-
1
-
-
33745766924
-
Hierarchical density-based clustering for multi-represented objects
-
Achtert, E., Kriegel, H. P., Pryakhin, A., & Schubert, M. (2005). Hierarchical density-based clustering for multi-represented objects. In Workshop on mining complex data (MCD) on the 5th IEEE international conference on data mining (ICDM), Houston, TX (p. 9).
-
(2005)
Workshop on mining complex data (MCD) on the 5th IEEE international conference on data mining (ICDM)
, pp. 9
-
-
Achtert, E.1
Kriegel, H.P.2
Pryakhin, A.3
Schubert, M.4
-
2
-
-
33750312873
-
Finding hierarchies of subspace clusters
-
Achtert, E., Böhm, C., Kriegel, H. P., Kröger, P., Müller-Gorman, I., & Zimek, A. (2006a). Finding hierarchies of subspace clusters. In Proceedings of the 10th European conference on principles and practice of knowledge discovery in databases (PKDD), Berlin, Germany (pp. 446–453). doi:10.1007/11871637_42.
-
(2006)
Proceedings of the 10th European conference on principles and practice of knowledge discovery in databases (PKDD)
, pp. 446-453
-
-
Achtert, E.1
Böhm, C.2
Kriegel, H.P.3
Kröger, P.4
Müller-Gorman, I.5
Zimek, A.6
-
3
-
-
33745787939
-
Mining hierarchies of correlation clusters
-
Achtert, E., Böhm, C., Kröger, P., & Zimek, A. (2006b). Mining hierarchies of correlation clusters. In Proceedings of the 18th international conference on scientific and statistical database management (SSDBM), Vienna, Austria (pp. 119–128). doi:10.1109/SSDBM.2006.35.
-
(2006)
Proceedings of the 18th international conference on scientific and statistical database management (SSDBM)
, pp. 119-128
-
-
Achtert, E.1
Böhm, C.2
Kröger, P.3
Zimek, A.4
-
4
-
-
33745796002
-
Clustering multi-represented objects using combination trees
-
Achtert, E., Kriegel, H. P., Pryakhin, A., & Schubert, M. (2006c). Clustering multi-represented objects using combination trees. In Proceedings of the 10th Pacific-Asia conference on knowledge discovery and data mining (PAKDD), Singapore (pp. 174–178). doi:10.1007/11731139_21.
-
(2006)
Proceedings of the 10th Pacific-Asia conference on knowledge discovery and data mining (PAKDD)
, pp. 174-178
-
-
Achtert, E.1
Kriegel, H.P.2
Pryakhin, A.3
Schubert, M.4
-
5
-
-
38049175016
-
Detection and visualization of subspace cluster hierarchies
-
Achtert, E., Böhm, C., Kriegel, H. P., Kröger, P., Müller-Gorman, I., & Zimek, A. (2007a). Detection and visualization of subspace cluster hierarchies. In Proceedings of the 12th international conference on database systems for advanced applications (DASFAA), Bangkok, Thailand (pp. 152–163). doi:10.1007/978-3-540-71703-4_15.
-
(2007)
Proceedings of the 12th international conference on database systems for advanced applications (DASFAA)
, pp. 152-163
-
-
Achtert, E.1
Böhm, C.2
Kriegel, H.P.3
Kröger, P.4
Müller-Gorman, I.5
Zimek, A.6
-
6
-
-
46649105498
-
On exploring complex relationships of correlation clusters
-
Achtert, E., Böhm, C., Kriegel, H. P., Kröger, P., & Zimek, A. (2007b). On exploring complex relationships of correlation clusters. In Proceedings of the 19th international conference on scientific and statistical database management (SSDBM), Banff, Canada (pp. 7–16). doi:10.1109/SSDBM.2007.21.
-
(2007)
Proceedings of the 19th international conference on scientific and statistical database management (SSDBM)
, pp. 7-16
-
-
Achtert, E.1
Böhm, C.2
Kriegel, H.P.3
Kröger, P.4
Zimek, A.5
-
7
-
-
84864208710
-
Evaluation of clusterings—metrics and visual support
-
Achtert, E., Goldhofer, S., Kriegel, H. P., Schubert, E., & Zimek, A. (2012). Evaluation of clusterings—metrics and visual support. In Proceedings of the 28th international conference on data engineering (ICDE), Washington, DC (pp. 1285–1288). doi:10.1109/ICDE.2012.128.
-
(2012)
Proceedings of the 28th international conference on data engineering (ICDE)
, pp. 1285-1288
-
-
Achtert, E.1
Goldhofer, S.2
Kriegel, H.P.3
Schubert, E.4
Zimek, A.5
-
8
-
-
0347718066
-
Fast algorithms for projected clustering
-
Aggarwal, C. C., Procopiuc, C. M., Wolf, J. L., Yu, P. S., & Park, J. S. (1999). Fast algorithms for projected clustering. In Proceedings of the ACM international conference on management of data (SIGMOD), Philadelphia, PA (pp. 61–72).
-
(1999)
Proceedings of the ACM international conference on management of data (SIGMOD)
, pp. 61-72
-
-
Aggarwal, C.C.1
Procopiuc, C.M.2
Wolf, J.L.3
Yu, P.S.4
Park, J.S.5
-
10
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
Agrawal, R., Gehrke, J., Gunopulos, D., & Raghavan, P. (1998). Automatic subspace clustering of high dimensional data for data mining applications. In Proceedings of the ACM international conference on management of data (SIGMOD), Seattle, WA (pp. 94–105).
-
(1998)
Proceedings of the ACM international conference on management of data (SIGMOD)
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
11
-
-
1542399989
-
FatiGO: a web tool for finding significant associations of Gene ontology terms with groups of genes
-
Al-Shahrour, F., Diaz-Uriarte, R., & Dopazo, J. (2004). FatiGO: a web tool for finding significant associations of Gene ontology terms with groups of genes. Bioinformatics, 20(4), 578–580. doi:10.1093/bioinformatics/btg455.
-
(2004)
Bioinformatics
, vol.20
, Issue.4
, pp. 578-580
-
-
Al-Shahrour, F.1
Diaz-Uriarte, R.2
Dopazo, J.3
-
12
-
-
0347172110
-
OPTICS: ordering points to identify the clustering structure
-
Ankerst, M., Breunig, M. M., Kriegel, H. P., & Sander, J. (1999). OPTICS: ordering points to identify the clustering structure. In Proceedings of the ACM international conference on management of data (SIGMOD), Philadelphia, PA (pp. 49–60).
-
(1999)
Proceedings of the ACM international conference on management of data (SIGMOD)
, pp. 49-60
-
-
Ankerst, M.1
Breunig, M.M.2
Kriegel, H.P.3
Sander, J.4
-
13
-
-
0034069495
-
Gene ontology: tool for the unification of biology
-
Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics, 25(1), 25–29.
-
(2000)
The Gene Ontology Consortium. Nature Genetics
, vol.25
, Issue.1
, pp. 25-29
-
-
Ashburner, M.1
Ball, C.A.2
Blake, J.A.3
Botstein, D.4
Butler, H.5
Cherry, J.M.6
Davis, A.P.7
Dolinski, K.8
Dwight, S.S.9
Eppig, J.T.10
Harris, M.A.11
Hill, D.P.12
Issel-Tarver, L.13
Kasarskis, A.14
Lewis, S.15
Matese, J.C.16
Richardson, J.E.17
Ringwald, M.18
Rubin, G.M.19
Sherlock, G.20
more..
-
15
-
-
47249137675
-
DUSC: dimensionality unbiased subspace clustering
-
Assent, I., Krieger, R., Müller, E., & Seidl, T. (2007). DUSC: dimensionality unbiased subspace clustering. In Proceedings of the 7th IEEE international conference on data mining (ICDM), Omaha, NE (pp. 409–414). doi:10.1109/ICDM.2007.49.
-
(2007)
Proceedings of the 7th IEEE international conference on data mining (ICDM)
, pp. 409-414
-
-
Assent, I.1
Krieger, R.2
Müller, E.3
Seidl, T.4
-
16
-
-
67049137962
-
INSCY: indexing subspace clusters with in-process-removal of redundancy
-
Assent, I., Krieger, R., Müller, E., & Seidl, T. (2008). INSCY: indexing subspace clusters with in-process-removal of redundancy. In Proceedings of the 8th IEEE international conference on data mining (ICDM), Pisa, Italy (pp. 719–724). doi:10.1109/ICDM.2008.46.
-
(2008)
Proceedings of the 8th IEEE international conference on data mining (ICDM)
, pp. 719-724
-
-
Assent, I.1
Krieger, R.2
Müller, E.3
Seidl, T.4
-
17
-
-
84873172464
-
Less is more: non-redundant subspace clustering
-
Assent, I., Müller, E., Günnemann, S., Krieger, R., & Seidl, T. (2010). Less is more: non-redundant subspace clustering. In MultiClust: 1st international workshop on discovering, summarizing and using multiple clusterings held in conjunction with KDD 2010, Washington, DC.
-
(2010)
MultiClust: 1st international workshop on discovering, summarizing and using multiple clusterings held in conjunction with KDD 2010
-
-
Assent, I.1
Müller, E.2
Günnemann, S.3
Krieger, R.4
Seidl, T.5
-
20
-
-
84873117260
-
COALA: a novel approach for the extraction of an alternate clustering of high quality and high dissimilarity
-
Bae, E., & Bailey, J. (2006). COALA: a novel approach for the extraction of an alternate clustering of high quality and high dissimilarity. In Proceedings of the 6th IEEE international conference on data mining (ICDM), Hong Kong, China (pp. 53–62). doi:10.1109/ICDM.2006.37.
