메뉴 건너뛰기




Volumn 2, Issue 1, 2009, Pages 1270-1281

Evaluating Clustering in Subspace Projections of High Dimensional Data

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING RESULTS; EVALUATION MEASURES; EXPERIMENTAL ANALYSIS; HIGH DIMENSIONAL DATA; PROJECTED CLUSTERING; SUB-SPACE CLUSTERING; SUBSPACE PROJECTION; SYNTHETIC DATASETS;

EID: 84865086248     PISSN: None     EISSN: 21508097     Source Type: Conference Proceeding    
DOI: 10.14778/1687627.1687770     Document Type: Article
Times cited : (218)

References (32)
  • 2
    • 0039253822 scopus 로고    scopus 로고
    • Finding generalized projected clusters in high dimensional spaces
    • C. Aggarwal and P. Yu. Finding generalized projected clusters in high dimensional spaces. In SIGMOD, pages 70-81, 2000.
    • (2000) SIGMOD , pp. 70-81
    • Aggarwal, C.1    Yu, P.2
  • 3
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In SIGMOD, pages 94-105, 1998.
    • (1998) SIGMOD , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 4
    • 0002221136 scopus 로고
    • Fast algorithms for mining association rules
    • R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In VLDB, pages 487-499, 1994.
    • (1994) VLDB , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 5
    • 47249137675 scopus 로고    scopus 로고
    • DUSC: Dimensionality unbiased subspace clustering
    • I. Assent, R. Krieger, E. Müller, and T. Seidl. DUSC: Dimensionality unbiased subspace clustering. In ICDM, pages 409-414, 2007.
    • (2007) ICDM , pp. 409-414
    • Assent, I.1    Krieger, R.2    Müller, E.3    Seidl, T.4
  • 6
    • 67049137962 scopus 로고    scopus 로고
    • INSCY: Indexing subspace clusters with in-process-removal of redundancy
    • I. Assent, R. Krieger, E. Müller, and T. Seidl. INSCY: Indexing subspace clusters with in-process-removal of redundancy. In ICDM, pages 719-724, 2008.
    • (2008) ICDM , pp. 719-724
    • Assent, I.1    Krieger, R.2    Müller, E.3    Seidl, T.4
  • 8
    • 84865088054 scopus 로고    scopus 로고
    • UCI Machine Learning Repository
    • A. Asuncion and D. Newman. UCI Machine Learning Repository, 2007.
    • (2007)
    • Asuncion, A.1    Newman, D.2
  • 10
    • 49749149150 scopus 로고    scopus 로고
    • The chosen few: On identifying valuable patterns
    • B. Bringmann and A. Zimmermann. The chosen few: On identifying valuable patterns. In ICDM, pages 63-72, 2007.
    • (2007) ICDM , pp. 63-72
    • Bringmann, B.1    Zimmermann, A.2
  • 13
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases
    • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases. In KDD, pages 226-231, 1996.
    • (1996) KDD , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 14
    • 3543088482 scopus 로고    scopus 로고
    • Data Mining: Concepts and Techniques
    • J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2001.
    • (2001) Morgan Kaufmann
    • Han, J.1    Kamber, M.2
  • 15
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In SIGMOD, pages 1-12, 2000.
    • (2000) SIGMOD , pp. 1-12
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 17
    • 2942588997 scopus 로고    scopus 로고
    • Density-connected subspace clustering for high-dimensional data
    • K. Kailing, H.-P. Kriegel, and P. Kröger. Density-connected subspace clustering for high-dimensional data. In SDM, pages 246-257, 2004.
    • (2004) SDM , pp. 246-257
    • Kailing, K.1    Kriegel, H.-P.2    Kröger, P.3
  • 18
    • 85003961474 scopus 로고    scopus 로고
    • LB Keogh supports exact indexing of shapes under rotation invariance with arbitrary representations and distance measures
    • E. Keogh, L. Wei, X. Xi, S.-H. Lee, and M. Vlachos. LB Keogh supports exact indexing of shapes under rotation invariance with arbitrary representations and distance measures. In VLDB, pages 882-893, 2006.
    • (2006) VLDB , pp. 882-893
    • Keogh, E.1    Wei, L.2    Xi, X.3    Lee, S.-H.4    Vlachos, M.5
