메뉴 건너뛰기




Volumn 1, Issue 4, 2011, Pages 305-315

Cluster ensembles

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ALGORITHMS;

EID: 80053039117     PISSN: 19424787     EISSN: 19424795     Source Type: Journal    
DOI: 10.1002/widm.32     Document Type: Article
Times cited : (204)

References (52)
  • 1
    • 0003565249 scopus 로고    scopus 로고
    • Combining Artificial Neural Nets
    • USA: Springer-Verlag, New York, Inc
    • Sharkey A. Combining Artificial Neural Nets. Secaucus, NJ, USA: Springer-Verlag, New York, Inc.; 1999.
    • (1999) Secaucus, NJ
    • Sharkey, A.1
  • 2
    • 0001979856 scopus 로고    scopus 로고
    • Robust order statistics based ensembles for distributed data mining
    • Hillol Kargupta H, Chan P, eds, AAAI Press
    • Tumer K, Ghosh J. Robust order statistics based ensembles for distributed data mining. In: Hillol Kargupta H, Chan P, eds, Advances in Distributed and Parallel Knowledge Discovery. AAAI Press; 2000, 85-110.
    • (2000) Advances in Distributed and Parallel Knowledge Discovery , pp. 85-110
    • Tumer, K.1    Ghosh, J.2
  • 4
    • 36448962361 scopus 로고    scopus 로고
    • Cumulative voting consensus method for partitions with variable number of clusters
    • Ayad HG, Kamel MS. Cumulative voting consensus method for partitions with variable number of clusters. IEEE Trans Pattern Anal Mach Intell 2008, 30:160-173.
    • (2008) IEEE Trans Pattern Anal Mach Intell , vol.30 , pp. 160-173
    • Ayad, H.G.1    Kamel, M.S.2
  • 5
    • 58249083148 scopus 로고    scopus 로고
    • A scalable framework for cluster ensembles
    • Hore P, Hall LO, Goldgof DB. A scalable framework for cluster ensembles. Pattern Recognit 2009, 42:676-688.
    • (2009) Pattern Recognit , vol.42 , pp. 676-688
    • Hore, P.1    Hall, L.O.2    Goldgof, D.B.3
  • 6
    • 21244468777 scopus 로고    scopus 로고
    • Combining multiple clusterings using evidence accumulation
    • Fred A, Jain AK. Combining multiple clusterings using evidence accumulation. IEEE Trans Pattern Anal Mach Intell 2005, 27:835-850.
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , pp. 835-850
    • Fred, A.1    Jain, A.K.2
  • 7
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles-a knowledge reuse framework for combining multiple partitions
    • Strehl A, Ghosh J. Cluster ensembles-a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 2002, 3:583-617.
    • (2002) J Mach Learn Res , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 9
    • 33745772326 scopus 로고    scopus 로고
    • Cluster ensemble and its applications in gene expression analysis
    • Darlinghurst, Australia: Australian Computer Society, Inc
    • Hu X, Yoo I. Cluster ensemble and its applications in gene expression analysis. In: APBC '04: Proceedings of the second conference on Asia-Pacific bioinformatics, Darlinghurst, Australia: Australian Computer Society, Inc; 2004.
    • (2004) APBC '04: Proceedings of the second conference on Asia-Pacific bioinformatics
    • Hu, X.1    Yoo, I.2
  • 10
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: hierarchical clustering using dynamic modeling
    • Karypis G, Han E-H, Kumar V. Chameleon: hierarchical clustering using dynamic modeling. IEEE Comput 1999, 32:68-75.
    • (1999) IEEE Comput , vol.32 , pp. 68-75
    • Karypis, G.1    Han, E.-H.2    Kumar, V.3
  • 12
  • 15
    • 32344432101 scopus 로고    scopus 로고
    • A distributed learning framework for heterogeneous data sources
    • Merugu S, Ghosh J. A distributed learning framework for heterogeneous data sources. In: Proc. KDD; 2005, 208-217.
    • (2005) Proc. KDD , pp. 208-217
    • Merugu, S.1    Ghosh, J.2
  • 16
    • 0004169726 scopus 로고    scopus 로고
    • Mathematical Classification and Clustering
    • Dordrecht: Kluwer
    • Mirkin B. Mathematical Classification and Clustering. Dordrecht: Kluwer; 1996.
    • (1996)
    • Mirkin, B.1
  • 17
    • 0000747464 scopus 로고
    • Foreword: comparison and consensus of classifications
    • Day WHE. Foreword: comparison and consensus of classifications. J. Classi 1986, 3:183-185.
    • (1986) J. Classi , vol.3 , pp. 183-185
    • Day, W.H.E.1
  • 20
    • 0000008146 scopus 로고
    • Comparing partitions
    • Hubert L, Arabie P. Comparing partitions. J Classif 1985, 2:193-218.