-
(2006)
Proceedings of the 6th IEEE international conference on data mining (ICDM)
, pp. 53-62
-
-
Bae, E.1
Bailey, J.2
-
21
-
-
33645323768
-
Hierarchical multi-label prediction of gene function
-
Barutcuoglu, Z., Schapire, R. E., & Troyanskaya, O. G. (2006). Hierarchical multi-label prediction of gene function. Bioinformatics, 22(7), 830–836. doi:10.1093/bioinformatics/btk048.
-
(2006)
Bioinformatics
, vol.22
, Issue.7
, pp. 830-836
-
-
Barutcuoglu, Z.1
Schapire, R.E.2
Troyanskaya, O.G.3
-
22
-
-
85042972591
-
-
(eds), CRC Press, Boca Raton, London, New York:
-
Basu, S., Davidson, I., & Wagstaff, K. (Eds.) (2008). Constraint clustering: advances in algorithms, applications and theory. Boca Raton, London, New York: CRC Press.
-
(2008)
Constraint clustering: advances in algorithms, applications and theory
-
-
Basu, S.1
Davidson, I.2
Wagstaff, K.3
-
25
-
-
0000608834
-
Density-based indexing for approximate nearest-neighbor queries
-
Bennett, K. P., Fayyad, U., & Geiger, D. (1999). Density-based indexing for approximate nearest-neighbor queries. In Proceedings of the 5th ACM international conference on knowledge discovery and data mining (SIGKDD), San Diego, CA (pp. 233–243). doi:10.1145/312129.312236.
-
(1999)
Proceedings of the 5th ACM international conference on knowledge discovery and data mining (SIGKDD)
, pp. 233-243
-
-
Bennett, K.P.1
Fayyad, U.2
Geiger, D.3
-
26
-
-
80052770417
-
Quality of similarity rankings in time series
-
Bernecker, T., Houle, M. E., Kriegel, H. P., Kröger, P., Renz, M., Schubert, E., & Zimek, A. (2011). Quality of similarity rankings in time series. In Proceedings of the 12th international symposium on spatial and temporal databases (SSTD), Minneapolis, MN (pp. 422–440). doi:10.1007/978-3-642-22922-0_25.
-
(2011)
Proceedings of the 12th international symposium on spatial and temporal databases (SSTD)
, pp. 422-440
-
-
Bernecker, T.1
Houle, M.E.2
Kriegel, H.P.3
Kröger, P.4
Renz, M.5
Schubert, E.6
Zimek, A.7
-
27
-
-
33745804068
-
Ensembles based on random projections to improve the accuracy of clustering algorithms
-
Bertoni, A., & Valentini, G. (2005). Ensembles based on random projections to improve the accuracy of clustering algorithms. In 16th Italian workshop on neural nets (WIRN), and international workshop on natural and artificial immune systems (NAIS), Vietri sul Mare, Italy (pp. 31–37). doi:10.1007/11731177_5.
-
(2005)
16th Italian workshop on neural nets (WIRN), and international workshop on natural and artificial immune systems (NAIS)
, pp. 31-37
-
-
Bertoni, A.1
Valentini, G.2
-
28
-
-
84947205653
-
When is “nearest neighbor” meaningful?
-
Beyer, K., Goldstein, J., Ramakrishnan, R., & Shaft, U. (1999). When is “nearest neighbor” meaningful? In Proceedings of the 7th international conference on database theory (ICDT), Jerusalem, Israel (pp. 217–235). doi:10.1007/3-540-49257-7_15.
-
(1999)
Proceedings of the 7th international conference on database theory (ICDT)
, pp. 217-235
-
-
Beyer, K.1
Goldstein, J.2
Ramakrishnan, R.3
Shaft, U.4
-
31
-
-
85016670270
-
ITCH: information-theoretic cluster hierarchies
-
Böhm, C., Fiedler, F., Oswald, A., Plant, C., Wackersreuther, B., & Wackersreuther, P. (2010). ITCH: information-theoretic cluster hierarchies. In Proceedings of the European conference on machine learning and knowledge discovery in databases (ECML PKDD), Barcelona, Spain.
-
(2010)
Proceedings of the European conference on machine learning and knowledge discovery in databases (ECML PKDD)
-
-
Böhm, C.1
Fiedler, F.2
Oswald, A.3
Plant, C.4
Wackersreuther, B.5
Wackersreuther, P.6
-
33
-
-
3042597440
-
Learning multi-label scene classification
-
Boutell, M. R., Luo, J., Shen, X., & Brown, C. M. (2004). Learning multi-label scene classification. Pattern Recognition, 37(9), 1757–1771. doi:10.1016/j.patcog.2004.03.009.
-
(2004)
Pattern Recognition
, vol.37
, Issue.9
, pp. 1757-1771
-
-
Boutell, M.R.1
Luo, J.2
Shen, X.3
Brown, C.M.4
-
34
-
-
0031161999
-
Beyond market baskets: generalizing association rules to correlations
-
ACM Press, New York:
-
Brin, S., Motwani, R., & Silverstein, C. (1997). Beyond market baskets: generalizing association rules to correlations. In Proceedings of the ACM international conference on management of data (SIGMOD), Tucson, AZ (pp. 265–276). New York: ACM Press.
-
(1997)
Proceedings of the ACM international conference on management of data (SIGMOD)
, pp. 265-276
-
-
Brin, S.1
Motwani, R.2
Silverstein, C.3
-
35
-
-
10444221886
-
Diversity creation methods: a survey and categorisation
-
Brown, G., Wyatt, J., Harris, R., & Yao, X. (2005). Diversity creation methods: a survey and categorisation. Information Fusion, 6, 5–20. doi:10.1016/j.inffus.2004.04.004.
-
(2005)
Information Fusion
, vol.6
, pp. 5-20
-
-
Brown, G.1
Wyatt, J.2
Harris, R.3
Yao, X.4
-
37
-
-
33847406228
-
Non-derivable itemset mining
-
Calders, T., & Goethals, B. (2007). Non-derivable itemset mining. Data Mining and Knowledge Discovery, 14(1), 171–206.
-
(2007)
Data Mining and Knowledge Discovery
, vol.14
, Issue.1
, pp. 171-206
-
-
Calders, T.1
Goethals, B.2
-
38
-
-
77951299088
-
Generalized external indexes for comparing data partitions with overlapping categories
-
Campello, R. J. G. B. (2010). Generalized external indexes for comparing data partitions with overlapping categories. Pattern Recognition Letters, 31(9), 966–975. doi:10.1016/j.patrec.2010.01.002.
-
(2010)
Pattern Recognition Letters
, vol.31
, Issue.9
, pp. 966-975
-
-
Campello, R.J.G.B.1
-
39
-
-
84878080180
-
Meta clustering
-
Caruana, R., Elhawary, M., Nguyen, N., & Smith, C. (2006). Meta clustering. In Proceedings of the 6th IEEE international conference on data mining (ICDM), Hong Kong, China (pp. 107–118). doi:10.1109/ICDM.2006.103.
-
(2006)
Proceedings of the 6th IEEE international conference on data mining (ICDM)
, pp. 107-118
-
-
Caruana, R.1
Elhawary, M.2
Nguyen, N.3
Smith, C.4
-
40
-
-
12244296737
-
Fully automatic cross-associations
-
Chakrabarti, D., Papadimitriou, S., Modha, D. S., & Faloutsos, C. (2004). Fully automatic cross-associations. In Proceedings of the 10th ACM international conference on knowledge discovery and data mining (SIGKDD), Seattle, WA (pp. 79–88).
-
(2004)
Proceedings of the 10th ACM international conference on knowledge discovery and data mining (SIGKDD)
, pp. 79-88
-
-
Chakrabarti, D.1
Papadimitriou, S.2
Modha, D.S.3
Faloutsos, C.4
-
41
-
-
0000776545
-
Scalable feature selection, classification and signature generation for organizing large text databases into hierarchical topic taxonomies
-
Chakrabarti, S., Dom, B., Agrawal, R., & Raghavan, P. (1998). Scalable feature selection, classification and signature generation for organizing large text databases into hierarchical topic taxonomies. The VLDB Journal, 7(3), 163–178.
-
(1998)
The VLDB Journal
, vol.7
, Issue.3
, pp. 163-178
-
-
Chakrabarti, S.1
Dom, B.2
Agrawal, R.3
Raghavan, P.4
-
42
-
-
0030242043
-
Scale-based clustering using the radial basis function network
-
Chakravarthy, S. V., & Ghosh, J. (1996). Scale-based clustering using the radial basis function network. IEEE Transactions on Neural Networks, 7(5), 1250–1261.
-
(1996)
IEEE Transactions on Neural Networks
, vol.7
, Issue.5
, pp. 1250-1261
-
-
Chakravarthy, S.V.1
Ghosh, J.2
-
43
-
-
71149099083
-
Multi-view clustering via canonical correlation analysis
-
Chaudhuri, K., Kakade, S. M., Livescu, K., & Sridharan, K. (2009). Multi-view clustering via canonical correlation analysis. In Proceedings of the 26th international conference on machine learning (ICML), Montreal, QC, Canada (pp. 129–136).
-
(2009)
Proceedings of the 26th international conference on machine learning (ICML)
, pp. 129-136
-
-
Chaudhuri, K.1
Kakade, S.M.2
Livescu, K.3
Sridharan, K.4
-
44
-
-
0002646822
-
Entropy-based subspace clustering for mining numerical data
-
Cheng, C. H., Fu, A. W. C., & Zhang, Y. (1999). Entropy-based subspace clustering for mining numerical data. In Proceedings of the 5th ACM international conference on knowledge discovery and data mining (SIGKDD), San Diego, CA (pp. 84–93). doi:10.1145/312129.312199.
-
(1999)
Proceedings of the 5th ACM international conference on knowledge discovery and data mining (SIGKDD)
, pp. 84-93
-
-
Cheng, C.H.1
Fu, A.W.C.2
Zhang, Y.3
-
46
-
-
0036940312
-
How well do we understand the clusters found in microarray data?
