메뉴 건너뛰기




Volumn 98, Issue 1-2, 2015, Pages 121-155

The blind men and the elephant: on meeting the problem of multiple truths in data from clustering and pattern mining perspectives

Author keywords

Alternative clustering; Constraint clustering; Ensemble clustering; Multiview clustering; Pattern mining; Subspace clustering

Indexed keywords

CLUSTERING ALGORITHMS;

EID: 84920707649     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-013-5334-y     Document Type: Article
Times cited : (35)

References (206)
  • 11
    • 1542399989 scopus 로고    scopus 로고
    • FatiGO: a web tool for finding significant associations of Gene ontology terms with groups of genes
    • Al-Shahrour, F., Diaz-Uriarte, R., & Dopazo, J. (2004). FatiGO: a web tool for finding significant associations of Gene ontology terms with groups of genes. Bioinformatics, 20(4), 578–580. doi:10.1093/bioinformatics/btg455.
    • (2004) Bioinformatics , vol.20 , Issue.4 , pp. 578-580
    • Al-Shahrour, F.1    Diaz-Uriarte, R.2    Dopazo, J.3
  • 20
    • 84873117260 scopus 로고    scopus 로고
    • COALA: a novel approach for the extraction of an alternate clustering of high quality and high dissimilarity
    • Bae, E., & Bailey, J. (2006). COALA: a novel approach for the extraction of an alternate clustering of high quality and high dissimilarity. In Proceedings of the 6th IEEE international conference on data mining (ICDM), Hong Kong, China (pp. 53–62). doi:10.1109/ICDM.2006.37.
    • (2006) Proceedings of the 6th IEEE international conference on data mining (ICDM) , pp. 53-62
    • Bae, E.1    Bailey, J.2
  • 21
    • 33645323768 scopus 로고    scopus 로고
    • Hierarchical multi-label prediction of gene function
    • Barutcuoglu, Z., Schapire, R. E., & Troyanskaya, O. G. (2006). Hierarchical multi-label prediction of gene function. Bioinformatics, 22(7), 830–836. doi:10.1093/bioinformatics/btk048.
    • (2006) Bioinformatics , vol.22 , Issue.7 , pp. 830-836
    • Barutcuoglu, Z.1    Schapire, R.E.2    Troyanskaya, O.G.3
  • 33
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • Boutell, M. R., Luo, J., Shen, X., & Brown, C. M. (2004). Learning multi-label scene classification. Pattern Recognition, 37(9), 1757–1771. doi:10.1016/j.patcog.2004.03.009.
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.R.1    Luo, J.2    Shen, X.3    Brown, C.M.4
  • 35
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: a survey and categorisation
    • Brown, G., Wyatt, J., Harris, R., & Yao, X. (2005). Diversity creation methods: a survey and categorisation. Information Fusion, 6, 5–20. doi:10.1016/j.inffus.2004.04.004.
    • (2005) Information Fusion , vol.6 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 38
    • 77951299088 scopus 로고    scopus 로고
    • Generalized external indexes for comparing data partitions with overlapping categories
    • Campello, R. J. G. B. (2010). Generalized external indexes for comparing data partitions with overlapping categories. Pattern Recognition Letters, 31(9), 966–975. doi:10.1016/j.patrec.2010.01.002.
    • (2010) Pattern Recognition Letters , vol.31 , Issue.9 , pp. 966-975
    • Campello, R.J.G.B.1
  • 41
    • 0000776545 scopus 로고    scopus 로고
    • Scalable feature selection, classification and signature generation for organizing large text databases into hierarchical topic taxonomies
    • Chakrabarti, S., Dom, B., Agrawal, R., & Raghavan, P. (1998). Scalable feature selection, classification and signature generation for organizing large text databases into hierarchical topic taxonomies. The VLDB Journal, 7(3), 163–178.
