C.W.1    Gray, J.A.2
  • 20
    • 0029805686 scopus 로고    scopus 로고
    • Transcription-induced deletions in plasmid vectors: M13 DNA replication as a source of instability
    • Vilette, D., Ehrlich, S. D. & Michel, B. Transcription-induced deletions in plasmid vectors: M13 DNA replication as a source of instability. Mol. Gen. Genet. 252, 398-403 (1996).
    • (1996) Mol. Gen. Genet. , vol.252 , pp. 398-403
    • Vilette, D.1    Ehrlich, S.D.2    Michel, B.3
  • 21
    • 0029740114 scopus 로고    scopus 로고
    • DNA replication fork pause sites dependent on transcription
    • Deshpande, A. M. & Newlon, C. S. DNA replication fork pause sites dependent on transcription. Science 272, 1030-1033 (1996).
    • (1996) Science , vol.272 , pp. 1030-1033
    • Deshpande, A.M.1    Newlon, C.S.2
  • 22
    • 33646590590 scopus 로고    scopus 로고
    • Transcription regulatory elements are punctuation marks for DNA replication
    • Mirkin, E. V., Castro Roa, D., Nudler, E. & Mirkin, S. M. Transcription regulatory elements are punctuation marks for DNA replication. Proc. Natl Acad. Sci. USA 103, 7276-7281 (2006).
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 7276-7281
    • Mirkin, E.V.1    Castro Roa, D.2    Nudler, E.3    Mirkin, S.M.4
  • 23
    • 34249941504 scopus 로고    scopus 로고
    • Avoiding and resolving conflicts between DNA replication and transcription
    • Rudolph, C. J., Dhillon, P., Moore, T. & Lloyd, R. G. Avoiding and resolving conflicts between DNA replication and transcription. DNA Repair (Amst.) 6, 981-993 (2007).
    • (2007) DNA Repair (Amst.) , vol.6 , pp. 981-993
    • Rudolph, C.J.1    Dhillon, P.2    Moore, T.3    Lloyd, R.G.4
  • 24
    • 0036965964 scopus 로고    scopus 로고
    • DNA knotting caused by head-on collision of transcription and replication
    • Olavarrieta, L., Hernandez, P., Krimer, D. B. & Schvartzman, J. B. DNA knotting caused by head-on collision of transcription and replication. J. Mol. Biol. 322, 1-6 (2002).
    • (2002) J. Mol. Biol. , vol.322 , pp. 1-6
    • Olavarrieta, L.1    Hernandez, P.2    Krimer, D.B.3    Schvartzman, J.B.4
  • 25
    • 1842377482 scopus 로고    scopus 로고
    • Bacteriophage φ29 DNA replication arrest caused by codirectional collisions with the transcription machinery
    • Elias-Arnanz, M. & Salas, M. Bacteriophage φ29 DNA replication arrest caused by codirectional collisions with the transcription machinery. EMBO J. 16, 5775-5783 (1997).
    • (1997) EMBO J. , vol.16 , pp. 5775-5783
    • Elias-Arnanz, M.1    Salas, M.2
  • 26
    • 57649129186 scopus 로고    scopus 로고
    • The replisome uses mRNA as a primer after colliding with RNA polymerase
    • An in vitro study showing that when replication and transcription machineries collide co-directionally, the replisome can remain associated with DNA and use mRNA as a primer to restart replication
    • Pomerantz, R. T. & O'Donnell, M. The replisome uses mRNA as a primer after colliding with RNA polymerase. Nature 456, 762-766 (2008). An in vitro study showing that when replication and transcription machineries collide co-directionally, the replisome can remain associated with DNA and use mRNA as a primer to restart replication.
    • (2008) Nature , vol.456 , pp. 762-766
    • Pomerantz, R.T.1    O'Donnell, M.2
  • 27
    • 75749150810 scopus 로고    scopus 로고
    • Direct restart of a replication fork stalled by a head-on RNA polymerase
    • This in vitro study finds that the replisome can remain stably associated with DNA when it collides with a head-on transcription complex and that replication can restart without additional factors after RNAP is removed by Mfd
    • Pomerantz, R. T. & O'Donnell, M. Direct restart of a replication fork stalled by a head-on RNA polymerase. Science 327, 590-592 (2010). This in vitro study finds that the replisome can remain stably associated with DNA when it collides with a head-on transcription complex and that replication can restart without additional factors after RNAP is removed by Mfd.