-
Clare, A., & King, R. (2002). How well do we understand the clusters found in microarray data? In Silico Biology, 2(4), 511–522.
-
(2002)
In Silico Biology
, vol.2
, Issue.4
, pp. 511-522
-
-
Clare, A.1
King, R.2
-
48
-
-
0000546609
-
I-divergence geometry of probability distributions and minimization problems
-
Csiszár, I. (1975). I-divergence geometry of probability distributions and minimization problems. Annals of Probability, 3(1), 146–158.
-
(1975)
Annals of Probability
, vol.3
, Issue.1
, pp. 146-158
-
-
Csiszár, I.1
-
49
-
-
49749102773
-
Non-redundant multi-view clustering via orthogonalization
-
Cui, Y., Fern, X. Z., & Dy, J. G. (2007). Non-redundant multi-view clustering via orthogonalization. In Proceedings of the 7th IEEE international conference on data mining (ICDM), Omaha, NE (pp. 133–142). doi:10.1109/ICDM.2007.94.
-
(2007)
Proceedings of the 7th IEEE international conference on data mining (ICDM)
, pp. 133-142
-
-
Cui, Y.1
Fern, X.Z.2
Dy, J.G.3
-
51
-
-
85016704561
-
Multiple clustering views via constrained projections
-
Dang, X. H., Assent, I., & Bailey, J. (2012). Multiple clustering views via constrained projections. In 3rd MultiClust workshop: discovering, summarizing and using multiple clusterings held in conjunction with SIAM data mining 2012, Anaheim, CA.
-
(2012)
3rd MultiClust workshop: discovering, summarizing and using multiple clusterings held in conjunction with SIAM data mining 2012
-
-
Dang, X.H.1
Assent, I.2
Bailey, J.3
-
52
-
-
33749428430
-
Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes
-
Datta, S., & Datta, S. (2006). Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes. BMC Bioinformatics, 7, 397. doi:10.1186/1471-2105-7-397.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 397
-
-
Datta, S.1
Datta, S.2
-
54
-
-
60849121404
-
Using instance-level constraints in agglomerative hierarchical clustering: theoretical and empirical results
-
Davidson, I., & Ravi, S. (2009). Using instance-level constraints in agglomerative hierarchical clustering: theoretical and empirical results. Data Mining and Knowledge Discovery, 18, 257–282.
-
(2009)
Data Mining and Knowledge Discovery
, vol.18
, pp. 257-282
-
-
Davidson, I.1
Ravi, S.2
-
55
-
-
84873178417
-
A SAT-based framework for efficient constrained clustering
-
Davidson, I., Ravi, S. S., & Shamis, L. (2010). A SAT-based framework for efficient constrained clustering. In Proceedings of the 10th SIAM international conference on data mining (SDM), Columbus, OH (pp. 94–105).
-
(2010)
Proceedings of the 10th SIAM international conference on data mining (SDM)
, pp. 94-105
-
-
Davidson, I.1
Ravi, S.S.2
Shamis, L.3
-
56
-
-
80855141626
-
Maximum entropy models and subjective interestingness: an application to tiles in binary databases
-
De Bie, T. (2011). Maximum entropy models and subjective interestingness: an application to tiles in binary databases. Data Mining and Knowledge Discovery, 23(3), 1–40.
-
(2011)
Data Mining and Knowledge Discovery
, vol.23
, Issue.3
, pp. 1-40
-
-
De Bie, T.1
-
60
-
-
67549123292
-
Weighted cluster ensembles: methods and analysis
-
Domeniconi, C., & Al-Razgan, M. (2009). Weighted cluster ensembles: methods and analysis. ACM Transactions on Knowledge Discovery from Data, 2(4), 1–40. doi:10.1145/1460797.1460800.
-
(2009)
ACM Transactions on Knowledge Discovery from Data
, vol.2
, Issue.4
, pp. 1-40
-
-
Domeniconi, C.1
Al-Razgan, M.2
-
61
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd ACM international conference on knowledge discovery and data mining (KDD), Portland, OR (pp. 226–231).
-
(1996)
Proceedings of the 2nd ACM international conference on knowledge discovery and data mining (KDD)
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.P.2
Sander, J.3
Xu, X.4
-
62
-
-
34547284903
-
On data mining, compression and Kolmogorov complexity
-
15, Springer, Berlin:
-
Faloutsos, C., & Megalooikonomou, V. (2007). On data mining, compression and Kolmogorov complexity. In Data mining and knowledge discovery (Vol. 15, pp. 3–20). Berlin: Springer.
-
(2007)
Data mining and knowledge discovery
, pp. 3-20
-
-
Faloutsos, C.1
Megalooikonomou, V.2
-
63
-
-
85130734369
-
Knowledge discovery and data mining: towards a unifying framework
-
Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). Knowledge discovery and data mining: towards a unifying framework. In Proceedings of the 2nd ACM international conference on knowledge discovery and data mining (KDD), Portland, OR (pp. 82–88).
-
(1996)
Proceedings of the 2nd ACM international conference on knowledge discovery and data mining (KDD)
, pp. 82-88
-
-
Fayyad, U.1
Piatetsky-Shapiro, G.2
Smyth, P.3
-
65
-
-
72449173699
-
Cluster ensemble selection
-
Fern, X. Z., & Lin, W. (2008). Cluster ensemble selection. Statistical Analysis and Data Mining, 1(3), 128–141. doi:10.1002/sam.10008.
-
(2008)
Statistical Analysis and Data Mining
, vol.1
, Issue.3
, pp. 128-141
-
-
Fern, X.Z.1
Lin, W.2
-
66
-
-
84945923591
-
A method for comparing two hierarchical clusterings
-
Fowlkes, E. B., & Mallows, C. L. (1983). A method for comparing two hierarchical clusterings. Journal of the American Statistical Association, 78(383), 553–569.
-
(1983)
Journal of the American Statistical Association
, vol.78
, Issue.383
, pp. 553-569
-
-
Fowlkes, E.B.1
Mallows, C.L.2
-
68
-
-
34249788454
-
The concentration of fractional distances
-
François, D., Wertz, V., & Verleysen, M. (2007). The concentration of fractional distances. IEEE Transactions on Knowledge and Data Engineering, 19(7), 873–886. doi:10.1109/TKDE.2007.1037.
-
(2007)
IEEE Transactions on Knowledge and Data Engineering
, vol.19
, Issue.7
, pp. 873-886
-
-
François, D.1
Wertz, V.2
Verleysen, M.3
-
69
-
-
4344609320
-
-
Frank, A., & Asuncion, A. (2010)
-
Frank, A., & Asuncion, A. (2010). UCI machine learning repository. http://archive.ics.uci.edu/ml, http://archive.ics.uci.edu/ml.
-
UCI machine learning repository
-
-
-
70
-
-
21244468777
-
Combining multiple clusterings using evidence accumulation
-
Fred, A. L. N., & Jain, A. K. (2005). Combining multiple clusterings using evidence accumulation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6), 835–850.
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.6
, pp. 835-850
-
-
Fred, A.L.N.1
Jain, A.K.2
-
71
-
-
80053991186
-
On exploiting hierarchical label structure with pairwise classifiers
-
Fürnkranz, J., & Sima, J. F. (2010). On exploiting hierarchical label structure with pairwise classifiers. ACM SIGKDD Explorations, 12(2), 21–25. doi:10.1145/1964897.1964903.
-
(2010)
ACM SIGKDD Explorations
, vol.12
, Issue.2
, pp. 21-25
-
-
Fürnkranz, J.1
Sima, J.F.2
-
72
-
-
84878905116
-
On using class-labels in evaluation of clusterings
-
Färber, I., Günnemann, S., Kriegel, H. P., Kröger, P., Müller, E., Schubert, E., Seidl, T., & Zimek, A. (2010). On using class-labels in evaluation of clusterings. In MultiClust: 1st international workshop on discovering, summarizing and using multiple clusterings held in conjunction with KDD 2010, Washington, DC.
-
(2010)
MultiClust: 1st international workshop on discovering, summarizing and using multiple clusterings held in conjunction with KDD 2010
-
-
Färber, I.1
Günnemann, S.2
Kriegel, H.P.3
Kröger, P.4
Müller, E.5
Schubert, E.6
Seidl, T.7
Zimek, A.8
-
74
-
-
52649141067
-
Finding subgroups having several descriptions: algorithms for redescription mining
-
Gallo, A., Miettinen, P., & Mannila, H. (2008). Finding subgroups having several descriptions: algorithms for redescription mining. In Proceedings of the 8th SIAM international conference on data mining (SDM), Atlanta, GA.
-
(2008)
Proceedings of the 8th SIAM international conference on data mining (SDM)
-
-
Gallo, A.1
Miettinen, P.2
Mannila, H.3
-
75
-
-
78650465487
-
Converting output scores from outlier detection algorithms into probability estimates
-
Gao, J., & Tan, P. N. (2006). Converting output scores from outlier detection algorithms into probability estimates. In Proceedings of the 6th IEEE international conference on data mining (ICDM), Hong Kong, China (pp. 212–221). doi:10.1109/ICDM.2006.43.
-
(2006)
Proceedings of the 6th IEEE international conference on data mining (ICDM)
, pp. 212-221
-
-
Gao, J.1
Tan, P.N.2
-
76
-
-
0348143190
-
Scoring clustering solutions by their biological relevance
-
Gat-Viks, I., Sharan, R., & Shamir, R. (2003). Scoring clustering solutions by their biological relevance. Bioinformatics, 19(18), 2381–2389. doi:10.1093/bioinformatics/btg330.