    • (1998) The VLDB Journal , vol.7 , Issue.3 , pp. 163-178
    • Chakrabarti, S.1    Dom, B.2    Agrawal, R.3    Raghavan, P.4
  • 42
    • 0030242043 scopus 로고    scopus 로고
    • Scale-based clustering using the radial basis function network
    • Chakravarthy, S. V., & Ghosh, J. (1996). Scale-based clustering using the radial basis function network. IEEE Transactions on Neural Networks, 7(5), 1250–1261.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.5 , pp. 1250-1261
    • Chakravarthy, S.V.1    Ghosh, J.2
  • 46
    • 0036940312 scopus 로고    scopus 로고
    • How well do we understand the clusters found in microarray data?
    • Clare, A., & King, R. (2002). How well do we understand the clusters found in microarray data? In Silico Biology, 2(4), 511–522.
    • (2002) In Silico Biology , vol.2 , Issue.4 , pp. 511-522
    • Clare, A.1    King, R.2
  • 48
    • 0000546609 scopus 로고
    • I-divergence geometry of probability distributions and minimization problems
    • Csiszár, I. (1975). I-divergence geometry of probability distributions and minimization problems. Annals of Probability, 3(1), 146–158.
    • (1975) Annals of Probability , vol.3 , Issue.1 , pp. 146-158
    • Csiszár, I.1
  • 52
    • 33749428430 scopus 로고    scopus 로고
    • Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes
    • Datta, S., & Datta, S. (2006). Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes. BMC Bioinformatics, 7, 397. doi:10.1186/1471-2105-7-397.
    • (2006) BMC Bioinformatics , vol.7 , pp. 397
    • Datta, S.1    Datta, S.2
  • 54
    • 60849121404 scopus 로고    scopus 로고
    • Using instance-level constraints in agglomerative hierarchical clustering: theoretical and empirical results
    • Davidson, I., & Ravi, S. (2009). Using instance-level constraints in agglomerative hierarchical clustering: theoretical and empirical results. Data Mining and Knowledge Discovery, 18, 257–282.
    • (2009) Data Mining and Knowledge Discovery , vol.18 , pp. 257-282
    • Davidson, I.1    Ravi, S.2
  • 56
    • 80855141626 scopus 로고    scopus 로고
    • Maximum entropy models and subjective interestingness: an application to tiles in binary databases
    • De Bie, T. (2011). Maximum entropy models and subjective interestingness: an application to tiles in binary databases. Data Mining and Knowledge Discovery, 23(3), 1–40.
    • (2011) Data Mining and Knowledge Discovery , vol.23 , Issue.3 , pp. 1-40
    • De Bie, T.1
  • 62
    • 34547284903 scopus 로고    scopus 로고
    • On data mining, compression and Kolmogorov complexity
    • 15, Springer, Berlin:
    • Faloutsos, C., & Megalooikonomou, V. (2007). On data mining, compression and Kolmogorov complexity. In Data mining and knowledge discovery (Vol. 15, pp. 3–20). Berlin: Springer.
    • (2007) Data mining and knowledge discovery , pp. 3-20
    • Faloutsos, C.1    Megalooikonomou, V.2
  • 65
    • 72449173699 scopus 로고    scopus 로고
    • Cluster ensemble selection
    • Fern, X. Z., & Lin, W. (2008). Cluster ensemble selection. Statistical Analysis and Data Mining, 1(3), 128–141. doi:10.1002/sam.10008.
    • (2008) Statistical Analysis and Data Mining , vol.1 , Issue.3 , pp. 128-141
    • Fern, X.Z.1    Lin, W.2
  • 69
    • 4344609320 scopus 로고    scopus 로고
    • Frank, A., & Asuncion, A. (2010)
    • Frank, A., & Asuncion, A. (2010). UCI machine learning repository. http://archive.ics.uci.edu/ml, http://archive.ics.uci.edu/ml.