    • (2010) Science , vol.327 , pp. 590-592
    • Pomerantz, R.T.1    O'Donnell, M.2
  • 28
    • 0030731108 scopus 로고    scopus 로고
    • The complete genome sequence of the Gram-positive bacterium Bacillus subtilis
    • Kunst, F. et al. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390, 249-256 (1997).
    • (1997) Nature , vol.390 , pp. 249-256
    • Kunst, F.1
  • 29
    • 15444350252 scopus 로고    scopus 로고
    • The complete genome sequence of Escherichia coli K-12
    • Blattner, F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453-1474 (1997).
    • (1997) Science , vol.277 , pp. 1453-1474
    • Blattner, F.R.1
  • 30
    • 0032417093 scopus 로고    scopus 로고
    • Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes
    • McLean, M. J., Wolfe, K. H. & Devine, K. M. Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes. J. Mol. Evol. 47, 691-696 (1998).
    • (1998) J. Mol. Evol. , vol.47 , pp. 691-696
    • McLean, M.J.1    Wolfe, K.H.2    Devine, K.M.3
  • 31
    • 0344668838 scopus 로고    scopus 로고
    • Gene essentiality determines chromosome organisation in bacteria
    • Rocha, E. P. & Danchin, A. Gene essentiality determines chromosome organisation in bacteria. Nucleic Acids Res. 31, 6570-6577 (2003).
    • (2003) Nucleic Acids Res. , vol.31 , pp. 6570-6577
    • Rocha, E.P.1    Danchin, A.2
  • 32
    • 0042667165 scopus 로고    scopus 로고
    • Essentiality, not expressiveness, drives gene-strand bias in bacteria
    • Rocha, E. P. & Danchin, A. Essentiality, not expressiveness, drives gene-strand bias in bacteria. Nature Genet. 34, 377-378 (2003).
    • (2003) Nature Genet. , vol.34 , pp. 377-378
    • Rocha, E.P.1    Danchin, A.2
  • 33
    • 5444276316 scopus 로고    scopus 로고
    • Genometric analyses of the organization of circular chromosomes: A universal pressure determines the direction of ribosomal RNA genes transcription relative to chromosome replication
    • Guy, L. & Roten, C. A. Genometric analyses of the organization of circular chromosomes: a universal pressure determines the direction of ribosomal RNA genes transcription relative to chromosome replication. Gene 340, 45-52 (2004).
    • (2004) Gene , vol.340 , pp. 45-52
    • Guy, L.1    Roten, C.A.2
  • 34
    • 20444485193 scopus 로고    scopus 로고
    • Interruptions in gene expression drive highly expressed operons to the leading strand of DNA replication
    • Price, M. N., Alm, E. J. & Arkin, A. P. Interruptions in gene expression drive highly expressed operons to the leading strand of DNA replication. Nucleic Acids Res. 33, 3224-3234 (2005).
    • (2005) Nucleic Acids Res. , vol.33 , pp. 3224-3234
    • Price, M.N.1    Alm, E.J.2    Arkin, A.P.3
  • 35
    • 0242523959 scopus 로고    scopus 로고
    • A salvage pathway for protein structures: TmRNA and trans-translation
    • Withey, J. H. & Friedman, D. I. A salvage pathway for protein structures: tmRNA and trans-translation. Annu. Rev. Microbiol. 57, 101-123 (2003).
    • (2003) Annu. Rev. Microbiol. , vol.57 , pp. 101-123
    • Withey, J.H.1    Friedman, D.I.2
  • 36
    • 34547789312 scopus 로고    scopus 로고
    • Transcription-associated mutagenesis in yeast is directly proportional to the level of gene expression and influenced by the direction of DNA replication
    • Kim, N., Abdulovic, A. L., Gealy, R., Lippert, M. J. & Jinks-Robertson, S. Transcription-associated mutagenesis in yeast is directly proportional to the level of gene expression and influenced by the direction of DNA replication. DNA Repair (Amst.) 6, 1285-1296 (2007).