-
(2003)
Bioinformatics
, vol.19
, Issue.18
, pp. 2381-2389
-
-
Gat-Viks, I.1
Sharan, R.2
Shamir, R.3
-
77
-
-
35048813595
-
Tiling databases
-
Geerts, F., Goethals, B., & Mielikäinen, T. (2004). Tiling databases. In Proceedings of the 7th international conference on discovery science, Padova, Italy (pp. 278–289).
-
(2004)
Proceedings of the 7th international conference on discovery science
, pp. 278-289
-
-
Geerts, F.1
Goethals, B.2
Mielikäinen, T.3
-
78
-
-
23944472645
-
Tight upper bounds on the number of candidate patterns
-
Geerts, F., Goethals, B., & Van den Bussche, J. (2005). Tight upper bounds on the number of candidate patterns. ACM Transactions on Database Systems, 30(2), 333–363.
-
(2005)
ACM Transactions on Database Systems
, vol.30
, Issue.2
, pp. 333-363
-
-
Geerts, F.1
Goethals, B.2
Van den Bussche, J.3
-
79
-
-
4644223451
-
The Amsterdam library of object images
-
Geusebroek, J. M., Burghouts, G. J., & Smeulders, A. (2005). The Amsterdam library of object images. International Journal of Computer Vision, 61(1), 103–112. doi:10.1023/B:VISI.0000042993.50813.60.
-
(2005)
International Journal of Computer Vision
, vol.61
, Issue.1
, pp. 103-112
-
-
Geusebroek, J.M.1
Burghouts, G.J.2
Smeulders, A.3
-
80
-
-
80053039117
-
Cluster ensembles
-
Ghosh, J., & Acharya, A. (2011). Cluster ensembles. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(4), 305–315. doi:10.1002/widm.32.
-
(2011)
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
, vol.1
, Issue.4
, pp. 305-315
-
-
Ghosh, J.1
Acharya, A.2
-
81
-
-
0036798238
-
Judging the quality of gene expression-based clustering methods using gene annotation
-
Gibbons, F. D., & Roth, F. P. (2002). Judging the quality of gene expression-based clustering methods using gene annotation. Genome Research, 12, 1574–1581.
-
(2002)
Genome Research
, vol.12
, pp. 1574-1581
-
-
Gibbons, F.D.1
Roth, F.P.2
-
82
-
-
35048851762
-
Geometric and combinatorial tiles in 0-1 data
-
Gionis, A., Mannila, H., & Seppänen, J. K. (2004). Geometric and combinatorial tiles in 0-1 data. In Proceedings of the 8th European conference on principles and practice of knowledge discovery in databases (PKDD), Pisa, Italy (pp. 173–184).
-
(2004)
Proceedings of the 8th European conference on principles and practice of knowledge discovery in databases (PKDD)
, pp. 173-184
-
-
Gionis, A.1
Mannila, H.2
Seppänen, J.K.3
-
83
-
-
37049039428
-
Assessing data mining results via swap randomization
-
Gionis, A., Mannila, H., Mielikäinen, T., & Tsaparas, P. (2007a). Assessing data mining results via swap randomization. ACM Transactions on Knowledge Discovery from Data, 1(3), 167–176.
-
(2007)
ACM Transactions on Knowledge Discovery from Data
, vol.1
, Issue.3
, pp. 167-176
-
-
Gionis, A.1
Mannila, H.2
Mielikäinen, T.3
Tsaparas, P.4
-
89
-
-
77951188608
-
Projective clustering ensembles
-
Gullo, F., Domeniconi, C., & Tagarelli, A. (2009a). Projective clustering ensembles. In Proceedings of the 9th IEEE international conference on data mining (ICDM), Miami, FL.
-
(2009)
Proceedings of the 9th IEEE international conference on data mining (ICDM)
-
-
Gullo, F.1
Domeniconi, C.2
Tagarelli, A.3
-
90
-
-
72849135756
-
Diversity-based weighting schemes for clustering ensembles
-
Gullo, F., Tagarelli, A., & Greco, S. (2009b). Diversity-based weighting schemes for clustering ensembles. In Proceedings of the 9th SIAM international conference on data mining (SDM), Sparks, NV (pp. 437–448).
-
(2009)
Proceedings of the 9th SIAM international conference on data mining (SDM)
, pp. 437-448
-
-
Gullo, F.1
Tagarelli, A.2
Greco, S.3
-
91
-
-
79951739259
-
Enhancing single-objective projective clustering ensembles
-
Gullo, F., Domeniconi, C., & Tagarelli, A. (2010). Enhancing single-objective projective clustering ensembles. In Proceedings of the 10th IEEE international conference on data mining (ICDM), Sydney, Australia.
-
(2010)
Proceedings of the 10th IEEE international conference on data mining (ICDM)
-
-
Gullo, F.1
Domeniconi, C.2
Tagarelli, A.3
-
92
-
-
79959952086
-
Advancing data clustering via projective clustering ensembles
-
Gullo, F., Domeniconi, C., & Tagarelli, A. (2011). Advancing data clustering via projective clustering ensembles. In Proceedings of the 17th ACM international conference on knowledge discovery and data mining (SIGKDD), San Diego, CA.
-
(2011)
Proceedings of the 17th ACM international conference on knowledge discovery and data mining (SIGKDD)
-
-
Gullo, F.1
Domeniconi, C.2
Tagarelli, A.3
-
93
-
-
74549217295
-
Detection of orthogonal concepts in subspaces of high dimensional data
-
Günnemann, S., Müller, E., Färber, I., & Seidl, T. (2009). Detection of orthogonal concepts in subspaces of high dimensional data. In Proceedings of the 18th ACM conference on information and knowledge management (CIKM), Hong Kong, China (pp. 1317–1326). doi:10.1145/1645953.1646120.
-
(2009)
Proceedings of the 18th ACM conference on information and knowledge management (CIKM)
, pp. 1317-1326
-
-
Günnemann, S.1
Müller, E.2
Färber, I.3
Seidl, T.4
-
94
-
-
84864264233
-
ASCLU: alternative subspace clustering
-
Günnemann, S., Färber, I., Müller, E., & Seidl, T. (2010). ASCLU: alternative subspace clustering. In MultiClust: 1st international workshop on discovering, summarizing and using multiple clusterings held in conjunction with KDD 2010, Washington, DC.
-
(2010)
MultiClust: 1st international workshop on discovering, summarizing and using multiple clusterings held in conjunction with KDD 2010
-
-
Günnemann, S.1
Färber, I.2
Müller, E.3
Seidl, T.4
-
96
-
-
33744920539
-
Moderate diversity for better cluster ensembles
-
Hadjitodorov, S. T., Kuncheva, L. I., & Todorova, L. P. (2006). Moderate diversity for better cluster ensembles. Information Fusion, 7(3), 264–275. doi:10.1016/j.inffus.2005.01.008.
-
(2006)
Information Fusion
, vol.7
, Issue.3
, pp. 264-275
-
-
Hadjitodorov, S.T.1
Kuncheva, L.I.2
Todorova, L.P.3
-
97
-
-
70349847737
-
How to control clustering results? Flexible clustering aggregation
-
Hahmann, M., Volk, P. B., Rosenthal, F., Habich, D., & Lehner, W. (2009). How to control clustering results? Flexible clustering aggregation. In Proceedings of the 8th international symposium on intelligent data analysis (IDA), Lyon, France (pp. 59–70). doi:10.1007/978-3-642-03915-7_6.
-
(2009)
Proceedings of the 8th international symposium on intelligent data analysis (IDA)
, pp. 59-70
-
-
Hahmann, M.1
Volk, P.B.2
Rosenthal, F.3
Habich, D.4
Lehner, W.5
-
98
-
-
0035676057
-
On clustering validation techniques
-
Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2001). On clustering validation techniques. Journal of Intelligent Information Systems, 17(2–3), 107–145. doi:10.1023/A:1012801612483.
-
(2001)
Journal of Intelligent Information Systems
, vol.17
, Issue.2-3
, pp. 107-145
-
-
Halkidi, M.1
Batistakis, Y.2
Vazirgiannis, M.3
-
99
-
-
70350663120
-
Tell me something I don’t know: randomization strategies for iterative data mining
-
ACM Press, New York:
-
Hanhijärvi, S., Ojala, M., Vuokko, N., Puolamäki, K., Tatti, N., & Mannila, H. (2009). Tell me something I don’t know: randomization strategies for iterative data mining. In Proceedings of the 15th ACM international conference on knowledge discovery and data mining (SIGKDD), Paris, France (pp. 379–388). New York: ACM Press.
-
(2009)
Proceedings of the 15th ACM international conference on knowledge discovery and data mining (SIGKDD)
, pp. 379-388
-
-
Hanhijärvi, S.1
Ojala, M.2
Vuokko, N.3
Puolamäki, K.4
Tatti, N.5
Mannila, H.6
-
100
-
-
0025507176
-
Neural network ensembles
-
Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(10), 993–1001. doi:10.1109/34.58871.
-
(1990)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.12
, Issue.10
, pp. 993-1001
-
-
Hansen, L.K.1
Salamon, P.2
-
102
-
-
0004185151
-
-
Wiley, New York, London, Sydney, Toronto:
-
Hartigan, J. A. (1975). Clustering algorithms. New York, London, Sydney, Toronto: Wiley.
-
(1975)
Clustering algorithms
-
-
Hartigan, J.A.1
-
104
-
-
84864286615
-
Automatic aspect discrimination in data clustering
-
Horta, D., & Campello, R. J. G. B. (2012). Automatic aspect discrimination in data clustering. Pattern Recognition, 45(12), 4370–4388.
-
(2012)
Pattern Recognition
, vol.45
, Issue.12
, pp. 4370-4388
-
-
Horta, D.1
Campello, R.J.G.B.2
-
105
-
-
77955045250
-
Can shared-neighbor distances defeat the curse of dimensionality?