    • UCI machine learning repository
  • 71
    • 80053991186 scopus 로고    scopus 로고
    • On exploiting hierarchical label structure with pairwise classifiers
    • Fürnkranz, J., & Sima, J. F. (2010). On exploiting hierarchical label structure with pairwise classifiers. ACM SIGKDD Explorations, 12(2), 21–25. doi:10.1145/1964897.1964903.
    • (2010) ACM SIGKDD Explorations , vol.12 , Issue.2 , pp. 21-25
    • Fürnkranz, J.1    Sima, J.F.2
  • 75
    • 78650465487 scopus 로고    scopus 로고
    • Converting output scores from outlier detection algorithms into probability estimates
    • Gao, J., & Tan, P. N. (2006). Converting output scores from outlier detection algorithms into probability estimates. In Proceedings of the 6th IEEE international conference on data mining (ICDM), Hong Kong, China (pp. 212–221). doi:10.1109/ICDM.2006.43.
    • (2006) Proceedings of the 6th IEEE international conference on data mining (ICDM) , pp. 212-221
    • Gao, J.1    Tan, P.N.2
  • 76
    • 0348143190 scopus 로고    scopus 로고
    • Scoring clustering solutions by their biological relevance
    • Gat-Viks, I., Sharan, R., & Shamir, R. (2003). Scoring clustering solutions by their biological relevance. Bioinformatics, 19(18), 2381–2389. doi:10.1093/bioinformatics/btg330.
    • (2003) Bioinformatics , vol.19 , Issue.18 , pp. 2381-2389
    • Gat-Viks, I.1    Sharan, R.2    Shamir, R.3
  • 81
    • 0036798238 scopus 로고    scopus 로고
    • Judging the quality of gene expression-based clustering methods using gene annotation
    • Gibbons, F. D., & Roth, F. P. (2002). Judging the quality of gene expression-based clustering methods using gene annotation. Genome Research, 12, 1574–1581.
    • (2002) Genome Research , vol.12 , pp. 1574-1581
    • Gibbons, F.D.1    Roth, F.P.2
  • 96
    • 33744920539 scopus 로고    scopus 로고
    • Moderate diversity for better cluster ensembles
    • Hadjitodorov, S. T., Kuncheva, L. I., & Todorova, L. P. (2006). Moderate diversity for better cluster ensembles. Information Fusion, 7(3), 264–275. doi:10.1016/j.inffus.2005.01.008.
    • (2006) Information Fusion , vol.7 , Issue.3 , pp. 264-275
    • Hadjitodorov, S.T.1    Kuncheva, L.I.2    Todorova, L.P.3
  • 102
    • 0004185151 scopus 로고
    • Wiley, New York, London, Sydney, Toronto:
    • Hartigan, J. A. (1975). Clustering algorithms. New York, London, Sydney, Toronto: Wiley.
    • (1975) Clustering algorithms
    • Hartigan, J.A.1
  • 104
    • 84864286615 scopus 로고    scopus 로고
    • Automatic aspect discrimination in data clustering
    • Horta, D., & Campello, R. J. G. B. (2012). Automatic aspect discrimination in data clustering. Pattern Recognition, 45(12), 4370–4388.
    • (2012) Pattern Recognition , vol.45 , Issue.12 , pp. 4370-4388
    • Horta, D.1    Campello, R.J.G.B.2
  • 107
    • 70049108502 scopus 로고    scopus 로고
    • Simultaneous unsupervised learning of disparate clusterings
    • Jain, P., Meka, R., & Dhillon, I. S. (2008). Simultaneous unsupervised learning of disparate clusterings. Statistical Analysis and Data Mining, 1(3), 195–210. doi:10.1002/sam.10007.
    • (2008) Statistical Analysis and Data Mining , vol.1 , Issue.3 , pp. 195-210
    • Jain, P.1    Meka, R.2    Dhillon, I.S.3
  • 108
    • 0020187981 scopus 로고
    • On the rationale of maximum-entropy methods
    • Jaynes, E. T. (1982). On the rationale of maximum-entropy methods. Proceedings of the IEEE, 70(9), 939–952.