    • (2007) DNA Repair (Amst.) , vol.6 , pp. 1285-1296
    • Kim, N.1    Abdulovic, A.L.2    Gealy, R.3    Lippert, M.J.4    Jinks-Robertson, S.5
  • 37
    • 0032738023 scopus 로고    scopus 로고
    • Effect of DNA lesions on transcription elongation
    • Tornaletti, S. & Hanawalt, P. C. Effect of DNA lesions on transcription elongation. Biochimie 81, 139-146 (1999).
    • (1999) Biochimie , vol.81 , pp. 139-146
    • Tornaletti, S.1    Hanawalt, P.C.2
  • 38
    • 0027905034 scopus 로고
    • Molecular mechanism of transcription-repair coupling
    • Selby, C. P. & Sancar, A. Molecular mechanism of transcription-repair coupling. Science 260, 53-58 (1993).
    • (1993) Science , vol.260 , pp. 53-58
    • Selby, C.P.1    Sancar, A.2
  • 39
    • 0037077154 scopus 로고    scopus 로고
    • E. coli transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation
    • Park, J. S., Marr, M. T. & Roberts, J. W. E. coli transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell 109, 757-767 (2002).
    • (2002) Cell , vol.109 , pp. 757-767
    • Park, J.S.1    Marr, M.T.2    Roberts, J.W.3
  • 41
    • 0028840106 scopus 로고
    • Crystal structure of the GreA transcript cleavage factor from Escherichia coli
    • Stebbins, C. E. et al. Crystal structure of the GreA transcript cleavage factor from Escherichia coli. Nature 373, 636-640 (1995).
    • (1995) Nature , vol.373 , pp. 636-640
    • Stebbins, C.E.1
  • 42
    • 0043244877 scopus 로고    scopus 로고
    • Structure and function of the transcription elongation factor GreB bound to bacterial RNA polymerase
    • Opalka, N. et al. Structure and function of the transcription elongation factor GreB bound to bacterial RNA polymerase. Cell 114, 335-345 (2003).
    • (2003) Cell , vol.114 , pp. 335-345
    • Opalka, N.1
  • 43
    • 4043108470 scopus 로고    scopus 로고
    • Regulation through the secondary channel-structural framework for ppGpp-DksA synergism during transcription
    • Perederina, A. et al. Regulation through the secondary channel-structural framework for ppGpp-DksA synergism during transcription. Cell 118, 297-309 (2004).
    • (2004) Cell , vol.118 , pp. 297-309
    • Perederina, A.1
  • 44
    • 4043069926 scopus 로고    scopus 로고
    • DksA: A critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP
    • Paul, B. J. et al. DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell 118, 311-322 (2004).
    • (2004) Cell , vol.118 , pp. 311-322
    • Paul, B.J.1
  • 45
    • 0031552174 scopus 로고    scopus 로고
    • The RNA-DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase
    • Nudler, E., Mustaev, A., Lukhtanov, E. & Goldfarb, A. The RNA-DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase. Cell 89, 33-41 (1997).
    • (1997) Cell , vol.89 , pp. 33-41
    • Nudler, E.1    Mustaev, A.2    Lukhtanov, E.3    Goldfarb, A.4
  • 46
    • 0031059249 scopus 로고    scopus 로고
    • Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3′ end of the RNA intact and extruded
    • Komissarova, N. & Kashlev, M. Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3′ end of the RNA intact and extruded. Proc. Natl Acad. Sci. USA 94, 1755-1760 (1997).
    • (1997) Proc. Natl Acad. Sci. USA , vol.94 , pp. 1755-1760
    • Komissarova, N.1    Kashlev, M.2
  • 47
    • 0346258014 scopus 로고    scopus 로고
    • Backtracking by single RNA polymerase molecules observed at near-base-pair resolution
    • Shaevitz, J. W., Abbondanzieri, E. A., Landick, R. & Block, S. M. Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature 426, 684-687 (2003).