-
Houle, M. E., Kriegel, H. P., Kröger, P., Schubert, E., & Zimek, A. (2010). Can shared-neighbor distances defeat the curse of dimensionality? In Proceedings of the 22nd international conference on scientific and statistical database management (SSDBM), Heidelberg, Germany (pp. 482–500). doi:10.1007/978-3-642-13818-8_34.
-
(2010)
Proceedings of the 22nd international conference on scientific and statistical database management (SSDBM)
, pp. 482-500
-
-
Houle, M.E.1
Kriegel, H.P.2
Kröger, P.3
Schubert, E.4
Zimek, A.5
-
107
-
-
70049108502
-
Simultaneous unsupervised learning of disparate clusterings
-
Jain, P., Meka, R., & Dhillon, I. S. (2008). Simultaneous unsupervised learning of disparate clusterings. Statistical Analysis and Data Mining, 1(3), 195–210. doi:10.1002/sam.10007.
-
(2008)
Statistical Analysis and Data Mining
, vol.1
, Issue.3
, pp. 195-210
-
-
Jain, P.1
Meka, R.2
Dhillon, I.S.3
-
108
-
-
0020187981
-
On the rationale of maximum-entropy methods
-
Jaynes, E. T. (1982). On the rationale of maximum-entropy methods. Proceedings of the IEEE, 70(9), 939–952.
-
(1982)
Proceedings of the IEEE
, vol.70
, Issue.9
, pp. 939-952
-
-
Jaynes, E.T.1
-
109
-
-
2942588997
-
Density-connected subspace clustering for high-dimensional data
-
Kailing, K., Kriegel, H. P., & Kröger, P. (2004a). Density-connected subspace clustering for high-dimensional data. In Proceedings of the 4th SIAM international conference on data mining (SDM), Lake Buena Vista, FL (pp. 246–257).
-
(2004)
Proceedings of the 4th SIAM international conference on data mining (SDM)
, pp. 246-257
-
-
Kailing, K.1
Kriegel, H.P.2
Kröger, P.3
-
110
-
-
7444260335
-
Clustering multi-represented objects with noise
-
Kailing, K., Kriegel, H. P., Pryakhin, A., & Schubert, M. (2004b). Clustering multi-represented objects with noise. In Proceedings of the 8th Pacific-Asia conference on knowledge discovery and data mining (PAKDD), Sydney, Australia (pp. 394–403). doi:10.1007/978-3-540-24775-3_48.
-
(2004)
Proceedings of the 8th Pacific-Asia conference on knowledge discovery and data mining (PAKDD)
, pp. 394-403
-
-
Kailing, K.1
Kriegel, H.P.2
Pryakhin, A.3
Schubert, M.4
-
111
-
-
9444294778
-
From instance-level constraints to space-level constraints: making the most of prior knowledge in data clustering
-
Klein, D., Kamvar, S. D., & Manning, C. D. (2002). From instance-level constraints to space-level constraints: making the most of prior knowledge in data clustering. In Proceedings of the 19th international conference on machine learning (ICML), Sydney, Australia (pp. 307–314).
-
(2002)
Proceedings of the 19th international conference on machine learning (ICML)
, pp. 307-314
-
-
Klein, D.1
Kamvar, S.D.2
Manning, C.D.3
-
116
-
-
84857168455
-
Maximum entropy modelling for assessing results on real-valued data
-
Kontonasios, K. N., Vreeken, J., & De Bie, T. (2011). Maximum entropy modelling for assessing results on real-valued data. In Proceedings of the 11th IEEE international conference on data mining (ICDM), Vancouver, BC, ICDM.
-
(2011)
Proceedings of the 11th IEEE international conference on data mining (ICDM)
-
-
Kontonasios, K.N.1
Vreeken, J.2
De Bie, T.3
-
119
-
-
85016705063
-
Co-RCA: unsupervised distance-learning for multi-view clustering
-
Kriegel, H. P., & Schubert, M. (2012). Co-RCA: unsupervised distance-learning for multi-view clustering. In 3rd MultiClust workshop: discovering, summarizing and using multiple clusterings held in conjunction with SIAM data mining 2012, Anaheim, CA (pp. 11–18).
-
(2012)
3rd MultiClust workshop: discovering, summarizing and using multiple clusterings held in conjunction with SIAM data mining 2012
, pp. 11-18
-
-
Kriegel, H.P.1
Schubert, M.2
-
120
-
-
84873186848
-
Subspace clustering, ensemble clustering, alternative clustering, multiview clustering: what can we learn from each other?
-
Kriegel, H. P., & Zimek, A. (2010). Subspace clustering, ensemble clustering, alternative clustering, multiview clustering: what can we learn from each other? In MultiClust: 1st international workshop on discovering, summarizing and using multiple clusterings held in conjunction with KDD 2010, Washington, DC.
-
(2010)
MultiClust: 1st international workshop on discovering, summarizing and using multiple clusterings held in conjunction with KDD 2010
-
-
Kriegel, H.P.1
Zimek, A.2
-
121
-
-
38549117019
-
Distribution-based similarity for multi-represented multimedia objects
-
Kriegel, H. P., Kunath, P., Pryakhin, A., & Schubert, M. (2008). Distribution-based similarity for multi-represented multimedia objects. In Proceedings of the 14th IEEE international MultiMedia modeling conference (MMM), Kyoto, Japan (pp. 155–164). doi:10.1007/978-3-540-77409-9_15.
-
(2008)
Proceedings of the 14th IEEE international MultiMedia modeling conference (MMM)
, pp. 155-164
-
-
Kriegel, H.P.1
Kunath, P.2
Pryakhin, A.3
Schubert, M.4
-
122
-
-
67149084291
-
Clustering high dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering
-
Kriegel, H. P., Kröger, P., & Zimek, A. (2009). Clustering high dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Transactions on Knowledge Discovery from Data, 3(1), 1–58. doi:10.1145/1497577.1497578.
-
(2009)
ACM Transactions on Knowledge Discovery from Data
, vol.3
, Issue.1
, pp. 1-58
-
-
Kriegel, H.P.1
Kröger, P.2
Zimek, A.3
-
123
-
-
84862688946
-
Density-based clustering
-
Kriegel, H. P., Kröger, P., Sander, J., & Zimek, A. (2011a). Density-based clustering. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(3), 231–240. doi:10.1002/widm.30.
-
(2011)
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
, vol.1
, Issue.3
, pp. 231-240
-
-
Kriegel, H.P.1
Kröger, P.2
Sander, J.3
Zimek, A.4
-
124
-
-
84864227933
-
Interpreting and unifying outlier scores
-
Kriegel, H. P., Kröger, P., Schubert, E., & Zimek, A. (2011b). Interpreting and unifying outlier scores. In Proceedings of the 11th SIAM international conference on data mining (SDM), Mesa, AZ (pp. 13–24).
-
(2011)
Proceedings of the 11th SIAM international conference on data mining (SDM)
, pp. 13-24
-
-
Kriegel, H.P.1
Kröger, P.2
Schubert, E.3
Zimek, A.4
-
125
-
-
84891093780
-
Evaluation of multiple clustering solutions
-
Kriegel, H. P., Schubert, E., & Zimek, A. (2011c). Evaluation of multiple clustering solutions. In 2nd MultiClust workshop: discovering, summarizing and using multiple clusterings held in conjunction with ECML PKDD 2011, Athens, Greece (pp. 55–66).
-
(2011)
2nd MultiClust workshop: discovering, summarizing and using multiple clusterings held in conjunction with ECML PKDD 2011
, pp. 55-66
-
-
Kriegel, H.P.1
Schubert, E.2
Zimek, A.3
-
126
-
-
84866446665
-
Subspace clustering
-
Kriegel, H. P., Kröger, P., & Zimek, A. (2012). Subspace clustering. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(4), 351–364.
-
(2012)
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
, vol.2
, Issue.4
, pp. 351-364
-
-
Kriegel, H.P.1
Kröger, P.2
Zimek, A.3
-
127
-
-
84925655451
-
Subspace clustering techniques
-
Liu L., Özsu M. T., (eds), Springer, Berlin:
-
Kröger, P., & Zimek, A. (2009). Subspace clustering techniques. In L. Liu & M. T. Özsu (Eds.), Encyclopedia of database systems (pp. 2873–2875). Berlin: Springer. doi:10.1007/978-0-387-39940-9_607.
-
(2009)
Encyclopedia of database systems
, pp. 2873-2875
-
-
Kröger, P.1
Zimek, A.2
-
128
-
-
80053441153
-
A co-training approach for multi-view spectral clustering
-
Kumar, A., & Daumé, H. (2011). A co-training approach for multi-view spectral clustering. In Proceedings of the 28th international conference on machine learning (ICML), Bellevue, Washington, DC, USA (pp. 393–400).
-
(2011)
Proceedings of the 28th international conference on machine learning (ICML)
, pp. 393-400
-
-
Kumar, A.1
Daumé, H.2
-
129
-
-
15744388753
-
Using diversity in cluster ensembles
-
Kuncheva, L. I., & Hadjitodorov, S. T. (2004). Using diversity in cluster ensembles. In Proceedings of the 2004 IEEE international conference on systems, man, and cybernetics (ICSMC), The Hague, Netherlands (pp. 1214–1219).
-
(2004)
Proceedings of the 2004 IEEE international conference on systems, man, and cybernetics (ICSMC)
, pp. 1214-1219
-
-
Kuncheva, L.I.1
Hadjitodorov, S.T.2
-
131
-
-
1342330530
-
A graph-theoretic modeling on GO space for biological interpretation of gene clusters
-
Lee, S. G., Hur, J. U., & Kim, Y. S. (2004). A graph-theoretic modeling on GO space for biological interpretation of gene clusters. Bioinformatics, 20(3), 381–388. doi:10.1093/bioinformatics/btg420.
