-
1
-
-
0032098774
-
Some new indexes of cluster validity
-
J. Bezdek and N. Pal. Some new indexes of cluster validity. Sys., Man and Cybernetics, 28(3):301-315, 1998.
-
(1998)
Sys., Man and Cybernetics
, vol.28
, Issue.3
, pp. 301-315
-
-
Bezdek, J.1
Pal, N.2
-
2
-
-
0001684051
-
A geometric approach to cluster validity for normal mixtures
-
J. Bezdek, L. Wanquing, Y. Attikiouzel, and M. Windham. A geometric approach to cluster validity for normal mixtures. Soft Computing, pages 166-179, 1997.
-
(1997)
Soft Computing
, pp. 166-179
-
-
Bezdek, J.1
Wanquing, L.2
Attikiouzel, Y.3
Windham, M.4
-
5
-
-
84880095768
-
Clustering with constraints: Feasibility issues and the k-means algorithm
-
I. Davidson and S. Ravi. Clustering with constraints: Feasibility issues and the k-means algorithm. In SIAM Intern. Conf. on Data Mining, 2005.
-
(2005)
SIAM Intern. Conf. on Data Mining
-
-
Davidson, I.1
Ravi, S.2
-
6
-
-
80051997820
-
Identifying and generating easy sets of constraints for clustering
-
I. Davidson and S. Ravi. Identifying and generating easy sets of constraints for clustering. In AAAI Conference, 2006.
-
(2006)
AAAI Conference
-
-
Davidson, I.1
Ravi, S.2
-
7
-
-
0015644825
-
A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters
-
J. Dunn. A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. In Journal of Cybernetics, pages 32-57, 1974.
-
(1974)
Journal of Cybernetics
, pp. 32-57
-
-
Dunn, J.1
-
9
-
-
0032284326
-
Fast hierarchical clustering and other applications of dynamic closest pairs
-
D. Eppstein. Fast hierarchical clustering and other applications of dynamic closest pairs. In SODA: ACM-SIAM Symposium on Discrete Algorithms, page 1, 1998.
-
(1998)
SODA: ACM-SIAM Symposium on Discrete Algorithms
, pp. 1
-
-
Eppstein, D.1
-
10
-
-
84957012677
-
Finding consistent clusters in data partitions
-
A. Fred. Finding consistent clusters in data partitions. In Multiple Classifier Systems, pages 309-318, 2001.
-
(2001)
Multiple Classifier Systems
, pp. 309-318
-
-
Fred, A.1
-
14
-
-
0034228041
-
ROCK: A robust clustering algorithm for categorical attributes
-
S. Guha, R. Rastogi, and K. Shim. ROCK: A robust clustering algorithm for categorical attributes. Information Systems, 25:345-366, 2000.
-
(2000)
Information Systems
, vol.25
, pp. 345-366
-
-
Guha, S.1
Rastogi, R.2
Shim, K.3
-
17
-
-
26944462703
-
Speeding-up hierarchical agglomerative clustering in presence of expensive metrics
-
M. Nanni. Speeding-up hierarchical agglomerative clustering in presence of expensive metrics. In PAKDD, pages 378-387, 2005.
-
(2005)
PAKDD
, pp. 378-387
-
-
Nanni, M.1
-
18
-
-
17044376078
-
Subspace clustering for high dimensional data: A review
-
L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data: a review. SIGKDD Explor. Newsl., 6(1):90-105, 2004.
-
(2004)
SIGKDD Explor. Newsl
, vol.6
, Issue.1
, pp. 90-105
-
-
Parsons, L.1
Haque, E.2
Liu, H.3
-
20
-
-
21244466861
-
Efficient parallel hierarchical clustering algorithms
-
S. Rajasekaran. Efficient parallel hierarchical clustering algorithms. Parallel Distrib. Syst., 16(6):497-502, 2005.
-
(2005)
Parallel Distrib. Syst
, vol.16
, Issue.6
, pp. 497-502
-
-
Rajasekaran, S.1
-
21
-
-
0001808038
-
The information bottleneck method
-
N. Tishby, F. Pereira, and W. Bialek. The information bottleneck method. Allerton Conference on Communication, Control and Computing, pages 368-377, 1999.
-
(1999)
Allerton Conference on Communication, Control and Computing
, pp. 368-377
-
-
Tishby, N.1
Pereira, F.2
Bialek, W.3
-
22
-
-
19544373948
-
Analysis of consensus partition in cluster ensemble
-
A. Topchy, H. Martin, C. Law, A. Jain, and A. Fred. Analysis of consensus partition in cluster ensemble. In Intern. Conf. on Data Mining, pages 225-232, 2004.
-
(2004)
Intern. Conf. on Data Mining
, pp. 225-232
-
-
Topchy, A.1
Martin, H.2
Law, C.3
Jain, A.4
Fred, A.5
-
23
-
-
0022906994
-
Implementing agglomerative hierarchical clustering algorithms for use in document retrieval
-
A. Voorhees. Implementing agglomerative hierarchical clustering algorithms for use in document retrieval. Info. Processing and Management, pages 465-476, 1986.
-
(1986)
Info. Processing and Management
, pp. 465-476
-
-
Voorhees, A.1
-
24
-
-
0042377235
-
Constrained k-means clustering with background knowledge
-
K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-means clustering with background knowledge. In Intern. Conf. on Machine Learning, pages 577-584, 2001.
-
(2001)
Intern. Conf. on Machine Learning
, pp. 577-584
-
-
Wagstaff, K.1
Cardie, C.2
Rogers, S.3
Schroedl, S.4
-
25
-
-
85133386144
-
Distance metric learning, with application to clustering with sideinformation
-
E. Xing, A. Ng, M. Jordan, and S. Russell. Distance metric learning, with application to clustering with sideinformation. Advances in NIPS, 15:505-512, 2002.
-
(2002)
Advances in NIPS
, vol.15
, pp. 505-512
-
-
Xing, E.1
Ng, A.2
Jordan, M.3
Russell, S.4
|