    • (2003) Nature , vol.426 , pp. 684-687
    • Shaevitz, J.W.1    Abbondanzieri, E.A.2    Landick, R.3    Block, S.M.4
  • 48
    • 0027536870 scopus 로고
    • Transcript cleavage factors from E. coli
    • Borukhov, S., Sagitov, V. & Goldfarb, A. Transcript cleavage factors from E. coli. Cell 72, 459-466 (1993).
    • (1993) Cell , vol.72 , pp. 459-466
    • Borukhov, S.1    Sagitov, V.2    Goldfarb, A.3
  • 49
    • 0346243938 scopus 로고    scopus 로고
    • Transcript cleavage factors GreA and GreB act as transient catalytic components of RNA polymerase
    • Laptenko, O., Lee, J., Lomakin, I. & Borukhov, S. Transcript cleavage factors GreA and GreB act as transient catalytic components of RNA polymerase. EMBO J. 22, 6322-6334 (2003).
    • (2003) EMBO J. , vol.22 , pp. 6322-6334
    • Laptenko, O.1    Lee, J.2    Lomakin, I.3    Borukhov, S.4
  • 50
    • 0034671841 scopus 로고    scopus 로고
    • GreA and GreB proteins revive backtracked RNA polymerase in vivo by promoting transcript trimming
    • Toulme, F. et al. GreA and GreB proteins revive backtracked RNA polymerase in vivo by promoting transcript trimming. EMBO J. 19, 6853-6859 (2000).
    • (2000) EMBO J. , vol.19 , pp. 6853-6859
    • Toulme, F.1
  • 51
    • 0034507953 scopus 로고    scopus 로고
    • Function of transcription cleavage factors GreA and GreB at a regulatory pause site
    • Marr, M. T. & Roberts, J. W. Function of transcription cleavage factors GreA and GreB at a regulatory pause site. Mol. Cell 6, 1275-1285 (2000).
    • (2000) Mol. Cell , vol.6 , pp. 1275-1285
    • Marr, M.T.1    Roberts, J.W.2
  • 52
    • 67649660560 scopus 로고    scopus 로고
    • CarD is an essential regulator of rRNA transcription required for Mycobacterium tuberculosis persistence
    • Stallings, C. L. et al. CarD is an essential regulator of rRNA transcription required for Mycobacterium tuberculosis persistence. Cell 138, 146-159 (2009).
    • (2009) Cell , vol.138 , pp. 146-159
    • Stallings, C.L.1
  • 53
    • 79961031438 scopus 로고    scopus 로고
    • Genome-wide function of THO/TREX in active genes prevents R-loop-dependent replication obstacles
    • Gomez-Gonzalez, B. et al. Genome-wide function of THO/TREX in active genes prevents R-loop-dependent replication obstacles. EMBO J. 30, 3106-3119 (2011).
    • (2011) EMBO J. , vol.30 , pp. 3106-3119
    • Gomez-Gonzalez, B.1
  • 54
    • 1842391776 scopus 로고
    • Formation of an RNA primer for initiation of replication of ColE1 DNA by ribonuclease H
    • Itoh, T. & Tomizawa, J. Formation of an RNA primer for initiation of replication of ColE1 DNA by ribonuclease H. Proc. Natl Acad. Sci. USA 77, 2450-2454 (1980).
    • (1980) Proc. Natl Acad. Sci. USA , vol.77 , pp. 2450-2454
    • Itoh, T.1    Tomizawa, J.2
  • 55
    • 0027948391 scopus 로고
    • The RecF pathway of homologous recombination can mediate the initiation of DNA damage-inducible replication of the Escherichia coli chromosome
    • Asai, T. & Kogoma, T. The RecF pathway of homologous recombination can mediate the initiation of DNA damage-inducible replication of the Escherichia coli chromosome. J. Bacteriol. 176, 7113-7114 (1994).
