-
1
-
-
0347718066
-
Fast algorithms for projected clustering
-
C. Aggarwal, J. Wolf, P. Yu, C. Procopiuc, and J. Park. Fast algorithms for projected clustering. In SIGMOD, pages 61-72, 1999.
-
(1999)
SIGMOD
, pp. 61-72
-
-
Aggarwal, C.1
Wolf, J.2
Yu, P.3
Procopiuc, C.4
Park, J.5
-
2
-
-
0039253822
-
Finding generalized projected clusters in high dimensional spaces
-
C. Aggarwal and P. Yu. Finding generalized projected clusters in high dimensional spaces. In SIGMOD, pages 70-81, 2000.
-
(2000)
SIGMOD
, pp. 70-81
-
-
Aggarwal, C.1
Yu, P.2
-
3
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In SIGMOD, pages 94-105, 1998.
-
(1998)
SIGMOD
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
4
-
-
0002221136
-
Fast algorithms for mining association rules
-
R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In VLDB, pages 487-499, 1994.
-
(1994)
VLDB
, pp. 487-499
-
-
Agrawal, R.1
Srikant, R.2
-
5
-
-
47249137675
-
DUSC: Dimensionality unbiased subspace clustering
-
I. Assent, R. Krieger, E. Müller, and T. Seidl. DUSC: Dimensionality unbiased subspace clustering. In ICDM, pages 409-414, 2007.
-
(2007)
ICDM
, pp. 409-414
-
-
Assent, I.1
Krieger, R.2
Müller, E.3
Seidl, T.4
-
6
-
-
67049137962
-
INSCY: Indexing subspace clusters with in-process-removal of redundancy
-
I. Assent, R. Krieger, E. Müller, and T. Seidl. INSCY: Indexing subspace clusters with in-process-removal of redundancy. In ICDM, pages 719-724, 2008.
-
(2008)
ICDM
, pp. 719-724
-
-
Assent, I.1
Krieger, R.2
Müller, E.3
Seidl, T.4
-
7
-
-
56049086195
-
Pleiades: Subspace clustering and evaluation
-
I. Assent, E. Müller, R. Krieger, T. Jansen, and T. Seidl. Pleiades: Subspace clustering and evaluation. In ECML PKDD, pages 666-671, 2008.
-
(2008)
ECML PKDD
, pp. 666-671
-
-
Assent, I.1
Müller, E.2
Krieger, R.3
Jansen, T.4
Seidl, T.5
-
8
-
-
84865088054
-
-
UCI Machine Learning Repository
-
A. Asuncion and D. Newman. UCI Machine Learning Repository, 2007.
-
(2007)
-
-
Asuncion, A.1
Newman, D.2
-
9
-
-
0002086686
-
When is nearest neighbors meaningful
-
K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is nearest neighbors meaningful. In IDBT, pages 217-235, 1999.
-
(1999)
IDBT
, pp. 217-235
-
-
Beyer, K.1
Goldstein, J.2
Ramakrishnan, R.3
Shaft, U.4
-
10
-
-
49749149150
-
The chosen few: On identifying valuable patterns
-
B. Bringmann and A. Zimmermann. The chosen few: On identifying valuable patterns. In ICDM, pages 63-72, 2007.
-
(2007)
ICDM
, pp. 63-72
-
-
Bringmann, B.1
Zimmermann, A.2
-
12
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, 39(1):1-38, 1977.
-
(1977)
Journal of the Royal Statistical Society
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
13
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases
-
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases. In KDD, pages 226-231, 1996.
-
(1996)
KDD
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Xu, X.4
-
14
-
-
3543088482
-
Data Mining: Concepts and Techniques
-
J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2001.
-
(2001)
Morgan Kaufmann
-
-
Han, J.1
Kamber, M.2
-
15
-
-
0039253846
-
Mining frequent patterns without candidate generation
-
J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In SIGMOD, pages 1-12, 2000.
-
(2000)
SIGMOD
, pp. 1-12
-
-
Han, J.1
Pei, J.2
Yin, Y.3
-
17
-
-
2942588997
-
Density-connected subspace clustering for high-dimensional data
-
K. Kailing, H.-P. Kriegel, and P. Kröger. Density-connected subspace clustering for high-dimensional data. In SDM, pages 246-257, 2004.
-
(2004)
SDM
, pp. 246-257
-
-
Kailing, K.1
Kriegel, H.-P.2
Kröger, P.3
-
18
-
-
85003961474
-
LB Keogh supports exact indexing of shapes under rotation invariance with arbitrary representations and distance measures
-
E. Keogh, L. Wei, X. Xi, S.-H. Lee, and M. Vlachos. LB Keogh supports exact indexing of shapes under rotation invariance with arbitrary representations and distance measures. In VLDB, pages 882-893, 2006.