    • (1985) J Classif , vol.2 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 21
  • 22
    • 58349088069 scopus 로고    scopus 로고
    • External validation measures for k-means clustering: a data distribution perspective
    • Wu J, Chen J, Xiong H, Xie M. External validation measures for k-means clustering: a data distribution perspective. Expert Syst Appl 2009, 36:6050-6061.
    • (2009) Expert Syst Appl , vol.36 , pp. 6050-6061
    • Wu, J.1    Chen, J.2    Xiong, H.3    Xie, M.4
  • 27
    • 77958056558 scopus 로고    scopus 로고
    • Nonparametric bayesian clustering ensembles
    • Lecture Notes in Computer Science, Ch. 28. Berlin/ Heidelberg: Springer
    • Wang P, Domeniconi C, Laskey K. Nonparametric bayesian clustering ensembles. In: Machine Learning and Knowledge Discovery in Databases. Lecture Notes in Computer Science, Vol. 6323, Ch. 28. Berlin/ Heidelberg: Springer; 2010.
    • (2010) Machine Learning and Knowledge Discovery in Databases , vol.6323
    • Wang, P.1    Domeniconi, C.2    Laskey, K.3
  • 28
    • 0032131147 scopus 로고    scopus 로고
    • A fast and high quality multilevel scheme for partitioning irregular graphs
    • Karypis G, Kumar V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 1998; 20:359-392.
    • (1998) SIAM J Sci Comput , vol.20 , pp. 359-392
    • Karypis, G.1    Kumar, V.2
  • 29
    • 84947579437 scopus 로고    scopus 로고
    • A scalable approach to balanced, high-dimensional clustering of market-baskets
    • Bangalore, LNCS. Springer
    • Strehl A, Ghosh J. A scalable approach to balanced, high-dimensional clustering of market-baskets. In: Proc. HiPC 2000, Bangalore, LNCS, Vol. 1970. Springer; 2000.
    • (2000) Proc. HiPC 2000 , vol.1970
    • Strehl, A.1    Ghosh, J.2
  • 32
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering-a resampling-based method for class discovery and visualization of gene expression microarray data
    • Monti S, Tamayo P, Mesirov J, Golub T. Consensus clustering-a resampling-based method for class discovery and visualization of gene expression microarray data. J Mach Learn 2003, 52:91-118.
    • (2003) J Mach Learn , vol.52 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 34
    • 2142687208 scopus 로고    scopus 로고
    • A unified framework for modelbased clustering
    • Zhong S, Ghosh J. A unified framework for modelbased clustering. J Mach Learn Res 2003, 4:1001-1037.
    • (2003) J Mach Learn Res , vol.4 , pp. 1001-1037
    • Zhong, S.1    Ghosh, J.2
  • 40
    • 0001093042 scopus 로고    scopus 로고
    • Algorithms for non-negativematrix factorization
    • Denver, CO, USA: MIT Press
    • Lee DD, Seung HS. Algorithms for non-negativematrix factorization. In: NIPS. Denver, CO, USA: MIT Press; 2000.
    • (2000) In: NIPS.
    • Lee, D.D.1    Seung, H.S.2
  • 46
    • 0038391443 scopus 로고    scopus 로고
    • Bagging to improve the accuracy of a clustering procedure
    • Dudoit S, Fridlyand J. Bagging to improve the accuracy of a clustering procedure. Bioinformatics 2003, 19:1090-1099.
    • (2003) Bioinformatics , vol.19 , pp. 1090-1099
    • Dudoit, S.1    Fridlyand, J.2
  • 47
    • 33745771946 scopus 로고    scopus 로고
    • Heterogeneous clustering ensemble method for combining different cluster results
    • Lecture Notes in Computer Science
    • Yoon SY Ahn, SH Lee, SB Cho, JH Kim. Heterogeneous clustering ensemble method for combining different cluster results. In: Proceedings of BioDM 2006, Lecture Notes in Computer Science, Vol. 3916; 2006, 82-92.
    • (2006) Proceedings of BioDM 2006 , vol.3916 , pp. 82-92
    • Yoon, S.Y.A.1    Lee, S.H.2    Cho, S.B.3    Kim, J.H.4
  • 48
    • 33646087885 scopus 로고    scopus 로고
    • An aggregated clustering approach using multi-ant colonies algorithms
    • Yang Y, KamelMS. An aggregated clustering approach using multi-ant colonies algorithms. Pattern Recognit 2006, 39:1278-1289.
    • (2006) Pattern Recognit , vol.39 , pp. 1278-1289
    • Yang, Y.1    Kamel, M.S.2
  • 50
    • 13444273324 scopus 로고    scopus 로고
    • A cluster ensemble method for clustering categorical data
    • He Z, Xu X, Deng S. A cluster ensemble method for clustering categorical data. Inform Fusion 2005, 6:143-151.
    • (2005) Inform Fusion , vol.6 , pp. 143-151
    • He, Z.1    Xu, X.2    Deng, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.