    • (1994) J. Bacteriol. , vol.176 , pp. 7113-7114
    • Asai, T.1    Kogoma, T.2
  • 56
    • 0028262135 scopus 로고
    • Escherichia coli RNA polymerase mutants that enhance or diminish the SOS response constitutively expressed in the absence of RNase HI activity
    • Kogoma, T. Escherichia coli RNA polymerase mutants that enhance or diminish the SOS response constitutively expressed in the absence of RNase HI activity. J. Bacteriol. 176, 1521-1523 (1994).
    • (1994) J. Bacteriol. , vol.176 , pp. 1521-1523
    • Kogoma, T.1
  • 57
    • 33746093492 scopus 로고    scopus 로고
    • Cotranscriptional processes and their influence on genome stability
    • Li, X. & Manley, J. L. Cotranscriptional processes and their influence on genome stability. Genes Dev. 20, 1838-1847 (2006).
    • (2006) Genes Dev. , vol.20 , pp. 1838-1847
    • Li, X.1    Manley, J.L.2
  • 58
    • 7644223774 scopus 로고    scopus 로고
    • Why is transcription coupled to translation in bacteria?
    • Gowrishankar, J. & Harinarayanan, R. Why is transcription coupled to translation in bacteria? Mol. Microbiol. 54, 598-603 (2004).
    • (2004) Mol. Microbiol. , vol.54 , pp. 598-603
    • Gowrishankar, J.1    Harinarayanan, R.2
  • 59
    • 34547133987 scopus 로고    scopus 로고
    • The DinG protein from Escherichia coli is a structure-specific helicase
    • Voloshin, O. N. & Camerini-Otero, R. D. The DinG protein from Escherichia coli is a structure-specific helicase. J. Biol. Chem. 282, 18437-18447 (2007).
    • (2007) J. Biol. Chem. , vol.282 , pp. 18437-18447
    • Voloshin, O.N.1    Camerini-Otero, R.D.2
  • 60
    • 0033522905 scopus 로고    scopus 로고
    • Escherichia coli DNA topoisomerase I inhibits R-loop formation by relaxing transcription-induced negative supercoiling
    • Masse, E. & Drolet, M. Escherichia coli DNA topoisomerase I inhibits R-loop formation by relaxing transcription-induced negative supercoiling. J. Biol. Chem. 274, 16659-16664 (1999).
    • (1999) J. Biol. Chem. , vol.274 , pp. 16659-16664
    • Masse, E.1    Drolet, M.2
  • 61
    • 33645052194 scopus 로고    scopus 로고
    • Growth inhibition mediated by excess negative supercoiling: The interplay between transcription elongation, R-loop formation and DNA topology
    • Drolet, M. Growth inhibition mediated by excess negative supercoiling: the interplay between transcription elongation, R-loop formation and DNA topology. Mol. Microbiol. 59, 723-730 (2006).
    • (2006) Mol. Microbiol. , vol.59 , pp. 723-730
    • Drolet, M.1
  • 62
    • 77954371207 scopus 로고    scopus 로고
    • RNA polymerase mutations that facilitate replication progression in the rep uvrD recF mutant lacking two accessory replicative helicases
    • Baharoglu, Z., Lestini, R., Duigou, S. & Michel, B. RNA polymerase mutations that facilitate replication progression in the rep uvrD recF mutant lacking two accessory replicative helicases. Mol. Microbiol. 77, 324-336 (2010).
    • (2010) Mol. Microbiol. , vol.77 , pp. 324-336
    • Baharoglu, Z.1    Lestini, R.2    Duigou, S.3    Michel, B.4
  • 63
    • 0037073063 scopus 로고    scopus 로고
    • Rho-dependent termination and ATPases in transcript termination
    • Richardson, J. P. Rho-dependent termination and ATPases in transcript termination. Biochim. Biophys. Acta 1577, 251-260 (2002).
    • (2002) Biochim. Biophys. Acta , vol.1577 , pp. 251-260
    • Richardson, J.P.1
  • 64
    • 0026527997 scopus 로고
    • Requirement for E. coli NusG protein in factor-dependent transcription termination
    • Sullivan, S. L. & Gottesman, M. E. Requirement for E. coli NusG protein in factor-dependent transcription termination. Cell 68, 989-994 (1992).