-
(2006)
VLDB
, pp. 882-893
-
-
Keogh, E.1
Wei, L.2
Xi, X.3
Lee, S.-H.4
Vlachos, M.5
-
19
-
-
34547251368
-
A generic framework for effcient subspace clustering of high-dimensional data
-
H.-P. Kriegel, P. Kröger, M. Renz, and S. Wurst. A generic framework for effcient subspace clustering of high-dimensional data. In ICDM, pages 250-257, 2005.
-
(2005)
ICDM
, pp. 250-257
-
-
Kriegel, H.-P.1
Kröger, P.2
Renz, M.3
Wurst, S.4
-
20
-
-
0001457509
-
Some methods for classi cation and analysis of multivariate observations
-
J. MacQueen. Some methods for classi cation and analysis of multivariate observations. In Berkeley Symp. Math. stat. & prob., pages 281-297, 1967.
-
(1967)
Berkeley Symp. Math. stat. & prob
, pp. 281-297
-
-
MacQueen, J.1
-
21
-
-
65449163900
-
Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering
-
G. Moise and J. Sander. Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering. In KDD, pages 533-541, 2008.
-
(2008)
KDD
, pp. 533-541
-
-
Moise, G.1
Sander, J.2
-
22
-
-
57849131064
-
P3C: A robust projected clustering algorithm
-
G. Moise, J. Sander, and M. Ester. P3C: A robust projected clustering algorithm. In ICDM, pages 414-425, 2006.
-
(2006)
ICDM
, pp. 414-425
-
-
Moise, G.1
Sander, J.2
Ester, M.3
-
23
-
-
79951754114
-
OpenSubspace: An open source framework for evaluation and exploration of subspace clustering algorithms in WEKA
-
E. Müller, I. Assent, S. Güunnemann, T. Jansen, and T. Seidl. OpenSubspace: An open source framework for evaluation and exploration of subspace clustering algorithms in WEKA. In Open Source in Data Mining Workshop at PAKDD, pages 2-13, 2009.
-
(2009)
Open Source in Data Mining Workshop at PAKDD
, pp. 2-13
-
-
Müller, E.1
Assent, I.2
Güunnemann, S.3
Jansen, T.4
Seidl, T.5
-
24
-
-
77951200841
-
DensEst: Density estimation for data mining in high dimensional spaces
-
E. Müller, I. Assent, R. Krieger, S. Günnemann, and T. Seidl. DensEst: Density estimation for data mining in high dimensional spaces. In SDM, pages 173-184, 2009.
-
(2009)
SDM
, pp. 173-184
-
-
Müller, E.1
Assent, I.2
Krieger, R.3
Günnemann, S.4
Seidl, T.5
-
25
-
-
65449157709
-
Morpheus: Interactive exploration of subspace clustering
-
E. Müller, I. Assent, R. Krieger, T. Jansen, and T. Seidl. Morpheus: Interactive exploration of subspace clustering. In KDD, pages 1089-1092, 2008.
-
(2008)
KDD
, pp. 1089-1092
-
-
Müller, E.1
Assent, I.2
Krieger, R.3
Jansen, T.4
Seidl, T.5
-
26
-
-
69049096391
-
Heterogeneous subspace mining in high dimensional data
-
E. Müller, I. Assent, and T. Seidl. HSM: Heterogeneous subspace mining in high dimensional data. In SSDBM, pages 497-516, 2009.
-
(2009)
SSDBM
, pp. 497-516
-
-
Müller, E.1
Assent, I.2
Seidl, T.3
-
27
-
-
41149123106
-
Adaptive grids for clustering massive data sets
-
H. Nagesh, S. Goil, and A. Choudhary. Adaptive grids for clustering massive data sets. In SDM, 2001.
-
(2001)
SDM
-
-
Nagesh, H.1
Goil, S.2
Choudhary, A.3
-
28
-
-
33746622162
-
Comparing subspace clusterings
-
A. Patrikainen and M. Meila. Comparing subspace clusterings. TKDE, 18(7):902-916, 2006.
-
(2006)
TKDE
, vol.18
, Issue.7
, pp. 902-916
-
-
Patrikainen, A.1
Meila, M.2
-
29
-
-
0036361164
-
Procopiuc. A monte carlo algorithm for fast projective clustering
-
C. e. a. Procopiuc. A monte carlo algorithm for fast projective clustering. In SIGMOD, pages 418-427, 2002.
-
(2002)
SIGMOD
, pp. 418-427
-
-
Procopiuc, C.e.a.1
-
30
-
-
19544389465
-
SCHISM: A new approach for interesting subspace mining
-
K. Sequeira and M. Zaki. SCHISM: A new approach for interesting subspace mining. In ICDM, pages 186-193, 2004.
-
(2004)
ICDM
, pp. 186-193
-
-
Sequeira, K.1
Zaki, M.2
-
32
-
-
20844440247
-
Frequent-pattern based iterative projected clustering
-
M. L. Yiu and N. Mamoulis. Frequent-pattern based iterative projected clustering. In ICDM, pages 689-692, 2003.
-
(2003)
ICDM
, pp. 689-692
-
-
Yiu, M.L.1
Mamoulis, N.2
|