-
(2004)
Bioinformatics
, vol.20
, Issue.3
, pp. 381-388
-
-
Lee, S.G.1
Hur, J.U.2
Kim, Y.S.3
-
133
-
-
56049103126
-
Exceptional model mining
-
Leman, D., Feelders, A., & Knobbe, A. J. (2008). Exceptional model mining. In Proceedings of the European conference on machine learning and knowledge discovery in databases (ECML/PKDD), Antwerp, Belgium (pp. 1–16).
-
(2008)
Proceedings of the European conference on machine learning and knowledge discovery in databases (ECML/PKDD)
, pp. 1-16
-
-
Leman, D.1
Feelders, A.2
Knobbe, A.J.3
-
135
-
-
0004770858
-
On the theory and construction of k-clusters
-
Ling, R. F. (1972). On the theory and construction of k-clusters. Computer Journal, 15(4), 326–332.
-
(1972)
Computer Journal
, vol.15
, Issue.4
, pp. 326-332
-
-
Ling, R.F.1
-
137
-
-
34548723854
-
Distance based subspace clustering with flexible dimension partitioning
-
Liu, G., Li, J., Sim, K., & Wong, L. (2007). Distance based subspace clustering with flexible dimension partitioning. In Proceedings of the 23rd international conference on data engineering (ICDE), Istanbul, Turkey (pp. 1250–1254). doi:10.1109/ICDE.2007.368985.
-
(2007)
Proceedings of the 23rd international conference on data engineering (ICDE)
, pp. 1250-1254
-
-
Liu, G.1
Li, J.2
Sim, K.3
Wong, L.4
-
138
-
-
77950250511
-
Efficient mining of distance-based subspace clusters
-
Liu, G., Sim, K., Li, J., & Wong, L. (2009). Efficient mining of distance-based subspace clusters. Statistical Analysis and Data Mining, 2(5–6), 427–444. doi:10.1002/sam.10062.
-
(2009)
Statistical Analysis and Data Mining
, vol.2
, Issue.5-6
, pp. 427-444
-
-
Liu, G.1
Sim, K.2
Li, J.3
Wong, L.4
-
139
-
-
34548569516
-
Combining multiple clustering by soft correspondence
-
Long, B., Zhang, Z., & Yu, P. S. (2005). Combining multiple clustering by soft correspondence. In Proceedings of the 5th IEEE international conference on data mining (ICDM), Houston, TX (pp. 282–289). doi:10.1109/ICDM.2005.45.
-
(2005)
Proceedings of the 5th IEEE international conference on data mining (ICDM)
, pp. 282-289
-
-
Long, B.1
Zhang, Z.2
Yu, P.S.3
-
140
-
-
0037480738
-
Investigating semantic similarity measures across the Gene ontology: the relationship between sequence and annotation
-
Lord, P. W., Stevens, R. D., Brass, A., & Goble, C. A. (2003). Investigating semantic similarity measures across the Gene ontology: the relationship between sequence and annotation. Bioinformatics, 19(10), 1275–1283. doi:10.1093/bioinformatics/btg153.
-
(2003)
Bioinformatics
, vol.19
, Issue.10
, pp. 1275-1283
-
-
Lord, P.W.1
Stevens, R.D.2
Brass, A.3
Goble, C.A.4
-
141
-
-
3142768191
-
Biclustering algorithms for biological data analysis: a survey
-
Madeira, S. C., & Oliveira, A. L. (2004). Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1(1), 24–45. doi:10.1109/TCBB.2004.2.
-
(2004)
IEEE/ACM Transactions on Computational Biology and Bioinformatics
, vol.1
, Issue.1
, pp. 24-45
-
-
Madeira, S.C.1
Oliveira, A.L.2
-
142
-
-
80052675183
-
Tell me what I need to know: succinctly summarizing data with itemsets
-
ACM Press, New York:
-
Mampaey, M., Tatti, N., & Vreeken, J. (2011). Tell me what I need to know: succinctly summarizing data with itemsets. In Proceedings of the 17th ACM international conference on knowledge discovery and data mining (SIGKDD), San Diego, CA. New York: ACM Press.
-
(2011)
Proceedings of the 17th ACM international conference on knowledge discovery and data mining (SIGKDD)
-
-
Mampaey, M.1
Tatti, N.2
Vreeken, J.3
-
143
-
-
21944442464
-
Levelwise search and borders of theories in knowledge discovery
-
Mannila, H., & Toivonen, H. (1997). Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery, 1(3), 241–258.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, Issue.3
, pp. 241-258
-
-
Mannila, H.1
Toivonen, H.2
-
144
-
-
0002332781
-
Improving text classification by shrinkage in a hierarchy of classes
-
McCallum, A., Rosenfeld, R., Mitchell, T. M., & Ng, A. Y. (1998). Improving text classification by shrinkage in a hierarchy of classes. In Proceedings of the 15th international conference on machine learning (ICML), Madison, WI (pp. 359–367).
-
(1998)
Proceedings of the 15th international conference on machine learning (ICML)
, pp. 359-367
-
-
McCallum, A.1
Rosenfeld, R.2
Mitchell, T.M.3
Ng, A.Y.4
-
145
-
-
48349118009
-
The discrete basis problem
-
Miettinen, P., Mielikäinen, T., Gionis, A., Das, G., & Mannila, H. (2008). The discrete basis problem. IEEE Transactions on Knowledge and Data Engineering, 20(10), 1348–1362.
-
(2008)
IEEE Transactions on Knowledge and Data Engineering
, vol.20
, Issue.10
, pp. 1348-1362
-
-
Miettinen, P.1
Mielikäinen, T.2
Gionis, A.3
Das, G.4
Mannila, H.5
-
147
-
-
65449163900
-
Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering
-
Moise, G., & Sander, J. (2008). Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering. In Proceedings of the 14th ACM international conference on knowledge discovery and data mining (SIGKDD), Las Vegas, NV (pp. 533–541). doi:10.1145/1401890.1401956.
-
(2008)
Proceedings of the 14th ACM international conference on knowledge discovery and data mining (SIGKDD)
, pp. 533-541
-
-
Moise, G.1
Sander, J.2
-
148
-
-
71949123741
-
Subspace and projected clustering: experimental evaluation and analysis
-
Moise, G., Zimek, A., Kröger, P., Kriegel, H. P., & Sander, J. (2009). Subspace and projected clustering: experimental evaluation and analysis. Knowledge and Information Systems, 21(3), 299–326. doi:10.1007/s10115-009-0226-y.
-
(2009)
Knowledge and Information Systems
, vol.21
, Issue.3
, pp. 299-326
-
-
Moise, G.1
Zimek, A.2
Kröger, P.3
Kriegel, H.P.4
Sander, J.5
-
149
-
-
80053305876
-
Efficient mining of all margin-closed itemsets with applications in temporal knowledge discovery and classification by compression
-
Mörchen, F., Thies, M., & Ultsch, A. (2011). Efficient mining of all margin-closed itemsets with applications in temporal knowledge discovery and classification by compression. Knowledge and Information Systems, 29(1), 55–80.
-
(2011)
Knowledge and Information Systems
, vol.29
, Issue.1
, pp. 55-80
-
-
Mörchen, F.1
Thies, M.2
Ultsch, A.3
-
150
-
-
77951149821
-
Relevant subspace clustering: mining the most interesting non-redundant concepts in high dimensional data
-
Müller, E., Assent, I., Günnemann, S., Krieger, R., & Seidl, T. (2009a). Relevant subspace clustering: mining the most interesting non-redundant concepts in high dimensional data. In Proceedings of the 9th IEEE international conference on data mining (ICDM), Miami, FL (pp. 377–386). doi:10.1109/ICDM.2009.10.
-
(2009)
Proceedings of the 9th IEEE international conference on data mining (ICDM)
, pp. 377-386
-
-
Müller, E.1
Assent, I.2
Günnemann, S.3
Krieger, R.4
Seidl, T.5
-
151
-
-
72849151744
-
DensEst: density estimation for data mining in high dimensional spaces
-
Müller, E., Assent, I., Krieger, R., Günnemann, S., & Seidl, T. (2009b). DensEst: density estimation for data mining in high dimensional spaces. In Proceedings of the 9th SIAM international conference on data mining (SDM), Sparks, NV (pp. 173–184).
-
(2009)
Proceedings of the 9th SIAM international conference on data mining (SDM)
, pp. 173-184
-
-
Müller, E.1
Assent, I.2
Krieger, R.3
Günnemann, S.4
Seidl, T.5
-
152
-
-
84865086248
-
Evaluating clustering in subspace projections of high dimensional data
-
Müller, E., Günnemann, S., Assent, I., & Seidl, T. (2009c). Evaluating clustering in subspace projections of high dimensional data. In Proceedings of the 35th international conference on very large data bases (VLDB), Lyon, France (pp. 1270–1281).
-
(2009)
Proceedings of the 35th international conference on very large data bases (VLDB)
, pp. 1270-1281
-
-
Müller, E.1
Günnemann, S.2
Assent, I.3
Seidl, T.4
-
153
-
-
41149123106
-
Adaptive grids for clustering massive data sets
-
Nagesh, H. S., Goil, S., & Choudhary, A. (2001). Adaptive grids for clustering massive data sets. In Proceedings of the 1st SIAM international conference on data mining (SDM), Chicago, IL.
-
(2001)
Proceedings of the 1st SIAM international conference on data mining (SDM)
-
-
Nagesh, H.S.1
Goil, S.2
Choudhary, A.3
-
154
-
-
78650506461
-
Mining outliers with ensemble of heterogeneous detectors on random subspaces
-
Nguyen, H. V., Ang, H. H., & Gopalkrishnan, V. (2010). Mining outliers with ensemble of heterogeneous detectors on random subspaces. In Proceedings of the 15th international conference on database systems for advanced applications (DASFAA), Tsukuba, Japan (pp. 368–383). doi:10.1007/978-3-642-12026-8_29.