    • (1992) Cell , vol.68 , pp. 989-994
    • Sullivan, S.L.1    Gottesman, M.E.2
  • 65
    • 0043237757 scopus 로고    scopus 로고
    • Host factor titration by chromosomal R-loops as a mechanism for runaway plasmid replication in transcription termination-defective mutants of Escherichia coli
    • Harinarayanan, R. & Gowrishankar, J. Host factor titration by chromosomal R-loops as a mechanism for runaway plasmid replication in transcription termination-defective mutants of Escherichia coli. J. Mol. Biol. 332, 31-46 (2003).
    • (2003) J. Mol. Biol. , vol.332 , pp. 31-46
    • Harinarayanan, R.1    Gowrishankar, J.2
  • 66
    • 79551674938 scopus 로고    scopus 로고
    • Transcription termination maintains chromosome integrity
    • This work shows that factors which influence RNAP termination can affect replication and chromosome integrity
    • Washburn, R. S. & Gottesman, M. E. Transcription termination maintains chromosome integrity. Proc. Natl Acad. Sci. USA 108, 792-797 (2011). This work shows that factors which influence RNAP termination can affect replication and chromosome integrity.
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 792-797
    • Washburn, R.S.1    Gottesman, M.E.2
  • 67
    • 77951541717 scopus 로고    scopus 로고
    • A NusE:NusG complex links transcription and translation
    • Burmann, B. M. et al. A NusE:NusG complex links transcription and translation. Science 328, 501-504 (2010).
    • (2010) Science , vol.328 , pp. 501-504
    • Burmann, B.M.1
  • 68
    • 77951589688 scopus 로고    scopus 로고
    • Cooperation between translating ribosomes and RNA polymerase in transcription elongation
    • Proshkin, S., Rahmouni, A. R., Mironov, A. & Nudler, E. Cooperation between translating ribosomes and RNA polymerase in transcription elongation. Science 328, 504-508 (2010).
    • (2010) Science , vol.328 , pp. 504-508
    • Proshkin, S.1    Rahmouni, A.R.2    Mironov, A.3    Nudler, E.4
  • 69
    • 0020806166 scopus 로고
    • Properties of the T4 bacteriophage DNA replication apparatus: The T4 dda DNA helicase is required to pass a bound RNA polymerase molecule
    • Bedinger, P., Hochstrasser, M., Jongeneel, C. V. & Alberts, B. M. Properties of the T4 bacteriophage DNA replication apparatus: the T4 dda DNA helicase is required to pass a bound RNA polymerase molecule. Cell 34, 115-123 (1983).
    • (1983) Cell , vol.34 , pp. 115-123
    • Bedinger, P.1    Hochstrasser, M.2    Jongeneel, C.V.3    Alberts, B.M.4
  • 70
    • 33749136403 scopus 로고    scopus 로고
    • Roles of Pif1-like helicases in the maintenance of genomic stability
    • Boule, J. B. & Zakian, V. A. Roles of Pif1-like helicases in the maintenance of genomic stability. Nucleic Acids Res. 34, 4147-4153 (2006).
    • (2006) Nucleic Acids Res. , vol.34 , pp. 4147-4153
    • Boule, J.B.1    Zakian, V.A.2
  • 71
    • 37749029027 scopus 로고    scopus 로고
    • Chromosome structuring limits genome plasticity in Escherichia coli
    • Esnault, E., Valens, M., Espeli, O. & Boccard, F. Chromosome structuring limits genome plasticity in Escherichia coli. PLoS Genet. 3, e226 (2007).
    • (2007) PLoS Genet. , vol.3
    • Esnault, E.1    Valens, M.2    Espeli, O.3    Boccard, F.4
  • 72
    • 0018353521 scopus 로고
    • Enzyme-catalyzed DNA unwinding: Studies on Escherichia coli rep protein
    • Yarranton, G. T. & Gefter, M. L. Enzyme-catalyzed DNA unwinding: studies on Escherichia coli rep protein. Proc. Natl Acad. Sci. USA 76, 1658-1662 (1979).