    • (1982) Proceedings of the IEEE , vol.70 , Issue.9 , pp. 939-952
    • Jaynes, E.T.1
  • 122
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering
    • Kriegel, H. P., Kröger, P., & Zimek, A. (2009). Clustering high dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Transactions on Knowledge Discovery from Data, 3(1), 1–58. doi:10.1145/1497577.1497578.
    • (2009) ACM Transactions on Knowledge Discovery from Data , vol.3 , Issue.1 , pp. 1-58
    • Kriegel, H.P.1    Kröger, P.2    Zimek, A.3
  • 127
    • 84925655451 scopus 로고    scopus 로고
    • Subspace clustering techniques
    • Liu L., Özsu M. T., (eds), Springer, Berlin:
    • Kröger, P., & Zimek, A. (2009). Subspace clustering techniques. In L. Liu & M. T. Özsu (Eds.), Encyclopedia of database systems (pp. 2873–2875). Berlin: Springer. doi:10.1007/978-0-387-39940-9_607.
    • (2009) Encyclopedia of database systems , pp. 2873-2875
    • Kröger, P.1    Zimek, A.2
  • 131
    • 1342330530 scopus 로고    scopus 로고
    • A graph-theoretic modeling on GO space for biological interpretation of gene clusters
    • Lee, S. G., Hur, J. U., & Kim, Y. S. (2004). A graph-theoretic modeling on GO space for biological interpretation of gene clusters. Bioinformatics, 20(3), 381–388. doi:10.1093/bioinformatics/btg420.
    • (2004) Bioinformatics , vol.20 , Issue.3 , pp. 381-388
    • Lee, S.G.1    Hur, J.U.2    Kim, Y.S.3
  • 135
    • 0004770858 scopus 로고
    • On the theory and construction of k-clusters
    • Ling, R. F. (1972). On the theory and construction of k-clusters. Computer Journal, 15(4), 326–332.
    • (1972) Computer Journal , vol.15 , Issue.4 , pp. 326-332
    • Ling, R.F.1
  • 138
    • 77950250511 scopus 로고    scopus 로고
    • Efficient mining of distance-based subspace clusters
    • Liu, G., Sim, K., Li, J., & Wong, L. (2009). Efficient mining of distance-based subspace clusters. Statistical Analysis and Data Mining, 2(5–6), 427–444. doi:10.1002/sam.10062.
    • (2009) Statistical Analysis and Data Mining , vol.2 , Issue.5-6 , pp. 427-444
    • Liu, G.1    Sim, K.2    Li, J.3    Wong, L.4
  • 140
    • 0037480738 scopus 로고    scopus 로고
    • Investigating semantic similarity measures across the Gene ontology: the relationship between sequence and annotation
    • Lord, P. W., Stevens, R. D., Brass, A., & Goble, C. A. (2003). Investigating semantic similarity measures across the Gene ontology: the relationship between sequence and annotation. Bioinformatics, 19(10), 1275–1283. doi:10.1093/bioinformatics/btg153.
    • (2003) Bioinformatics , vol.19 , Issue.10 , pp. 1275-1283
    • Lord, P.W.1    Stevens, R.D.2    Brass, A.3    Goble, C.A.4
  • 143
    • 21944442464 scopus 로고    scopus 로고
    • Levelwise search and borders of theories in knowledge discovery
    • Mannila, H., & Toivonen, H. (1997). Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery, 1(3), 241–258.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.3 , pp. 241-258
    • Mannila, H.1    Toivonen, H.2
  • 147
    • 65449163900 scopus 로고    scopus 로고
    • Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering
    • Moise, G., & Sander, J. (2008). Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering. In Proceedings of the 14th ACM international conference on knowledge discovery and data mining (SIGKDD), Las Vegas, NV (pp. 533–541). doi:10.1145/1401890.1401956.