-
(2010)
Proceedings of the 15th international conference on database systems for advanced applications (DASFAA)
, pp. 368-383
-
-
Nguyen, H.V.1
Ang, H.H.2
Gopalkrishnan, V.3
-
155
-
-
77956508144
-
Multiple non-redundant spectral clustering views
-
Niu, D., Dy, J. G., & Jordan, M. I. (2010). Multiple non-redundant spectral clustering views. In Proceedings of the 27th international conference on machine learning (ICML), Haifa, Israel (pp. 831–838).
-
(2010)
Proceedings of the 27th international conference on machine learning (ICML)
, pp. 831-838
-
-
Niu, D.1
Dy, J.G.2
Jordan, M.I.3
-
156
-
-
61749084093
-
Supervised descriptive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup mining
-
Novak, P. K., Lavrac, N., & Webb, G. I. (2009). Supervised descriptive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup mining. Journal of Machine Learning Research, 10, 377–403.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 377-403
-
-
Novak, P.K.1
Lavrac, N.2
Webb, G.I.3
-
157
-
-
84868121916
-
Density-based projected clustering over high dimensional data streams
-
Ntoutsi, E., Zimek, A., Palpanas, T., Kröger, P., & Kriegel, H. P. (2012). Density-based projected clustering over high dimensional data streams. In Proceedings of the 12th SIAM international conference on data mining (SDM), Anaheim, CA (pp. 987–998).
-
(2012)
Proceedings of the 12th SIAM international conference on data mining (SDM)
, pp. 987-998
-
-
Ntoutsi, E.1
Zimek, A.2
Palpanas, T.3
Kröger, P.4
Kriegel, H.P.5
-
159
-
-
52649148083
-
Randomization of real-valued matrices for assessing the significance of data mining results
-
Ojala, M., Vuokko, N., Kallio, A., Haiminen, N., & Mannila, H. (2008). Randomization of real-valued matrices for assessing the significance of data mining results. In Proceedings of the 8th SIAM international conference on data mining (SDM), Atlanta, GA (pp. 494–505).
-
(2008)
Proceedings of the 8th SIAM international conference on data mining (SDM)
, pp. 494-505
-
-
Ojala, M.1
Vuokko, N.2
Kallio, A.3
Haiminen, N.4
Mannila, H.5
-
160
-
-
77950233355
-
Randomization methods for assessing data analysis results on real-valued matrices
-
Ojala, M., Vuokko, N., Kallio, A., Haiminen, N., & Mannila, H. (2009). Randomization methods for assessing data analysis results on real-valued matrices. Statistical Analysis and Data Mining, 2(4), 209–230.
-
(2009)
Statistical Analysis and Data Mining
, vol.2
, Issue.4
, pp. 209-230
-
-
Ojala, M.1
Vuokko, N.2
Kallio, A.3
Haiminen, N.4
Mannila, H.5
-
161
-
-
0002008071
-
Discovering frequent closed itemsets for association rules
-
Pasquier, N., Bastide, Y., Taouil, R., & Lakhal, L. (1999a). Discovering frequent closed itemsets for association rules. In Proceedings of the 7th international conference on database theory (ICDT), Jerusalem, Israel.
-
(1999)
Proceedings of the 7th international conference on database theory (ICDT)
-
-
Pasquier, N.1
Bastide, Y.2
Taouil, R.3
Lakhal, L.4
-
162
-
-
84911977993
-
Discovering frequent closed itemsets for association rules
-
ACM Press, New York:
-
Pasquier, N., Bastide, Y., Taouil, R., & Lakhal, L. (1999b). Discovering frequent closed itemsets for association rules. In Proceedings of the 7th international conference on database theory (ICDT), Jerusalem, Israel (pp. 398–416). New York: ACM Press.
-
(1999)
Proceedings of the 7th international conference on database theory (ICDT)
, pp. 398-416
-
-
Pasquier, N.1
Bastide, Y.2
Taouil, R.3
Lakhal, L.4
-
163
-
-
33646386383
-
A bi-clustering framework for categorical data
-
Pensa, R. G., Robardet, C., & Boulicaut, J. F. (2005). A bi-clustering framework for categorical data. In Proceedings of the 9th European conference on principles and practice of knowledge discovery in databases (PKDD), Porto, Portugal (pp. 643–650).
-
(2005)
Proceedings of the 9th European conference on principles and practice of knowledge discovery in databases (PKDD)
, pp. 643-650
-
-
Pensa, R.G.1
Robardet, C.2
Boulicaut, J.F.3
-
165
-
-
33646137384
-
A systematic comparison and evaluation of biclustering methods for gene expression data
-
Prelić, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Guissem, W., Hennig, L., Thiele, L., & Zitzler, E. (2006). A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics, 22(9), 1122–1129. doi:10.1093/bioinformatics/btl060.
-
(2006)
Bioinformatics
, vol.22
, Issue.9
, pp. 1122-1129
-
-
Prelić, A.1
Bleuler, S.2
Zimmermann, P.3
Wille, A.4
Bühlmann, P.5
Guissem, W.6
Hennig, L.7
Thiele, L.8
Zitzler, E.9
-
167
-
-
12244266084
-
Turning cartwheels: an alternating algorithm for mining redescriptions
-
Ramakrishnan, N., Kumar, D., Mishra, B., Potts, M., & Helm, R. F. (2004). Turning cartwheels: an alternating algorithm for mining redescriptions. In Proceedings of the 10th ACM international conference on knowledge discovery and data mining (SIGKDD), Seattle, WA (pp. 266–275).
-
(2004)
Proceedings of the 10th ACM international conference on knowledge discovery and data mining (SIGKDD)
, pp. 266-275
-
-
Ramakrishnan, N.1
Kumar, D.2
Mishra, B.3
Potts, M.4
Helm, R.F.5
-
168
-
-
0018015137
-
Modeling by shortest data description
-
Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14(1), 465–471.
-
(1978)
Automatica
, vol.14
, Issue.1
, pp. 465-471
-
-
Rissanen, J.1
-
169
-
-
0033905095
-
BoosTexter: a boosting-based system for text categorization
-
Schapire, R. E., & Singer, Y. (2000). BoosTexter: a boosting-based system for text categorization. Machine Learning, 39(2–3), 135–168. doi:10.1023/A:1007649029923.
-
(2000)
Machine Learning
, vol.39
, Issue.2-3
, pp. 135-168
-
-
Schapire, R.E.1
Singer, Y.2
-
170
-
-
84874048074
-
On evaluation of outlier rankings and outlier scores
-
Schubert, E., Wojdanowski, R., Zimek, A., & Kriegel, H. P. (2012). On evaluation of outlier rankings and outlier scores. In Proceedings of the 12th SIAM international conference on data mining (SDM), Anaheim, CA (pp. 1047–1058).
-
(2012)
Proceedings of the 12th SIAM international conference on data mining (SDM)
, pp. 1047-1058
-
-
Schubert, E.1
Wojdanowski, R.2
Zimek, A.3
Kriegel, H.P.4
-
171
-
-
0035237805
-
Rich probabilistic models for gene expression
-
Segal, E., Taskar, B., Gasch, A., Friedman, N., & Koller, D. (2001). Rich probabilistic models for gene expression. Bioinformatics, 17(Suppl(1), S243–S252).
-
(2001)
Bioinformatics
, vol.17Suppl
, Issue.1
, pp. S243-S252
-
-
Segal, E.1
Taskar, B.2
Gasch, A.3
Friedman, N.4
Koller, D.5
-
173
-
-
0002663098
-
SLINK: an optimally efficient algorithm for the single-link cluster method
-
Sibson, R. (1973). SLINK: an optimally efficient algorithm for the single-link cluster method. Computer Journal, 16(1), 30–34. doi:10.1093/comjnl/16.1.30.
-
(1973)
Computer Journal
, vol.16
, Issue.1
, pp. 30-34
-
-
Sibson, R.1
-
174
-
-
78651375098
-
A survey of hierarchical classification across different application domains
-
Silla, C. N., & Freitas, A. A. (2011). A survey of hierarchical classification across different application domains. Data Mining and Knowledge Discovery, 22(1–2), 31–72. doi:10.1007/s10618-010-0175-9.
-
(2011)
Data Mining and Knowledge Discovery
, vol.22
, Issue.1-2
, pp. 31-72
-
-
Silla, C.N.1
Freitas, A.A.2
-
175
-
-
84872406432
-
A survey on enhanced subspace clustering
-
Sim, K., Gopalkrishnan, V., Zimek, A., & Cong, G. (2012). A survey on enhanced subspace clustering. Data Mining and Knowledge Discovery. doi:10.1007/s10618-012-0258-x.
-
(2012)
Data Mining and Knowledge Discovery
-
-
Sim, K.1
Gopalkrishnan, V.2
Zimek, A.3
Cong, G.4
-
176
-
-
79951788461
-
Ensemble clustering using semidefinite programming with applications
-
Singh, V., Mukherjee, L., Peng, J., & Xu, J. (2010). Ensemble clustering using semidefinite programming with applications. Machine Learning, 79(1–2), 177–200.
-
(2010)
Machine Learning
, vol.79
, Issue.1-2
, pp. 177-200
-
-
Singh, V.1
Mukherjee, L.2
Peng, J.3
Xu, J.4
-
177
-
-
84877279119
-
Slim: directly mining descriptive patterns
-
Society for Industrial and Applied Mathematics (SIAM), Philadelphia:
-
Smets, K., & Vreeken, J. (2012). Slim: directly mining descriptive patterns. In Proceedings of the 12th SIAM international conference on data mining (SDM), Anaheim, CA (pp. 1–12). Philadelphia: Society for Industrial and Applied Mathematics (SIAM).