  • 19
    • 34547251368 scopus 로고    scopus 로고
    • A generic framework for effcient subspace clustering of high-dimensional data
    • H.-P. Kriegel, P. Kröger, M. Renz, and S. Wurst. A generic framework for effcient subspace clustering of high-dimensional data. In ICDM, pages 250-257, 2005.
    • (2005) ICDM , pp. 250-257
    • Kriegel, H.-P.1    Kröger, P.2    Renz, M.3    Wurst, S.4
  • 20
    • 0001457509 scopus 로고
    • Some methods for classi cation and analysis of multivariate observations
    • J. MacQueen. Some methods for classi cation and analysis of multivariate observations. In Berkeley Symp. Math. stat. & prob., pages 281-297, 1967.
    • (1967) Berkeley Symp. Math. stat. & prob , pp. 281-297
    • MacQueen, J.1
  • 21
    • 65449163900 scopus 로고    scopus 로고
    • Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering
    • G. Moise and J. Sander. Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering. In KDD, pages 533-541, 2008.
    • (2008) KDD , pp. 533-541
    • Moise, G.1    Sander, J.2
  • 22
    • 57849131064 scopus 로고    scopus 로고
    • P3C: A robust projected clustering algorithm
    • G. Moise, J. Sander, and M. Ester. P3C: A robust projected clustering algorithm. In ICDM, pages 414-425, 2006.
    • (2006) ICDM , pp. 414-425
    • Moise, G.1    Sander, J.2    Ester, M.3
  • 24
    • 77951200841 scopus 로고    scopus 로고
    • DensEst: Density estimation for data mining in high dimensional spaces
    • E. Müller, I. Assent, R. Krieger, S. Günnemann, and T. Seidl. DensEst: Density estimation for data mining in high dimensional spaces. In SDM, pages 173-184, 2009.
    • (2009) SDM , pp. 173-184
    • Müller, E.1    Assent, I.2    Krieger, R.3    Günnemann, S.4    Seidl, T.5
  • 25
    • 65449157709 scopus 로고    scopus 로고
    • Morpheus: Interactive exploration of subspace clustering
    • E. Müller, I. Assent, R. Krieger, T. Jansen, and T. Seidl. Morpheus: Interactive exploration of subspace clustering. In KDD, pages 1089-1092, 2008.
    • (2008) KDD , pp. 1089-1092
    • Müller, E.1    Assent, I.2    Krieger, R.3    Jansen, T.4    Seidl, T.5
  • 26
    • 69049096391 scopus 로고    scopus 로고
    • Heterogeneous subspace mining in high dimensional data
    • E. Müller, I. Assent, and T. Seidl. HSM: Heterogeneous subspace mining in high dimensional data. In SSDBM, pages 497-516, 2009.
    • (2009) SSDBM , pp. 497-516
    • Müller, E.1    Assent, I.2    Seidl, T.3
  • 27
    • 41149123106 scopus 로고    scopus 로고
    • Adaptive grids for clustering massive data sets
    • H. Nagesh, S. Goil, and A. Choudhary. Adaptive grids for clustering massive data sets. In SDM, 2001.
    • (2001) SDM
    • Nagesh, H.1    Goil, S.2    Choudhary, A.3
  • 28
    • 33746622162 scopus 로고    scopus 로고
    • Comparing subspace clusterings
    • A. Patrikainen and M. Meila. Comparing subspace clusterings. TKDE, 18(7):902-916, 2006.
    • (2006) TKDE , vol.18 , Issue.7 , pp. 902-916
    • Patrikainen, A.1    Meila, M.2
  • 29
    • 0036361164 scopus 로고    scopus 로고
    • Procopiuc. A monte carlo algorithm for fast projective clustering
    • C. e. a. Procopiuc. A monte carlo algorithm for fast projective clustering. In SIGMOD, pages 418-427, 2002.
    • (2002) SIGMOD , pp. 418-427
    • Procopiuc, C.e.a.1
  • 30
    • 19544389465 scopus 로고    scopus 로고
    • SCHISM: A new approach for interesting subspace mining
    • K. Sequeira and M. Zaki. SCHISM: A new approach for interesting subspace mining. In ICDM, pages 186-193, 2004.
    • (2004) ICDM , pp. 186-193
    • Sequeira, K.1    Zaki, M.2
  • 32
    • 20844440247 scopus 로고    scopus 로고
    • Frequent-pattern based iterative projected clustering
    • M. L. Yiu and N. Mamoulis. Frequent-pattern based iterative projected clustering. In ICDM, pages 689-692, 2003.
    • (2003) ICDM , pp. 689-692
    • Yiu, M.L.1    Mamoulis, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.