    • (2008) Proceedings of the 14th ACM international conference on knowledge discovery and data mining (SIGKDD) , pp. 533-541
    • Moise, G.1    Sander, J.2
  • 148
    • 71949123741 scopus 로고    scopus 로고
    • Subspace and projected clustering: experimental evaluation and analysis
    • Moise, G., Zimek, A., Kröger, P., Kriegel, H. P., & Sander, J. (2009). Subspace and projected clustering: experimental evaluation and analysis. Knowledge and Information Systems, 21(3), 299–326. doi:10.1007/s10115-009-0226-y.
    • (2009) Knowledge and Information Systems , vol.21 , Issue.3 , pp. 299-326
    • Moise, G.1    Zimek, A.2    Kröger, P.3    Kriegel, H.P.4    Sander, J.5
  • 149
    • 80053305876 scopus 로고    scopus 로고
    • Efficient mining of all margin-closed itemsets with applications in temporal knowledge discovery and classification by compression
    • Mörchen, F., Thies, M., & Ultsch, A. (2011). Efficient mining of all margin-closed itemsets with applications in temporal knowledge discovery and classification by compression. Knowledge and Information Systems, 29(1), 55–80.
    • (2011) Knowledge and Information Systems , vol.29 , Issue.1 , pp. 55-80
    • Mörchen, F.1    Thies, M.2    Ultsch, A.3
  • 156
    • 61749084093 scopus 로고    scopus 로고
    • Supervised descriptive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup mining
    • Novak, P. K., Lavrac, N., & Webb, G. I. (2009). Supervised descriptive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup mining. Journal of Machine Learning Research, 10, 377–403.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 377-403
    • Novak, P.K.1    Lavrac, N.2    Webb, G.I.3
  • 168
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14(1), 465–471.
    • (1978) Automatica , vol.14 , Issue.1 , pp. 465-471
    • Rissanen, J.1
  • 169
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: a boosting-based system for text categorization
    • Schapire, R. E., & Singer, Y. (2000). BoosTexter: a boosting-based system for text categorization. Machine Learning, 39(2–3), 135–168. doi:10.1023/A:1007649029923.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 171
    • 0035237805 scopus 로고    scopus 로고
    • Rich probabilistic models for gene expression
    • Segal, E., Taskar, B., Gasch, A., Friedman, N., & Koller, D. (2001). Rich probabilistic models for gene expression. Bioinformatics, 17(Suppl(1), S243–S252).
    • (2001) Bioinformatics , vol.17Suppl , Issue.1 , pp. S243-S252
    • Segal, E.1    Taskar, B.2    Gasch, A.3    Friedman, N.4    Koller, D.5
  • 173
    • 0002663098 scopus 로고
    • SLINK: an optimally efficient algorithm for the single-link cluster method
    • Sibson, R. (1973). SLINK: an optimally efficient algorithm for the single-link cluster method. Computer Journal, 16(1), 30–34. doi:10.1093/comjnl/16.1.30.
    • (1973) Computer Journal , vol.16 , Issue.1 , pp. 30-34
    • Sibson, R.1
  • 174
    • 78651375098 scopus 로고    scopus 로고
    • A survey of hierarchical classification across different application domains
    • Silla, C. N., & Freitas, A. A. (2011). A survey of hierarchical classification across different application domains. Data Mining and Knowledge Discovery, 22(1–2), 31–72. doi:10.1007/s10618-010-0175-9.
    • (2011) Data Mining and Knowledge Discovery , vol.22 , Issue.1-2 , pp. 31-72
    • Silla, C.N.1    Freitas, A.A.2
  • 176
    • 79951788461 scopus 로고    scopus 로고
    • Ensemble clustering using semidefinite programming with applications
    • Singh, V., Mukherjee, L., Peng, J., & Xu, J. (2010). Ensemble clustering using semidefinite programming with applications. Machine Learning, 79(1–2), 177–200.