-
(2012)
Proceedings of the 12th SIAM international conference on data mining (SDM)
, pp. 1-12
-
-
Smets, K.1
Vreeken, J.2
-
178
-
-
9444222978
-
The application of computers to taxonomy
-
Sneath, P. H. A. (1957). The application of computers to taxonomy. Journal of General Microbiology, 17, 201–226.
-
(1957)
Journal of General Microbiology
, vol.17
, pp. 201-226
-
-
Sneath, P.H.A.1
-
180
-
-
0041965980
-
Cluster ensembles—a knowledge reuse framework for combining multiple partitions
-
Strehl, A., & Ghosh, J. (2002). Cluster ensembles—a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3, 583–617.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 583-617
-
-
Strehl, A.1
Ghosh, J.2
-
181
-
-
0037560966
-
Estimating the cluster tree of a density by analyzing the minimal spanning tree of a sample
-
Stuetzle, W. (2003). Estimating the cluster tree of a density by analyzing the minimal spanning tree of a sample. Journal of Classification, 20(1), 25–47. doi:10.1007/s00357-003-0004-6.
-
(2003)
Journal of Classification
, vol.20
, Issue.1
, pp. 25-47
-
-
Stuetzle, W.1
-
182
-
-
54049104046
-
Maximum entropy based significance of itemsets
-
Tatti, N. (2008). Maximum entropy based significance of itemsets. Knowledge and Information Systems, 17(1), 57–77.
-
(2008)
Knowledge and Information Systems
, vol.17
, Issue.1
, pp. 57-77
-
-
Tatti, N.1
-
186
-
-
19544382863
-
MMAC: a new multi-class, multi-label associative classification approach
-
Thabtah, F. A., Cowling, P., & Peng, Y. (2004). MMAC: a new multi-class, multi-label associative classification approach. In Proceedings of the 4th IEEE international conference on data mining (ICDM), Brighton, UK (pp. 217–224). doi:10.1109/ICDM.2004.10117.
-
(2004)
Proceedings of the 4th IEEE international conference on data mining (ICDM)
, pp. 217-224
-
-
Thabtah, F.A.1
Cowling, P.2
Peng, Y.3
-
187
-
-
30144442247
-
Clustering ensembles: models of consensus and weak partitions
-
Topchy, A., Jain, A., & Punch, W. (2005). Clustering ensembles: models of consensus and weak partitions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(12), 1866–1881. doi:10.1109/TPAMI.2005.237.
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.12
, pp. 1866-1881
-
-
Topchy, A.1
Jain, A.2
Punch, W.3
-
188
-
-
19544373948
-
Analysis of consensus partition in cluster ensemble
-
Topchy, A. P., Law, M. H. C., Jain, A. K., & Fred, A. L. (2004). Analysis of consensus partition in cluster ensemble. In Proceedings of the 4th IEEE international conference on data mining (ICDM), Brighton, UK (pp. 225–232). doi:10.1109/ICDM.2004.10100.
-
(2004)
Proceedings of the 4th IEEE international conference on data mining (ICDM)
, pp. 225-232
-
-
Topchy, A.P.1
Law, M.H.C.2
Jain, A.K.3
Fred, A.L.4
-
189
-
-
34748873053
-
Multi-label classification: an overview
-
Tsoumakas, G., & Katakis, I. (2007). Multi-label classification: an overview. International Journal of Data Warehousing and Mining, 3(3), 1–13.
-
(2007)
International Journal of Data Warehousing and Mining
, vol.3
, Issue.3
, pp. 1-13
-
-
Tsoumakas, G.1
Katakis, I.2
-
191
-
-
68749084515
-
Identifying the components
-
van Leeuwen, M., Vreeken, J., & Siebes, A. (2009). Identifying the components. Data Mining and Knowledge Discovery, 19(2), 173–292.
-
(2009)
Data Mining and Knowledge Discovery
, vol.19
, Issue.2
, pp. 173-292
-
-
van Leeuwen, M.1
Vreeken, J.2
Siebes, A.3
-
192
-
-
78649934960
-
Relative clustering validity criteria: a comparative overview
-
Vendramin, L., Campello, R. J. G. B., & Hruschka, E. R. (2010). Relative clustering validity criteria: a comparative overview. Statistical Analysis and Data Mining, 3(4), 209–235. doi:10.1002/sam.10080.
-
(2010)
Statistical Analysis and Data Mining
, vol.3
, Issue.4
, pp. 209-235
-
-
Vendramin, L.1
Campello, R.J.G.B.2
Hruschka, E.R.3
-
193
-
-
84891061607
-
When pattern met subspace cluster—a relationship story
-
Vreeken, J., & Zimek, A. (2011). When pattern met subspace cluster—a relationship story. In 2nd MultiClust workshop: discovering, summarizing and using multiple clusterings held in conjunction with ECML PKDD 2011, Athens, Greece (pp. 7–18).
-
(2011)
2nd MultiClust workshop: discovering, summarizing and using multiple clusterings held in conjunction with ECML PKDD 2011
, pp. 7-18
-
-
Vreeken, J.1
Zimek, A.2
-
194
-
-
79960089996
-
Krimp: mining itemsets that compress
-
Vreeken, J., van Leeuwen, M., & Siebes, A. (2011). Krimp: mining itemsets that compress. Data Mining and Knowledge Discovery, 23(1), 169–214.
-
(2011)
Data Mining and Knowledge Discovery
, vol.23
, Issue.1
, pp. 169-214
-
-
Vreeken, J.1
van Leeuwen, M.2
Siebes, A.3
-
196
-
-
17044421977
-
Gene expression correlation and gene ontology-based similarity: an assessment of quantitative relationships
-
Wang, H., Azuaje, F., Bodenreider, O., & Dopazo, J. (2004). Gene expression correlation and gene ontology-based similarity: an assessment of quantitative relationships. In Proceedings of the 2004 IEEE symposium on computational intelligence in bioinformatics and computational biology (CIBCB), La Jolla, CA.
-
(2004)
Proceedings of the 2004 IEEE symposium on computational intelligence in bioinformatics and computational biology (CIBCB)
-
-
Wang, H.1
Azuaje, F.2
Bodenreider, O.3
Dopazo, J.4
-
197
-
-
34249653461
-
Discovering significant patterns
-
Webb, G. I. (2007). Discovering significant patterns. Machine Learning, 68(1), 1–33.
-
(2007)
Machine Learning
, vol.68
, Issue.1
, pp. 1-33
-
-
Webb, G.I.1
-
198
-
-
0001831117
-
Mode analysis: a generalization of nearest neighbor which reduces chaining effects
-
Cole A. J., (ed)
-
Wishart, D. (1969). Mode analysis: a generalization of nearest neighbor which reduces chaining effects. In A. J. Cole (Ed.), Numerical taxonomy (pp. 282–311).
-
(1969)
Numerical taxonomy
, pp. 282-311
-
-
Wishart, D.1
-
200
-
-
79958127484
-
Summarizing transactional databases with overlapped hyperrectangles
-
Xiang, Y., Jin, R., Fuhry, D., & Dragan, F. (2011). Summarizing transactional databases with overlapped hyperrectangles. Data Mining and Knowledge Discovery, 23(2), 215–251.
-
(2011)
Data Mining and Knowledge Discovery
, vol.23
, Issue.2
, pp. 215-251
-
-
Xiang, Y.1
Jin, R.2
Fuhry, D.3
Dragan, F.4
-
202
-
-
32344439809
-
Summarizing itemset patterns: a profile-based approach
-
Yan, X., Cheng, H., Han, J., & Xin, D. (2005). Summarizing itemset patterns: a profile-based approach. In Proceedings of the 11th ACM international conference on knowledge discovery and data mining (SIGKDD), Chicago, IL (pp. 314–323).
-
(2005)
Proceedings of the 11th ACM international conference on knowledge discovery and data mining (SIGKDD)
, pp. 314-323
-
-
Yan, X.1
Cheng, H.2
Han, J.3
Xin, D.4
-
203
-
-
0038175144
-
GoMiner: a resource for biological interpretation of genomic and proteomic data
-
Zeeberg, B. R., Feng, W., Wang, G., Wang, M. D., Fojo, A. T., Sunshine, M., Narasimhan, S., Kane, D. W., Reinhold, W. C., Lababidi, S., Bussey, K. J., Riss, J., Barrett, J. C., & Weinstein, J. N. (2003). GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biology, 4(4), R28.
-
(2003)
Genome Biology
, vol.4
, Issue.4
-
-
Zeeberg, B.R.1
Feng, W.2
Wang, G.3
Wang, M.D.4
Fojo, A.T.5
Sunshine, M.6
Narasimhan, S.7
Kane, D.W.8
Reinhold, W.C.9
Lababidi, S.10
Bussey, K.J.11
Riss, J.12
Barrett, J.C.13
Weinstein, J.N.14
-
205
-
-
77955469422
-
A study of hierarchical and flat classification of proteins
-
Zimek, A., Buchwald, F., Frank, E., & Kramer, S. (2010). A study of hierarchical and flat classification of proteins. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 7(3), 563–571. doi:10.1109/TCBB.2008.104.
-
(2010)
IEEE/ACM Transactions on Computational Biology and Bioinformatics
, vol.7
, Issue.3
, pp. 563-571
-
-
Zimek, A.1
Buchwald, F.2
Frank, E.3
Kramer, S.4
-
206
-
-
84866458840
-
A survey on unsupervised outlier detection in high-dimensional numerical data
-
Zimek, A., Schubert, E., & Kriegel, H. P. (2012). A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining, 5(5), 363–387. doi:10.1002/sam.11161.
-
(2012)
Statistical Analysis and Data Mining
, vol.5
, Issue.5
, pp. 363-387
-
-
Zimek, A.1
Schubert, E.2
Kriegel, H.P.3
|