    • (1979) Proc. Natl Acad. Sci. USA , vol.76 , pp. 1658-1662
    • Yarranton, G.T.1    Gefter, M.L.2
  • 73
    • 0016710698 scopus 로고
    • The rep mutation. IV. Slower movement of replication forks in Escherichia coli rep strains
    • Lane, H. E. & Denhardt, D. T. The rep mutation. IV. Slower movement of replication forks in Escherichia coli rep strains. J. Mol. Biol. 97, 99-112 (1975).
    • (1975) J. Mol. Biol. , vol.97 , pp. 99-112
    • Lane, H.E.1    Denhardt, D.T.2
  • 74
    • 0031854048 scopus 로고    scopus 로고
    • PcrA is an essential DNA helicase of Bacillus subtilis fulfilling functions both in repair and rolling-circle replication
    • Petit, M. A. et al. PcrA is an essential DNA helicase of Bacillus subtilis fulfilling functions both in repair and rolling-circle replication. Mol. Microbiol. 29, 261-273 (1998).
    • (1998) Mol. Microbiol. , vol.29 , pp. 261-273
    • Petit, M.A.1
  • 75
    • 50249130755 scopus 로고    scopus 로고
    • UvrD and UvrD252 counteract RecQ, RecJ, and RecFOR in a rep mutant of Escherichia coli
    • Lestini, R. & Michel, B. UvrD and UvrD252 counteract RecQ, RecJ, and RecFOR in a rep mutant of Escherichia coli. J. Bacteriol. 190, 5995-6001 (2008).
    • (2008) J. Bacteriol. , vol.190 , pp. 5995-6001
    • Lestini, R.1    Michel, B.2
  • 76
    • 70449633073 scopus 로고    scopus 로고
    • Rep provides a second motor at the replisome to promote duplication of protein-bound DNA
    • Guy, C. P. et al. Rep provides a second motor at the replisome to promote duplication of protein-bound DNA. Mol. Cell 36, 654-666 (2009).
    • (2009) Mol. Cell , vol.36 , pp. 654-666
    • Guy, C.P.1
  • 77
    • 33749173326 scopus 로고    scopus 로고
    • The Escherichia coli UvrD helicase is essential for Tus removal during recombination-dependent replication restart from Ter sites
    • Bidnenko, V., Lestini, R. & Michel, B. The Escherichia coli UvrD helicase is essential for Tus removal during recombination-dependent replication restart from Ter sites. Mol. Microbiol. 62, 382-396 (2006).
    • (2006) Mol. Microbiol. , vol.62 , pp. 382-396
    • Bidnenko, V.1    Lestini, R.2    Michel, B.3
  • 78
    • 13244252309 scopus 로고    scopus 로고
    • UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli
    • Veaute, X. et al. UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO J. 24, 180-189 (2005).
    • (2005) EMBO J. , vol.24 , pp. 180-189
    • Veaute, X.1
  • 79
    • 79951572633 scopus 로고    scopus 로고
    • Localization of an accessory helicase at the replisome is critical in sustaining efficient genome duplication
    • Atkinson, J. et al. Localization of an accessory helicase at the replisome is critical in sustaining efficient genome duplication. Nucleic Acids Res. 39, 949-957 (2011).
    • (2011) Nucleic Acids Res. , vol.39 , pp. 949-957
    • Atkinson, J.1
  • 80
    • 0037124327 scopus 로고    scopus 로고
    • Essential bacterial helicases that counteract the toxicity of recombination proteins
    • Petit, M. A. & Ehrlich, D. Essential bacterial helicases that counteract the toxicity of recombination proteins. EMBO J. 21, 3137-3147 (2002).
    • (2002) EMBO J. , vol.21 , pp. 3137-3147
    • Petit, M.A.1    Ehrlich, D.2
  • 82
    • 34548061530 scopus 로고    scopus 로고
    • UvrD controls the access of recombination proteins to blocked replication forks
    • Lestini, R. & Michel, B. UvrD controls the access of recombination proteins to blocked replication forks. EMBO J. 26, 3804-3814 (2007).