    • (2010) Machine Learning , vol.79 , Issue.1-2 , pp. 177-200
    • Singh, V.1    Mukherjee, L.2    Peng, J.3    Xu, J.4
  • 177
    • 84877279119 scopus 로고    scopus 로고
    • Slim: directly mining descriptive patterns
    • Society for Industrial and Applied Mathematics (SIAM), Philadelphia:
    • Smets, K., & Vreeken, J. (2012). Slim: directly mining descriptive patterns. In Proceedings of the 12th SIAM international conference on data mining (SDM), Anaheim, CA (pp. 1–12). Philadelphia: Society for Industrial and Applied Mathematics (SIAM).
    • (2012) Proceedings of the 12th SIAM international conference on data mining (SDM) , pp. 1-12
    • Smets, K.1    Vreeken, J.2
  • 178
    • 9444222978 scopus 로고
    • The application of computers to taxonomy
    • Sneath, P. H. A. (1957). The application of computers to taxonomy. Journal of General Microbiology, 17, 201–226.
    • (1957) Journal of General Microbiology , vol.17 , pp. 201-226
    • Sneath, P.H.A.1
  • 180
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles—a knowledge reuse framework for combining multiple partitions
    • Strehl, A., & Ghosh, J. (2002). Cluster ensembles—a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3, 583–617.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 181
    • 0037560966 scopus 로고    scopus 로고
    • Estimating the cluster tree of a density by analyzing the minimal spanning tree of a sample
    • Stuetzle, W. (2003). Estimating the cluster tree of a density by analyzing the minimal spanning tree of a sample. Journal of Classification, 20(1), 25–47. doi:10.1007/s00357-003-0004-6.
    • (2003) Journal of Classification , vol.20 , Issue.1 , pp. 25-47
    • Stuetzle, W.1
  • 182
    • 54049104046 scopus 로고    scopus 로고
    • Maximum entropy based significance of itemsets
    • Tatti, N. (2008). Maximum entropy based significance of itemsets. Knowledge and Information Systems, 17(1), 57–77.
    • (2008) Knowledge and Information Systems , vol.17 , Issue.1 , pp. 57-77
    • Tatti, N.1
  • 197
    • 34249653461 scopus 로고    scopus 로고
    • Discovering significant patterns
    • Webb, G. I. (2007). Discovering significant patterns. Machine Learning, 68(1), 1–33.
    • (2007) Machine Learning , vol.68 , Issue.1 , pp. 1-33
    • Webb, G.I.1
  • 198
    • 0001831117 scopus 로고
    • Mode analysis: a generalization of nearest neighbor which reduces chaining effects
    • Cole A. J., (ed)
    • Wishart, D. (1969). Mode analysis: a generalization of nearest neighbor which reduces chaining effects. In A. J. Cole (Ed.), Numerical taxonomy (pp. 282–311).
    • (1969) Numerical taxonomy , pp. 282-311
    • Wishart, D.1
  • 200
    • 79958127484 scopus 로고    scopus 로고
    • Summarizing transactional databases with overlapped hyperrectangles
    • Xiang, Y., Jin, R., Fuhry, D., & Dragan, F. (2011). Summarizing transactional databases with overlapped hyperrectangles. Data Mining and Knowledge Discovery, 23(2), 215–251.
    • (2011) Data Mining and Knowledge Discovery , vol.23 , Issue.2 , pp. 215-251
    • Xiang, Y.1    Jin, R.2    Fuhry, D.3    Dragan, F.4
  • 206
    • 84866458840 scopus 로고    scopus 로고
    • A survey on unsupervised outlier detection in high-dimensional numerical data
    • Zimek, A., Schubert, E., & Kriegel, H. P. (2012). A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining, 5(5), 363–387. doi:10.1002/sam.11161.
    • (2012) Statistical Analysis and Data Mining , vol.5 , Issue.5 , pp. 363-387
    • Zimek, A.1    Schubert, E.2    Kriegel, H.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.