메뉴 건너뛰기




Volumn , Issue , 2006, Pages 53-62

COALA: A novel approach for the extraction of an alternate clustering of high quality and high dissimilarity

Author keywords

[No Author keywords available]

Indexed keywords

COALA; REAL DATASETS; SINGLE SOLUTION; SYNTHETIC DATASETS;

EID: 84873117260     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2006.37     Document Type: Conference Paper
Times cited : (116)

References (26)
  • 1
    • 0032098774 scopus 로고    scopus 로고
    • Some new indexes of cluster validity
    • J. Bezdek and N. Pal. Some new indexes of cluster validity. Sys., Man and Cybernetics, 28(3):301-315, 1998.
    • (1998) Sys., Man and Cybernetics , vol.28 , Issue.3 , pp. 301-315
    • Bezdek, J.1    Pal, N.2
  • 2
    • 0001684051 scopus 로고    scopus 로고
    • A geometric approach to cluster validity for normal mixtures
    • J. Bezdek, L. Wanquing, Y. Attikiouzel, and M. Windham. A geometric approach to cluster validity for normal mixtures. Soft Computing, pages 166-179, 1997.
    • (1997) Soft Computing , pp. 166-179
    • Bezdek, J.1    Wanquing, L.2    Attikiouzel, Y.3    Windham, M.4
  • 5
    • 84880095768 scopus 로고    scopus 로고
    • Clustering with constraints: Feasibility issues and the k-means algorithm
    • I. Davidson and S. Ravi. Clustering with constraints: Feasibility issues and the k-means algorithm. In SIAM Intern. Conf. on Data Mining, 2005.
    • (2005) SIAM Intern. Conf. on Data Mining
    • Davidson, I.1    Ravi, S.2
  • 6
    • 80051997820 scopus 로고    scopus 로고
    • Identifying and generating easy sets of constraints for clustering
    • I. Davidson and S. Ravi. Identifying and generating easy sets of constraints for clustering. In AAAI Conference, 2006.
    • (2006) AAAI Conference
    • Davidson, I.1    Ravi, S.2
  • 7
    • 0015644825 scopus 로고
    • A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters
    • J. Dunn. A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. In Journal of Cybernetics, pages 32-57, 1974.
    • (1974) Journal of Cybernetics , pp. 32-57
    • Dunn, J.1
  • 9
    • 0032284326 scopus 로고    scopus 로고
    • Fast hierarchical clustering and other applications of dynamic closest pairs
    • D. Eppstein. Fast hierarchical clustering and other applications of dynamic closest pairs. In SODA: ACM-SIAM Symposium on Discrete Algorithms, page 1, 1998.
    • (1998) SODA: ACM-SIAM Symposium on Discrete Algorithms , pp. 1
    • Eppstein, D.1
  • 10
    • 84957012677 scopus 로고    scopus 로고
    • Finding consistent clusters in data partitions
    • A. Fred. Finding consistent clusters in data partitions. In Multiple Classifier Systems, pages 309-318, 2001.
    • (2001) Multiple Classifier Systems , pp. 309-318
    • Fred, A.1
  • 14
    • 0034228041 scopus 로고    scopus 로고
    • ROCK: A robust clustering algorithm for categorical attributes
    • S. Guha, R. Rastogi, and K. Shim. ROCK: A robust clustering algorithm for categorical attributes. Information Systems, 25:345-366, 2000.
    • (2000) Information Systems , vol.25 , pp. 345-366
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 17
    • 26944462703 scopus 로고    scopus 로고
    • Speeding-up hierarchical agglomerative clustering in presence of expensive metrics
    • M. Nanni. Speeding-up hierarchical agglomerative clustering in presence of expensive metrics. In PAKDD, pages 378-387, 2005.
    • (2005) PAKDD , pp. 378-387
    • Nanni, M.1
  • 18
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data: a review. SIGKDD Explor. Newsl., 6(1):90-105, 2004.
    • (2004) SIGKDD Explor. Newsl , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 20
    • 21244466861 scopus 로고    scopus 로고
    • Efficient parallel hierarchical clustering algorithms
    • S. Rajasekaran. Efficient parallel hierarchical clustering algorithms. Parallel Distrib. Syst., 16(6):497-502, 2005.
    • (2005) Parallel Distrib. Syst , vol.16 , Issue.6 , pp. 497-502
    • Rajasekaran, S.1
  • 23
    • 0022906994 scopus 로고
    • Implementing agglomerative hierarchical clustering algorithms for use in document retrieval
    • A. Voorhees. Implementing agglomerative hierarchical clustering algorithms for use in document retrieval. Info. Processing and Management, pages 465-476, 1986.
    • (1986) Info. Processing and Management , pp. 465-476
    • Voorhees, A.1
  • 25
    • 85133386144 scopus 로고    scopus 로고
    • Distance metric learning, with application to clustering with sideinformation
    • E. Xing, A. Ng, M. Jordan, and S. Russell. Distance metric learning, with application to clustering with sideinformation. Advances in NIPS, 15:505-512, 2002.
    • (2002) Advances in NIPS , vol.15 , pp. 505-512
    • Xing, E.1    Ng, A.2    Jordan, M.3    Russell, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.