    • (2007) EMBO J. , vol.26 , pp. 3804-3814
    • Lestini, R.1    Michel, B.2
  • 83
    • 34147179826 scopus 로고    scopus 로고
    • UvrD limits the number and intensities of RecA-green fluorescent protein structures in Escherichia coli K-12
    • Centore, R. C. & Sandler, S. J. UvrD limits the number and intensities of RecA-green fluorescent protein structures in Escherichia coli K-12. J. Bacteriol. 189, 2915-2920 (2007).
    • (2007) J. Bacteriol. , vol.189 , pp. 2915-2920
    • Centore, R.C.1    Sandler, S.J.2
  • 84
    • 34250305132 scopus 로고    scopus 로고
    • DNA helicase activity of PcrA is not required for the displacement of RecA protein from DNA or inhibition of RecA-mediated strand exchange
    • Anand, S. P., Zheng, H., Bianco, P. R., Leuba, S. H. & Khan, S. A. DNA helicase activity of PcrA is not required for the displacement of RecA protein from DNA or inhibition of RecA-mediated strand exchange. J. Bacteriol. 189, 4502-4509 (2007).
    • (2007) J. Bacteriol. , vol.189 , pp. 4502-4509
    • Anand, S.P.1    Zheng, H.2    Bianco, P.R.3    Leuba, S.H.4    Khan, S.A.5
  • 85
    • 77955605175 scopus 로고    scopus 로고
    • PcrA helicase dismantles RecA filaments by reeling in DNA in uniform steps
    • Park, J. et al. PcrA helicase dismantles RecA filaments by reeling in DNA in uniform steps. Cell 142, 544-555 (2010).
    • (2010) Cell , vol.142 , pp. 544-555
    • Park, J.1
  • 86
    • 0037062435 scopus 로고    scopus 로고
    • An expanded view of bacterial DNA replication
    • Noirot-Gros, M. F. et al. An expanded view of bacterial DNA replication. Proc. Natl Acad. Sci. USA 99, 8342-8347 (2002).
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 8342-8347
    • Noirot-Gros, M.F.1
  • 87
    • 79960421161 scopus 로고    scopus 로고
    • The dynamic protein partnership of RNA polymerase in Bacillus subtilis
    • Delumeau, O. et al. The dynamic protein partnership of RNA polymerase in Bacillus subtilis. Proteomics 11, 2992-3001 (2011).
    • (2011) Proteomics , vol.11 , pp. 2992-3001
    • Delumeau, O.1
  • 88
    • 0025325860 scopus 로고
    • Molecular cloning and DNA sequence analysis of Escherichia coli priA, the gene encoding the primosomal protein replication factor Y
    • Nurse, P., DiGate, R. J., Zavitz, K. H. & Marians, K. J. Molecular cloning and DNA sequence analysis of Escherichia coli priA, the gene encoding the primosomal protein replication factor Y. Proc. Natl Acad. Sci. USA 87, 4615-4619 (1990).
    • (1990) Proc. Natl Acad. Sci. USA , vol.87 , pp. 4615-4619
    • Nurse, P.1    DiGate, R.J.2    Zavitz, K.H.3    Marians, K.J.4
  • 89
    • 84860578766 scopus 로고    scopus 로고
    • Replication fork reversal after replication-transcription collision
    • de Septenville, A. L., Duigou, S., Boubakri, H. & Michel, B. Replication fork reversal after replication-transcription collision. PLoS Genet 8, e1002622 (2012).
    • (2012) PLoS Genet , vol.8
    • De Septenville, A.L.1    Duigou, S.2    Boubakri, H.3    Michel, B.4
  • 91
    • 77952744822 scopus 로고    scopus 로고
    • Functionality of essential genes drives gene strand-bias in bacterial genomes
    • Lin, Y., Gao, F. & Zhang, C. T. Functionality of essential genes drives gene strand-bias in bacterial genomes. Biochem. Biophys. Res. Commun. 396, 472-476 (2010).
    • (2010) Biochem. Biophys. Res. Commun. , vol.396 , pp. 472-476
    • Lin, Y.1    Gao, F.2    Zhang, C.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.